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Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a 
covariant n 2_plet mass operator. This operator is built as a scalar matrix in the (n; nO) representation, 
and its SU( n) breaking parameters are identified as intrinsic boost ones. Its basic properties are: 
covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n 2_1, 1 
mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same 
generalized mass formula. 

1. INTRODUCTION 

In a previous article l we presented a possible way to 
complete the analogy between the external and the in­
ternal symmetry groups. We made the hypothesis that 
the intrinsic SU(n) spin plays, in an internal n2 -dimen­
sional space, a similar role as the ordinary S spin does 
in the Lorentzian space. Following this viewpoint, a 
generalized SU(n)- based internal symmetry was pro­
posed for elementary particles, such that "broken 
SU(n)" is automatically contained in it. In this paper, 
however, we would like to present a modified mass 
operator which generalizes traditional ones, and has a 
covariant structure under the so-called hyper-Lorentz 
group. We have derived it by adopting a former tech­
nique,2 originally used by Weinberg in the construction 
procedure of covariant Lorentzian propagators. 

In order to clarify our motivation, let us summarize 
the principal properties of the generalized group, In 
analogy to the Lorentz transformation, an internal 
hyper-Lorentz transformation R was introduced, This 
transformation satisfies the fundamental relation 

(1. 1) 

and conserves 

de{(~) 1 12XQ[ + X . A) =gu
l
'" "n XUl ••• x"n = invariant, 

(1. 2) 

for any arbitrary n2 -vector x" ({l =0, 1, ... , n2 -1), In 
(1. 2) X are the SU(n) generators. I is the identity, and 
g is the nth-order "metric tensor" built of the SU(n) 
symmetric structure constants, The representation 
corresponding to an infinitesimal transformation 
R ""I + w, has the form 

U(1+w)""I+ia.F+ij3. B, (10 3) 

We can identify, apart from the SU(n) rotation genera­
tors F, another 112 - 1 intrinsic boost generators B, with 
commutation relations 

[F t , Fj]=+if/jkFk, 

IF i , B j ]= + i!iJkB k , 

[Bit Bj]=-i!iJkF., 

which follow from the group property U(R 2 )U(RJ 
= U(R 2 RJ. 

(14) 

The generators ~(F ± iB) form an SU(Il) XSUt(/l) alge-

bra, with irreducible representations of the (a; b) type, 
where a, b are two arbitrary SU(n) representations, 4 

In particular, covariant and contravariant vectors 
transform according to the (11*; II) and (11,11*) represen­
tations, respectively, These vectorial representations 
are of a great importance to us, since they can be 
naturally connected with mesons, Notice that each of 
these representations consists of the n2 

- 1 EB 1 SU(n) 
representations which stay unmixed as long as only pure 
internal rotations are considered. On the other hand, 
any boost induces mixing and destroys the rotational 
invariants, and therefore can be interpreted as the 
geometrical3 mechanism of the SU(n) breaking. Further­
more, by completing the analogy to the real space, we 
define an "intrinsic rest frame, " where one expects the 
conventional SU(n) to be a little group. In any other 
frame, characterized by the hypermomentum PI" there 
exists a boost penetration into the little-group genera­
tors. Thus, PI' expresses by its magnitude and direction 
the SU(n) breaking. 

In this paper, we have used the aoove arguments to 
construct an 1l

2 -plet mass operator built as a scalar 
matrix under the generalized internal symmetry group. 
Among its properties we can find: covariance, 
hermiticity, positivity, charge conjugation, quark con­
tents, and mixing of representations, But the most 
important one is the possibility to obtain the GMO and 
the Okubo formulas by considering two different limits 
of the same generalized mass formula, 

2. THE n 2 -PlET MASS OPERATOR AND ITS FORMAL 
PROPERTIES 

In the "exact symmetry limit" one expects mass 
degeneracy within any given SU(n) unitary multiplet, in 
our language it is to say that the mass operator should 
be an SU(n) rotational invariant only in the so-called 
"intrinsic rest frame, " This viewpoint naturally sug­
gests the construction of such an operator as a scalar 
matrix under the internal hyper-Lorentz transformation. 

A scalar matrix Ti(p) is defined by the following trans­
formation law, 

where D(a;b )IR] is the hyper-Lorentz transformation 
matrix in the (a; b) representation, and p stands for the 
hypermomentum PI' (Jl = 0, 1, ... , /1

2 
- 1) describing the 

magnitude and direction of the unitary symmetry break-
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ing. In Appendix A we shDw that the mDst general 1T(P) 
is Df the fDrm 

1T(P) =1T(ROp) =D[R]{6 c;oJDtlR], (2,2) 
i 

where the summatiDn index i runs over all the SU(n) 
representations contained in the a0 b multiplication, 
and 

° i =jI: for the representation i, 

0: otherwise, 

c i -arbitrary scale coefficients 

°Pp. -(1, 0). 

As indicated in the Introduction, one can easily show 
that 

DlR] = explia. (Fa + F b)] if R is a pure rotation, 

(2.3a) 

D[R] = expLs· (Fa - Fb )] if R is a pure boosL (2,3b) 

The particular R, which transforms 0p into p, can 
always be considered as a pure internal boost trans­
formation, since 0p stays unaffected under the SU(n) 
rotations. Moreover, we are free to choose the orienta­
tion of the intrinsic coordinate system in such a way 
that this R -transformation will be along n - 1 principal 
axes (in analogy to external space, where any preferred 
direction can be chDsen as our z axis). Thus D[R] takes 
a Simpler form 

D[R]=exp[~ i3k(H~a) -H~b)l (2.4) 

where H~d) are the n - 1 diagDnal generators of SU(n) in 
the d representation. 

In accDrdance with the traditional populatiDn scheme 
of the SU(n) representatiDns, it is very pDpular tD con­
nect the mesons with states of the n2 

- I, 1 mixed 
representations. We hereby propDse a natural general­
ization tD this naive picture by letting the mesons trans­
form like an n2 -pector under the hyper-Lorentz group, 
i. e" via the (n; Il*) representation, 5 In such a way we 
shall be able to derive the n2 -plet mass formulas 
automatically accDmpanied by the n2 

- 1, 1 mixing. 
Apart from the It - 1 breaking (boost) parameters, the 
most general n2-plet mass operator involves tWD other 
scale parameters, as indicated by (2.2). ChDosing these 
parameters as m; and IV1;, the "bare" masses of the 
n2 

_ 1 and the singlet representations, respectively, we 
obtain the desired n2-plet (mass)2 operator 

/i1 2 :=DlR]o {m;on 2 _1 +jvl~oJ. DtlRL (2.5) 

The simplest way to reach the explicit form of (205) 
is to use the q ;ZiJ basis. According to the conventional 
quark claSSification, given in Table I, one can easily 
check that 

n-1 

6 i3AH~n) - H~n*)ll q;ilj ) = l(Y i + 1') I q ; if) , 
K:i 

(2.6) 

where the new coefficients Y K are defined by 

Q) n-1 1 
hK= --1 i3 K - 1 +0 ~1 1310 

10K . 

(2,7) 

Combining formulas (2.4), (2,5), and (2.6), we can 
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finally present our generalized version to the mesonic 
mass matrix, 

(q ;iii I m21 qii) 

= m;. exp(Yi + Y j)' 0i/i,. +.! (M; - m~). exp(Yi + Yk) 
I n 

(2.8) 

Before analyzing the detailed structure of (2.8), let us 
first list some of its basic properties which are im­
portant by themself: 

(1) Covariance: As indicated by the transformation 
law (2,1), the m 2 operator has a covariant structure 
under our generalized internal symmetry group. 
Furthermore, one can rewrite (2. 5) in an alternative 
form which emphasizes its special form 

m2 =FILF"(klPILPo +k2 g lLoA ... x pA
3 ••• pAn), (2.9) 

3 n 

whereFIL=(Ij{2}7, F(n)' F"=(-Ij-f2li, F(n*»)' kl and k2 
are two constants linearly related to m~ and M~, and the 
tensor g is defined by (l. 2), 

(2) Hermiticity: Notice that the real matrix (2,8) is 
totally symmetric 

(2.10) 

hence the eigenmasses are real quantities, 

(3) Positivity: One can easily prove that nl~, M~ > 0 
imply definitely positive eigenvalues for any arbitrary 
breaking parameters. 

(4) Charge conjugation: It is only in the sense that 

(2,11) 

This property assures that polar n2_plet members will 
have equal masses. 

(5) Quark Contents: The mass operator in the (11; 11*) 
representation is expressed by (2.6) in terms of the 
quark and antiquark operators F(n)' F(,,*), To be more 
precise it follows from the multiplication property 
(n;n*)=(n, 1);>:) (l;n*), and one should notice that the 
(n; 11*) representation has nothing to do with the 
(n2 _ 1, 1) 0 r (1; 1/2 - 1) one s. 

(6) The "Exact S"mmetry Limit": The exact SU(n) 
limit is obtained by letting the boost parameters vanish. 
In this limit, the degenerated "bare" mass matrix 
reads 

TABLE I. The conventional quark classification. 

J{'-l Jc Jc 
iI iI 

o 

1 
~ 

Jc 
iI 

o 

o 

Jc 
/I 
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(2.12) 

([n 

o 
o 
o 

1-11 
II 
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(7) Mixing: The m 2 matrix (2.8) consists of a diago­
nal part for the n(n - 1) peripheral states qiqj (i *- j), as 
well as of a nondiagonal one for the other n central 
states q ;iii 0 Thus, the boost transformation induces, 
interalia, a simple mixing among the states which are 
located at the representation origin. 

(8) Traditional Mass Formulas: Using the approxima­
tion where the leading breaking parameter is small 
enough in comparison with the (M~ - m~)/m~ ratio, we 
approach the famous GMO mass formula. On the other 
hand, if M~ and m~ are almost identical, one is able to 
derive the Okubo type mass formulas for the n2 -pleL 
These important approximations to the same mass 
matrix, are considered in Sec o 4. 

3. EXACT RELATIONS AMONG THE n 2 ·PLET MASSES 

For the peripheral members of the n2-plet, it follows 
directly from (2 08) that 

m2(qiqj) = m~ exp(y i + 1') (i *- j). 

Hence, we obtain, apart from the basic identity 

m2(qiqj) =m2(q jqi)' 

an additional multiplicative mass relation 

m2(qiqj)' m 2(qkq l)=m 2(qJiz)' m
2(q"qj)' 

(3,1) 

This n-independent formula turns out to be an additive 
one only if Yk are first-order parameters, (3.3) is 
apparently useful starting n = 4, and for the vectorial 
mesons one finds 

(3.4) 

where we have used the notation p for m~, etc. Notice 
that in a "pure quark model, " where M~ =m~, (3.3) 
holds for all the n2 -plet members and not only for the 
peripheral ones. 

For the central states the situation is somewhat more 
complicated, and the corresponding masses are the 
eigenvalues of the following nondiagonal matrix, 

m~(1 + x) exp(2Yl); m~x exp(Yl + Y2); • ,m~x exp(Y l + Yn ) 

where 

1 M2 
x=-_0-_1 

n m~ 

, 0, 

(3,6) 

measures the deviation from the "pure quark model. " 
As it is shown in Appendix B, the eigenvalues of (3.5) 
obey the following secular equation, 

t (1 + Kx). S~(!.Li, ... , J.l~). (- ?c)n-K = 0, 
K=O 

(3.7) 

where the symmetric coefficients S~ are defined by 
n 

(x1+x) . .... (X1+X)=6 S;;(x1, .. ·,xn)·xn - K , 
K"O 

and J.l~=m~. exp(2yK ) are the central masses in the x=o 
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limit, L e., in the "pure quark model, " Notice that 
every flk can be expressed in terms of the peripheral 
mass 

m2 (QKqi)' m2(QKiO 
m2(Qiq) 

(i *- j *-K), (3.8) 

and therefore Eq. (307) leads us to another mass rela­
tions of the form 

S;;(mi, ' ", m~) = (1 + Kx). S~(fli, 0 • 0, jJ,~), K = 1, "0 n 

(3.9) 

involving the physical central masses mi, . , . ,m~, By 
eliminating x from (3.9) one gets the following parame­
ter free mass formulas 

S~(mi'H.,m~)-S:(fli,· .. ,J.l~) _ ,_ t 
K 2 2) -x - cons. 

KSn (fl!> • , , , fln 
(3,10) 

It should be noted here thatfor an (n -1)2-plet, which 
is contained in the n2 -plet, similar formulas to (3,9) 
and (3 010) do not exist. Solving (3,9) for 
S~_1(mi",., /I1~_l)' using the identity 5;; =S~_l +m~S:_~1, 
we get 

K 

S:_1 (mi, 0 , " m;_l) = 6 (1 + Ix)( - m~)K-I. S~(jJ.i, • , " jJ,~) 
1"0 

(3,11) 

It is to emphasize that different mass formulas are ob­
tained if we try to connect ,1(2 mesons to various n? N 
cases, However, as we shall later see, identical and 
familiar mass formulas can be derived for all these 
cases if we consider only first order breaking of the 
11(2-pleL Thus, if we are interested in obtaining physi­
cally exact mass relations for ."f2 mesons, we face the 
serious problem of determining the correct II? N. The 
temporary value for n is 4, but until the real value will 
be fixed we cannot avoid the penetration of the n~- plet 
masses into the 1V2-plet mass relations. Meanwhile we 
must content ourselves with the following approximated 
mass formulas. 

4. THE SINGLE-BREAKING-PARAMETER 
APPROXIMATIONS 

If we believe that the II - 1 breaking parameters obey 

it is justified to consider first the approximation where 
only the leading parameter does not vanish, i. e. , 

From (2.7) it follows that 

Substituting (4.2) into the mass expressions (3. 1) and 
(3.7), one is led to results which describe the SU(n) 
breaking to the smaller SU(l1- 1) U(l) symmetry 
group, The 1/

2 -plet consists of the following SU(II - 1) 
subrepresentations: /1- 1, (Il-l)*, (1/ _1)2 -I, and two 
Singlets [only one of them is also an SU(II) singlet], The 
corresponding masses are given by 
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m~ '" m2{n -1}=m2{(n -l)*}= m~' exp (n;n2 e), 
A1~ '" m 2 [(n _1)2 -1] =m~. exp (- ~e), 

and by the relations 

M2 + m 2 = m~ exp (- ~ e) {(I + eel + x[(n -1) + ee]}, 

( 

2 ~ (404) 
M2mZ = m~. exp II: e

J
. (1 + nx), 

where 1'v1 2
, 1112 are the eigenmasses of the two mixing 

singlets, and x was defined by (3. 6L We are going to 
show that (4< 3) and (404) give under certain conditions 
a variety of the traditional mass formulas, 

Let us now consider some special cases of (4,3) and 
(4,4), 

(1) tJ« 1, x: In this limit one finds, up to the first 
orderOftJ, that 

III -rn 1 + ---e 2 2 ( )).-2) 
5 0 212' 

( 
)1- 2 ) m2-)}/~ 1+-

I
-
z
-8 , 

thus, the GMO mass formula 

(Il - 2)m~ -'- nm2 = 2(11 - 1) 11/2s 

follows immediately, 

(4.5) 

(2) ~« 1, e: Here we get, up to the first order of x, 

2 2 (J/-2~ 
Ills =111 0 , exp --r;-tJ). 

(
n -1 ~ 

1'1'12 - m~ 0 exp -n-8j . (1 + x), (4.7) 

which lead to the relation 

1 ( 1Il

2 

~ --1- --2 + (11- 2). }}11 =;VJ2m~. 
/1- /ilL ' 

(3) x« tJ «1. In this limit 

1I1~ -111;(1 + n ~1l2 tJ), m~, -m~ (1- ~8), 
(4,9) 

nz 2 -iIl;(1+(n-1)X-;8), /112_ m;(1+x+
n

:
1

8), 

These masses are clearly connected by the Okubo masS 
formula 

nm~ + (n - 1)M2 =m2 + 2(n -l)m~, (4,10) 
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APPENDIX A: THE GENERAL FORM OF THE SCALAR 
MATRIX 

From the transformation law (2.1) it follows immedi­
ately that 

IT Id
l 

;d
2

) UJ) = IT {d
l 

;d
2 

)(f( 0p) 

=D (d
l 

;02 )[R] .71 (d
l 

;d2 ) (Op) . D~dl ;a2 )[R], 

where 0p - (1, 0). 

If R is a pure rotation, then 

RO/J=op, D[RI=exp[ia. (Fd +Fd )J. 
1 2 

The substitution of (A2) in (AI) gives the relation 

(AI) 

(A2) 

IT(Op)=explia. (Fd +Fd )]. IT(Op) .exp[-ia(Fd +Fd )], 
1 2 1 2 

which is satisfied if and only if 

[Fd +Fd , 71(Op)J=O, 
1 2 

Therefore, 

IT (0 p) ==:0 C i 6 i , 

(A3) 

(M) 

(A5) 

where the summation index i runs over all the SU(Il) 
irreducible representations contained in the multiplica­
tion of the du ri2 representations, and c p 6; were de­
fined in Sec. 2. 

If f( is a boost, then 

(A6) 

(A2) gives ,,(p) its final form 

1T(p)=exp[s· (Fat - Fa)1 .{~C;6i}exPlS. (Fdt - Fa)l, 

after another substitution in (AI). 

APPENDIX B: THE SECULAR EOUATION FOR THE CENTRAL EIGENMASSES 

111~(1 + x) exp(2y J - A, m~x exp(Y1 + Y2); m;xexp(Yl +Yn ) 

m~x exp(Y2 + Y1)j m~(I + x) exp(2y2 ) - A; .; m~x exp(Y2 + Yn) 
=0 (El) 

.; 

m~xexp('Yn +Y1 ), m~xexp(Yn+Y2); 0, m~(1 + x) exp(2y) - A 

can be rewritten as 
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1 + 1]1 1 1 

1 1 + 1]2 (B2) 
Il = =0, n 

11 1 + 1]n 

where we have defined 1/K by 

1 ) exp( - 2YK) 
11K =0- (rn~ - ~ exp(- 2YK) =0 ----''-'--~(/l~ - ?t). (B3) 

x x 

From (B2) it follows that: 

Iln = 1/n' Iln _1 + 1]n-1' •• Th = ... 

=S~-l(1)l! 0 0 ,,1)n) + S~(1]l! ' , ., 1)n), 

and 
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(B4) 

(B5) 

(B6) 

Thus (3,7) follows immediately, 
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A critique of the major approaches to damping in 
quantum theory 

Daniel M. Greenberger 

Cily College of rhe City Universily of New York. New York 
(Received 5 January 1977; revised manuscript received 5 April 1978) 

We examine the two major approaches that have been suggested for the quantum mechanical treatment of 
the damped motion of a particle as a one-body problem. These are the linear. but time dependent. Kanai 
Hamiltonian. and the more recent nonlinear potentials which have been introduced to simulate the 
damping force. The most important criticism that has been leveled at the Kanai Hamiltonian is that its 
solutions seem to violate the uncertainty relations. We show that this Hamiltonian actually represents a 
particle of variable mass, whose classical behavior is identical to that of a damped particle of constant 
mass. But quantum mechanically, its changing mass does lead to unphysical behavior when misinterpreted 
as a constant mass particle. So this Hamiltonian cannot directly describe a constant mass damped 
quantum particle. The nonlinear model has been interpreted in terms of the hydrodynamical analogy of 
quantum theory, and a well behaved decaying wavepacket solution has been produced. However we 
generalize this result to produce solutions that "decay" to arbitrarily high energy. Thus it is no! clear that 
this model specifically treats dissipation. Rather it seems to seek out any stationary state. At any rate, its 
physical interpretation is obscure at present. However we show, by analyzing the physical problem of 
damping at low energies, that one can modify the Kanai Hamiltonian to eliminate its unphysical features. 
so that this modified Kanai Hamiltonian can in fact be interpreted as representing a constant mass 
damped particle with physically reasonable solutions. 

LINTRODUCTION 

Recently, there has been an upsurge of interest in the 
quantum mechanical problem of a particle subject to a 
damping force proportional to its velocity. The impetus has 
come from nuclear physics, but the problem is very interest­
ing in its own right. An excellent, short, review article by 
Hasse' covers much of what has been done on the subject to 
date, and the reader is referred there for a very detailed list of 
references. 

The reason the subject is intrinsically interesting is that 
one believes that at a microscopic level there is no damping, 
and that effectively, damping is a collective phenomenon 
produced by the interaction of a particle with the sea of back­
ground particles in the medium. It is the dissipation of ener­
gy to this background that causes the damping, and at the 
same time the particle receives energy from fluctuations in 
the background. 

Yet classically, the end result of this many-body inter­
action is the existence of an effective one-body problem, 
namely that of the particle subject to a damping force, and a 
great deal of literature has been generated by the problem in 
statistical mechanics of producing this one-body force.' 

Now, since this one-body force does come about, it is 
only natural to expect both classical and quantum theory to 
be able to cope with it, and that the solution should blend 
convicingly with the results of the many-body approach to 
the problem, to whatever extent the physical situations 
themselves overlap. This becomes especially important 
when one realizes that in fact a truly undamped oscillator 
never occurs in nature, and one must always include some 
damping in order to obtain realistic results near resonance. 
and yet it is the undamped oscillator that is easily treated as a 
one-body problem. 

The classic approach to the one-body problem for 
damped motion is through Kanai's Hamiltonian' (in one 

dimension) 

H = (p'/2m o)e - 1'1 + V (x)e P . (I) 

This Hamiltonian has received a considerable amount of at­
tention,' but it produces some results that are considered 
unphysical, and this has led to a second approach, due ori­
ginally to Kostin,' which replaces the linear but time-depen­
dent Hamiltonian above, by a rather ingeniously construct­
ed nonlinear one, which we shall also discuss. We will see 
that the nonlinear approach also has a severe problem with 
interpretation. 

We will first examine the solutions obtained from the 
Kanai Hamiltonian, and will discuss explicitly those fea­
tures which have been criticized as unphysical. These criti­
cisms fall into two classes, the first of which we will show to 
be unjustified, but the second of which is very valid, and will 
necessitate a modification of the Kanai Hamiltonian, if it is 
to have a physical interpretation. 

First, in the quantum mechanical case ofa damped free 
particle, the spread of the Kanai wavefunction, Llx(t), re­
mains finite for all times, even in the limit f---> 00. This is in 
sharp contrast to the case of the undamped free particle, 
where the wavefunction ultimately disperses through all 
space. It also conflicts with the solutions to all other pro­
posed damping Hamiltonians in this respect. Nontheless, by 
examining the behavior of a swarm of classical particles in 
phase space, we will show that their behavior in the damped 
case is very different from that in the undamped case, and in 
fact Llx(t ) always remains finite. Thus the behavior of the 
Kanai solution becomes very plausible in this regard, as the 
properties of the undamped case turn out to be a very poor 
guide as to what to expect in the damped case. 

The second criticism is much more meaningful, as the 
Kanai solution appears to violate the uncertainty principle. 
Of course formally, the uncertainty principle is satisfied, 
LlpLlx~fz. However, the canonical momentum, p = move)l, 
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is not equal to the physical "kinetic" momentum, Pk = mov, 
for this problem. and for the kinetic momentum one has 
moLl vLlx ~ fie )'1-0, for large times. This behavior has been 
a long-standing puzzle for the interpretation of the solution. 
We show that the problem is caused by the fact that the 
Kanai Hamiltonian actually refers to a particle of variable 
mass, m(t) = m"ert . This increasing mass causes an effect 
equivalent classically to a damping force proportional to the 
velocity. 

So the particle with increasing mass classically has an 
equation of motion identical to that of a particle of constant 
mass subject to a damping force. Thus classically, these two 
problems are equivalent. But quantum mechanically they 
are not. Because even though the expectation values of the 
quantum problem are the same as those of its classical coun­
terpart, the spread of the wavefuntion will be governed by 
the specific form of the Hamiltonian. And in this case, the 
increasing mass absorbs most of the momentum fluctu­
ations, so that the spread in velocity goes to zero. 

We would like to point out the rather fascinating math­
ematical implications of this situation. Normally, one has a 
given, unique, physical situation, and one can describe it by 
various different mathematical formulations. These formu­
lations are generally connected by unitary (or classically, 
canonical) transformations, and the totality of different for­
mulations is usually directly related to the amount of sym­
metry inherent in the physical problem. The situation here is 
almost diametrically opposite. Here we have two completely 
different physical situations-a constant mass particle sub­
ject to a damping force, and a particle of varying mass-both 
of which give rise to the same classical mathematical de­
scription. Yet quantum mechanically, the Kanai Hamilton­
ian is only consistent with the variable mass interpretation, 
and the constant mass interpretation is inconsistent, and vio­
lates the uncertainty principle. 

Thus in this respect the Kanai Hamiltonian is truly un­
physical. But does this mean that it is therefore not possible 
to give a constant mass reinterpretation of the Kanai Hamil­
tonian? In the classical case, since the equation of motion for 
the two interpretations are identical, one can certainly inter­
pret the Hamiltonian as representing a damped constant 
mass particle, as has always been done. Quantum mechani­
cally, one cannot do so with the Hamiltonian in its present 
form. 

However, we shall show that there is a further physical 
ambiguity in both the quantum and classical problems, and 
one can exploit this fact to modify the Kanai Hamiltonian in 
such a way as to restore a reasonable constant mass interpre­
tation even quantum mechanically. The nature of this ambi­
guity has to do with the fact that when a damped particle 
approaches closely enough to equilibrium, the damping be­
comes sufficiently small so that one can no longer detect that 
the motion is being damped, and thus beyond this point one 
can effectively switch off the damping force. Quantum me­
chanically, this has the effect oflimiting the shrinkage of the 
wavefunction. thus making it possible to preserve the con­
stant mass interpretation. 

763 J. Math. Phys., Vol. 20, No.5, May 1979 

For the nonlinear potentials, there are at present some 
physically reasonable solutions known, which decay to the 
ground state of the unperturbed oscillator. However it is also 
known that any stationary state of the unperturbed oscilla­
tor is also a solution, so that not all solutions show damping. 
We will produce a set of solutions which generalize both 
these results, and which "decay" to any arbitrary stationary 
state of the unperturbed oscillator. Thus it is not clear that 
the nonlinear damping potential specifically damps. Rather 
it seeks out any stationary state at all. Thus the entire phys­
ical basis of the method remains difficult to interpret, a situa­
tion which is not helped by the failure of superposition 
amongst known solutions, or the lack of information as to 
how many unknown solutions exist, both problems being 
consequences of the nonlinearity of the problem. 

In Sec. II we shall produce some solutions to the classi­
cal and quantum mechanical damping problem, as formulat­
ed with the Kanai Hamiltonian. We will show that this Ha­
miltonian actually represents a particle of variable mass, 
which is responsible for its strange behavior when misinter­
preted as describing a particle of constant mass. Thus the 
Kanai Hamiltonian has definite unphysical features. In Sec. 
III, we will show that a classical distribution of damped par­
ticles in phase space does not spread indefinitely, but re­
mains finite, as does the Kanai wavefunction. This behavior 
is completely different from the undamped case, and argues 
for the plausibility of the Kanai solution in this particular 
respect. 

In Sec. IV, we discuss the nonlinear approach and point 
out the difficulties of interpretation it runs into. In Sec. V we 
point out that it is unrealistic to expect a particle to keep 
damping beyond a certain minimum energy, both classically 
and quantum mechanically. We then use this fact to modify 
the Kanai Hamiltonian by eliminating the damping beyond 
this point. This eliminates the unphysical qualities of the 
solutions and then they can be reasonably reinterpreted as 
describing the damped motion of a constant mass particle. 
We explain exactly what such a reinterpretation entails, in 
terms of the formalism. While it may prove somewhat dis­
turbing to have to cope with a variable mass particle, the fact 
is that this property is already built into the Kanai Hamil­
tonian. By mOdifying the Hamiltonian we are actually allow­
ing it to describe the physical situation of a constant mass 
particle, and it then becomes the first linear model to suc­
cessfully handle the problem of damping. (In fact, in the 
companion paper of Ref. 6 it is shown how one can introduce 
the concept of a "dissipation variable" and thereby eliminate 
all mention of a variable mass, if one prefers.) Finally, Sec. 
VI contains a summary of the paper. 

Before we begin, we should point out that when one 
discusses damping forces, there are at least three types of 
dissipation involved. First, the Schrodinger equation has an 
intrinsic dissipation built into it, in the sense that a free parti­
cle wave packet will spread spatially. This is due to the un­
certainty principle, and for a Gaussian packet, 
(LlX)2 = (Llx)6 + (Llvrt 2. This diffusion effect does not de­
stroy the coherence of the packet (i.e., its capacity to produce 
diffraction effects). Furthermore, given any encouragement, 
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a wave packet will not diffuse, as when bound in a stationary 
state of an attractive force. 

Second, if one puts in a damping force, via some Hamil­
tonian like that above, the particle center of mass will repro­
duce its classical motion, and so energy will be dissipated. 
But nonetheless, the packet will not lose coherence, though 
there will be diffusion effects due to the uncertainty princi­
ple, as before. This is important, and it is unfair to expect 
such a wavefunction to reproduce effects of say, dissipation 
in a heat bath. 

Third, there are the incoherent effects due to the chaot­
ic interactions with the surrounding medium. This can be 
handled via a density matrix of statistical mechanics. A par­
ticle in a medium at finite temperature, whether in equilibri­
um or not, has no memory beyond its relaxation time. But a 
pure quantum mechanical wavefunction has perfect recall 
until a measurement is made. These considerations affect 
what one can rationally expect from the behavior of a solu­
tion to Eq. (1), and they indicate a certain nonequivalence 
between the one-body and many-body approaches. 

II. INTERPRETATION OF SOLUTIONS TO THE 
KANAI HAMILTONIAN 

The Hamiltonian of Eq. (l) leads classically to the 
equations 

v = ~; = (p/mo)e - 1", 

. ( Jot). aH p= move = - - = ax 
and the equation of motion 

. _Iav ° v+yv+mo - = , ax 

(2) 

(3) 

(4) 

which adds a damping force, Fd = - ymov, to the problem 
ofa particle moving in a potential V. It should be noted that 
the canonical momentum, 

p = move1't
, 

is not equal to the "kinetic" momentum, 

Pk = mov. 

(5) 

(6) 

For the free particle case, V = 0, the classical solutions 
are 

x = Xo + (vo/y)(1 - e - 1"), 

v = voe ,- 1't 

(x - xo) = (vo - v)/y. 

(7) 

(8) 

(9) 

The form of the momentum, Eq. (S), shows that the 
Kanai Hamiltonian actually refers to a particle of increasing 
mass, met ) = moeYf

• To see this in more detail, let us examine 
a particle whose mass is increasing, but for which the extra 
mass carries no extra momentum-such as the case of a rain­
drop moving through a mist which is at rest. For such a 
particle, momentum conservation gives 

(m + om)(v + ov) - mv = FOr, (10) 

where F represents any force present on the particle, so that 
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the equation of motion becomes 

(:t )<m(t)u) = F. 

The Lagrangian for this equation is 

L = !m(t)u2 
- V 

and the canonical momentum is 

aL 
P = - =m(t)v. au 

Furthermore, if the potential is of the form 

V = m(t)cp (x) 

(11 ) 

(12) 

(13) 

(14) 

(which has the formal interpretation of an external gravita­
tional potential, being proportional to the mass), then the 
Hamiltonian will be of the form 

H = pv - L = p'/2m(t) + met )cp. (IS) 

Therefore, the Hamiltonian equation of motion becomes 

p = (~ )(m(t )v) = - m(t) acp , 
dt ax 

u + (m(t )fm(t »v = _ acp . 
ax 

(16) 

Now, the Kanai Hamiltonian, Eq. (1), is exactly of the 
form of Eq. (15), where 

m(t) = moe1't
, met )/m(t) = y, (17) 

so that the canonical momentum ofEq. (5), is exactly that of 
Eq. (13), and the equation of motion, Eq. (4), is exactly that 
ofEq. (16). Thus it follows that the Kanai Hamiltonian actu­
ally represents a particle of variable mass, Eq. (17), which 
produces a classical equation of motion that is identical to 
that of a damped particle with constant mass. 

So the problem arises that if the variable mass particle 
of the Kanai Hamiltonian produces a classical motion which 
cannot be distinguished from a constant mass damped parti­
cle, then in what way does it differ from such a particle­
how does its variable mass express itself? Of course the mo­
mentum of the particle in the two interpretations is different, 
one beingp and the other beingPk, but classically, the prob­
lems are formally identical, and either interpretation is valid. 
However in the quantum mechanical case, while the expec­
tation values obey the classical equations, the fluctuations 
are nonetheless controlled by the detailed nature of the Ha­
miltonian, and this is precisely where the variable mass 
shows up,' as we shaH show. 

To acquire some feeling for the quantum mechanical 
behavior of the Kanai wavefunctions, we can examine the 
Schrodinger equation for the free particle case, V = 0, 

_ ~ e - 1't a't/! = iii at/! . 
2mo ax2 at 

(18) 

There is a natural unit oflength A. = (li/moyyl2, in terms of 
which the equation becomes 

1 a't/! (. -1' t)-, at/! -- = lye -, 
2 ay' at 

y = x/A.. (19) 
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Also, in terms of the variable u, given by 

u = I - e - )", 

the equation reduces to the free particle equation 

I a2l/1 . at/; 
--' = -/-. 
2 ay2 au 

Introducing the Green's function G (y,u), for this 
problem, 

G (y,u) = (21Tiutll2eiY'/2u, 

which obeys Eq. (21) as well as 

G (y,0) = beY), 

the general wavepacket solution obeying the boundary 
condition 

l/1(y,0) = t/;,,(Y) , 

becomes 

l/1(y,U) = f dy'G(y - y',u)t/;o(y'). 

Specifically, for the Gaussian packet, 

Ibo = e Y'la, 

we find that", evolves in such a way that 

1t/;(y,u)I'~e- 2y'la'("\ 

where the width a(u) is 

a'(u) = a' + 4u'/a' = a2 + (..::1v)'u', 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

in terms of our dimensionless variables (v here is also in di­
mensionless units). Remembering that u = I - e - )", we see 
that the wavepacket is finite both at t = 0, and at t = ex; , in 
contrast to the case of an undamped particle wavepacket, 
(..::1x)' = (..::1x)~ + (..::1v)'t '. 

In fact, had we made instead the substitution U I = e - Y', 

representing the solution for a wavepacket that becomes 
Gaussian at t = 00, its width would also be given by Eq. (28), 
with U 1 replacing u. In this case the wavepacket actually 
shrinks in time. So the wavepacket can shrink or expand, but 
the important feature is that it maintains a finite width at all 
times. We shall see in the next section that this behavior is 
perfectly plausible from a classical point of view, although it 
differs drastically from both the free particle case, and from 
all the nonlinear potentials that have been proposed. 

The unphysical feature of the Kanai Hamiltonian 
shows up in the following way. In the case of a bound parti­
cle, say in a harmonic oscillator, if one calculates the spread 
of the wavefunction in time, one finds' 

(..::1 x )';:::: (..::1 x )~e - 1't (29) 

and 

(..::1p)2;:::: (..::1p )6eyt, (30) 

so that the uncertainty principle is formalIy satisfied, 

(31) 

If we remember that the Hamiltonian represents a particle of 
increasing mass, there is nothing strange about this. But if 
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one wants to force a constant mass interpretation on the 
problem, then in terms of the kinetic momentum,Pk = mov, 

yt 
PI" = pe , 

(..::1Pk)' = (..::1p)'e - 2
yt, 

(..::1Pk)'(..::1x)'~(..::1p)'(..::1x)2e - 2)'t~0, 

(32) 

we have the rather perplexing situation that the uncertainty 
principle seems to be violated. It would be incorrect to at­
tribute this vanishing of the product ..::1p".Lix, as given by Eq. 
(32), to the lack of an extra fluctuation term in the Hamilton­
ian, to match the dissipation present (as has been done in the 
literature). That would be true in a macroscopic treatment of 
the problem via statistical methods, but the one-body Schro­
dinger equation contains all the fluctuations it needs to guar­
antee the uncertainty principle. 

This strange behavior, which has proved very puzzling, 
is a direct consequence of our attempt to impose a constant 
mass interpretation on the quantum mechanical solution. 
The quantity p,,/mo = p/m(t) represents the velocity, 
whose fluctuations are decreasing, (..::1 v)' - (..::1V)6e - 1", while 
p represents the momentum, whose fluctuations are increas­
ing. The difference between the two is provided by the mass, 
whose increase furnishes the added momentum fluctuations. 
So the uncertainty principle is not violated, but only appears 
to be violated if one insists on the incorrect constant mass 
interpretation of the Hamiltonian. But of course an actual, 
physical damped oscillator does have constant mass, and so 
the Kanai Hamiltonian as written does not apply to such a 
system. Nonetheless, we shall show in Sec. IV that it is phys­
ically valid to modify the Hamiltonian at low energy to 
achieve a reasonable constant mass interpretation of the 
problem, eliminating the problems associated with the un­
certainty principle. There will then be no further obstacles to 
a constant mass interpretation. 

III. THE DISPERSION OF THE KANAI 
WAVEFUNCTION 

We saw in the last section that for a damped free parti­
cle, the Kanai wavefunction does not spread indefinitely, 
like that for an undamped free particle, but maintains a finite 
width in the limit t~ 00, and it has been criticized as being 
unphysical on these grounds. We shalI examine the behavior 
of a distribution of classical damped particles in phase space, 
and show that it behaves in this regard like the Kanai wave­
function, while a distribution of undamped classical parti­
cles spreads indefinitely like the undamped free particle 
wavefunction. So in this respect the Kanai wavefunction ac­
tually behaves very plausibly. 

The first thing to notice is that there is no Galilean in­
variance in the problem of damped motion-Newton's first 
law does not hold. All particles slow down and asymptotical­
ly come to rest. So there is something very special about 
speed zero. It is the end point of all motion, but it is never 
reached in a finite time by moving particle. On the other 
hand, a particle at rest remains at rest always. 
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Furthermore, there is no such thing as a "little bit of 
damping." Either the motion is undamped, and all speeds 
are equivalent, or it is damped, and speed zero is special. Ifit 
is damped, the time scale is set by 1Ir = to, the damping 
constant. In units of this time, rt = t Ito, all damped motion 
is scaled identically. So there is no smooth passage to the 
limit r-----O. All finite values of r are formally identical, and 
the value y = 0 represents a different problem. [This is not 
true if other forces are present. For example in the harmonic 
oscillator there are two time scales, 1Iyand 11 wo, and it 
makes sense to speak of the limit r<wo.) 

Note too that the form of the damping force, 
Fd = - ymov, acts as a converging lens in velocity space. 
This means that if one releases a swarm of particles simulta­
neously, with a spread in velocities, p(v), the faster particles 
slow up more rapidly than the slower ones, so that the distri­
bution tends to shrink in velocity space. Ultimately, of 
course, all velocities tend to zero. 

And so, as can be seen from Eq. (7), all particles travel 
only a finite distance before coming to rest. A particle origin­
ally at xo, with velocity va' will end up at t = 00, with 

x/= Xo + vo/y. (33) 

Therefore, of course, the distribution will have a finite 
spread in Llx as t _____ 00. Thus, far from being unphysical, clas-
sically this behavior is mandatory. And while the classical 
behavior only controls the motion of the expectation values 
in quantum theory, and the quantum fluctuations are not 
necessarily related to classical considerations, nonetheless, 
this argument shows the plausibility of having .:lx stay finite 
for the quantum wavefunction, and the Kanai wavefunction 
has this property. 

This is totally different from the behavior of a free un­
damped wave packet, which will spread indefinitely in .:lx. 
There the spread is due to an uncertain knowledge of the 
velocity, (.:lv)o. But with damping, we know that every veloc­
ity component of Llv will decrease separately, as will Llv 

itself. 

In line with our comments above, this finite spread of 
the wave packet in x space will take place for any nonzero 
value of y. Depending on the original shape of the packet, 
.:lx/can be smaller or larger than .:lxo, so that the behavior in 
the limit y _____ O is no guide to the behavior at y = O. 

We can quantitatively illustrate these remarks. A distri­
bution of particles which starts off at t = 0 with a shape given 
by Po(x,v), will at time t be governed by the equation 

Dp = v ap + a ap + ap = O. (34) 
Dt ax av at 

For a free undamped distribution, a = 0, and so the distribu­
tion at time t will be 

p;IOl)(X,V) = po(x - vt,v). (35) 

For the case under consideration, damping with a = - yv, 
the solution can be constructed from the particle motion as 
given by Eqs. (7), (8), and (9), 

(36) 
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So for example, if the velocity part of the distribution was 
initially p( v) = A exp[ - (v - vo)' ILl'], then at time t the dis­
tribution would become 

= A exp[ - (v - voe - YI)'/(.:le ),1)'], (37) 

and would have its center at v = Va exp( - yt), and width 
LI (t) = Llexp( - yt). 

To study a simple example in detail, consider the fol­
lowing special distribution. At t = 0, the distribution is uni­
form within a region of (x,v) space, 

{
const, Xl <;x<;x" v1<;v<;v" 

po(x,v) = 0, elsewhere. 

If we normalize by 

f dx dv po = I, 

then the constant will be 

(38) 

(39) 

po= 1ILlxLlv, Llx=(x,-x1), Llv=(v,-v1). (40) 

For undamped motion, each particle will move at constant 
speed, or horizontally in Fig. lea), and the distribution 
p(x) = Sdv p(x,v) will spread as shown in Fig. l(b). 

If now we consider the case of damped motion for the 
same initial distribution, po, of Eq. (38), then each particle 
will move along the straight line given by Eq. (9), ultimately 

(a), 

t·o 

v 

v. -- - -~ ~~-- --------~-~ 

VI---~ _L ___ ---~; : 
L.t;,)(-..! "£IX -..---t;V t----. 
I I I I I J 

I: : ~ : I 
I I I I , 
I I 
I I 
1 

X, )(,+Vjt 

x 

(b) 

P(x) 
T t 
1/0;( 

j 

x I-- AY t ----l 

FIG. 1. Spread ofa uniform distribution of undamped particles. (a) Evolu­
tion of p(x,v) in time. An originally uniform rectangular distribution of 
particles spreads out as the faster particles outs peed the slower. (b) The 
distribution p(x) = Sdv p(x, v) as a function of time. The half-width re­
mains.::lx untill.::lx = .::lVI, and thereafter becomes .::lVI, expanding 
indefinitely. 
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(0) 

v 

(c) 

v 

x 
FIG, 2, Spread ofa uniform distribution of damped particles, (a) Evolution 
of p(x,v) in time, An originally uniform rectangular distribution of particles 
squeezes together in v, as all particles move along parallel slanting straight 
lines, exponentially approaching the x axis at t = 00, (b) The distribution 
p(x) = Jdv p(x,v) as a function of time, The width as t--+oo is finite, 
Llx" = Lluly, (e) A distribution where Llx, is actually less than Llxo' 

settling on the horizontal axis as (----... <Xl. The spread of the 
distribution will be as shown in Fig. 2(a), and the spread in 
p(x) will be as shown in Fig. 2(b). In Fig. 2(c) we show a 
distribution that will actually shrink in size as time goes on. 
However the important point is that the spread at t = <Xl will 
always be finite if the initial distribution was. In this respect 
the solutions to the Kanai Hamiltonian show the same be­
havior as a classical distribution of particles. Other quantum 
mechanical wavefunctions, representing other approaches 
to the damping problem which behave quite differently in 
this respect, will have to establish their own plausibility. 

IV. THE NONLINEAR APPROACH TO DAMPING 

The alternate one-particle approach that has been tried 
for the problem of damping uses nonlinear potentials. Kos­
tinS first introduced such a class of potentials with the prop­
erty that the expectation values of the dynamical variables 
reproduce their classical behavior. We agree with the con­
clusion ofImmele, Kan, and Griffin, 7,8 that the natural inter­
pretation of such potentials is in terms of the fluid mechani­
cal interpretation of quantum mechanics, where the 
resistance is proportional to the "velocity" of the fluid, 
which is related to the phase of the wavefunction, or 
In(¢/¢*). They showed that there exists a solution to this 
potential that behaves in just the manner one would expect 
intuitively from a damped wavepacket. An extension of the 
type of potential allowed was given by Albrecht,9 and nu-
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merous general wavepacket solutions were produced by 
Hasse.' 

At present, it is known that these potentials possess 
some intriguing, physically reasonable solutions. However, 
they also possess extra, undamped solutions, which are diffi­
cult to interpret. Furthermore, because of their nonlinearity, 
they may possess other, nonintuitive solutions (in fact, we 
will produce one such class), as there is no completeness 
theorem for them. Other consequences of their nonlinearity 
are that solutions cannot be superimposed, and until an in­
vestigation of their regions of stability is carried out, it would 
be difficult to apply perturbation theory methods to them 
with any confidence. These difficult problems have barely 
begun to be attacked, although Ref. 8 has a discussion of 
superposition. In another vein, some general properties of 
non-Hermitian Hamiltonians have been discussed by Eck 
and Thompson. 10 

However, beyond all these difficulties, the entire ap­
proach suffers from the fact that its physical interpretation is 
very obscure, To underline this point, we would like to show 
that one can generalize the known solutions to the problem 
by producing a class of solutions whose interpretation is very 
puzzling. The nonlinear Hamiltonian, in the form of Kan 
and Griffin 7, is 

HI/; = [Ho + (yfz/2i)ln(¢/¢*) - W(t)]¢ = ifzip. (41) 

Here Ho is the Hamiltonian without damping, and the In 
term produces the velocity-dependent damping, with y the 
damping constant (F d = ymov). The function W (t ) is chosen 
as 

(42) 

the expectation value of the damping term, in order to make 
the expectation value of the total energy, H (t), well behaved. 

If Ho is chosen as the Hamiltonian for the undamped 
Harmonic oscillator, 

(43) 

then Kan and Griffin noted that one solution of Eq. (41) is 

= Na exp[ - (moUJa/2fz)(x - X (t »)2] 

x exp[ixP(t )/fz]e - ig,,(tl, 

where 

x (t ) = Xae - yt cos(wt - 8), 

P (t) = moX (t), w = (w~ _ y')">' 

the classical solutions for the motion, while 

(44) 

(45) 

ga(t) = Waf /2 + I dt '(P'/2mo - moUJ~2/2 - yPX)/fz, 

(46) 

and No is a normalization constant. This solution has the 
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classical solutions for its expectation values, and as t--+ 00, 

approaches the Gaussian ground state of the undamped os­
cillator, a behavior which would appear to be quite reason­
able. However they also noted that 

un = N,,:J(n(x) exp[ - (moWo/21i)x2]e i(n + !),u"l, (47) 

whereW n are the Hermite polynomials, and N" are normal­
ization constants, are also solutions of Eq. (41). These are 
merely the stationary solutions of Ho, the undamped oscilla­
tor, and their appearance as solutions to what purports to be 
a damping problem is rather strange. 

We can in fact generalize both of these solutions. The 
functions 

w" = N/lrn(x - X (t »)tPoe - 19,,(r 1, 

where 

gil) = go(t ) + n(rJ,,t, 

(48) 

(49) 

are also solutions to the Hamiltonian, Eq. (41). The special 
case, n = 0, is the solution tPo of Kan and Griffin. Also, these 
solutions "decay" to the unperturbed stationary states, 

tP,,(x,t) --+ Un' (50) 
(-'»CC 

which have arbitrarily high energy En = (n + :Dwo. 

One can see that the damping force, the gradient of the 
logarithmic damping potential, vanishes in any stationary 
state of the form 

cp (x,t) = /(x)e i
{3l, (51) 

where/ex) is real, and (3 is a constant, regardless of whether 
or not cp is a solution of the Hamiltonian. So it is clear that 
this potential seeks out stationary states, rather than low 
energy states. [In fact it seeks out any separable function 
/(X)g(l), with/ex) real.] The individual highly excited sta­
tionary states are very nonclassical objects, and one normal­
ly makes classical wave packets by superimposing them. But 
of course one cannot superimpose nonlinear solutions. Thus 
we feel that it would be fair to characterize the present status 
of the nonlinear approach by saying that it offers intriguing 
possibilities, but that its entire physical basis and interpreta­
tion remain quite obscure. And of course, one has no guaran­
tee that other, even stranger, solutions do not exist. 

v. MODIFICATION OF THE KANAI 
HAMIL TONIAN 

We pointed out in Sec. II that because the Kanai Hamil­
tonian represents a variable mass particle, its interpretation 
as representing a constant mass particle breaks down as 
t--+ 00 , because the fluctuations become unrealistic, and both 
..:lx--+O and..:lp k = mov-o. Now there is nothing implausible 
in both ..:lx and ..:lp k decreasing as the particle damps. The 
problem arises because the damping never stops. 

On the other hand, there is always a physical limit to 
such damping. For example, if the motion is that of a 
damped harmonic oscillator initially in a highly excited 
state, where ..:lp~x~li, there will be no further damping 
once it reaches its ground state. If the motion is that of a 
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damped free particle, once its energy decreases to 
E = (3/2)kT, the damping will be swamped by thermal vi­
brations. Also, if the particle is composite, with internal en­
ergy co, the damping will be overwhelmed by internal mo­
tions when its energy has decreased to E - co. In all these 
examples the damping mechanism will still be working, but 
there will be no further decrease in amplitude of the wave­
function. So the solution to the problem of unlimited damp­
ing depends on the realization that beyond a certain lower 
energy limit the damping force is balanced out by other, not 
explicitly stated, forces and for the purposes of the equiv­
alent one-body problem may just as well be discontinued. 

These statements have their counterparts even for a 
classical particle. Such a particle at rest in the medium will 
remain indefinitely at rest, even with damping present, and 
so behaves like a free particle. On the other hand, a moving 
particle will continue to move forever, though with ever de­
creasing speed. Thus the classical problem could be restated 
by saying that the damping force is Fd = - ymov, for v*O, 
and Fd = 0, for v = 0. We write it in this manner merely to 
emphasize the special role played by v = 0. However from a 
physical point of view one can go further and say that there is 
a point beyond which, for v*O, the motion effectively 
ceases. In the general statement of the problem, this point is 
arbitrary. But in any specific problem, it will be determined 
by the nature of the system, as in the above examples. So for 
practical purposes, one might replace the damping force by 

F = {- ymv, 
d 0, 

(52) 

So we see that even classically, the particle keeps damp­
ing long beyond the time when there is any physical meaning 
to the notion, and this is exacerbated by the mathematical 
problem that this motion does not smoothly blend into the 
v = ° case. The replacement of the damping force by Eq. (52) 
represents a primitive attempt to remedy the situation. 

A different way to say this is that actually, in the classi­
cal case one solves the Langevin equation, which not only 
has a damping force present, but also a random force due to 
the collisions with other particles in the medium. This ran­
dom force averages out to zero, but keeps the fluctuations of 
the particle motion from vanishing. When the velocity de­
creases to the point where the damping is no greater than the 
random force, then we have reached the energy co, given 
above. 

Quantum mechanically, these problems are brought 
into a much sharper focus. If we consider, for example, the 
harmonic oscillator, there is a natural energy, co, determined 
by the uncertainty principle, beyond which internal fluctu­
ations will prevent the energy from decreasing. But if one 
tries to interpret the Kanai Hamiltonian as describing a con­
stant mass particle then Eq. (1), with V = !moW~2, makes 
the "physical energy," Ek = He - rl

, decrease continuously 
beyond this minimum (since the time average of the "canoni­
cal energy" E = H, is constant in this case). 

So the unphysical quality of the solutions, as given by 
Eq. (32), is really partly a reflection of the classically unreal-
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istic solutions to the problem. The most primitive method 
for dealing with the quantum mechanical problem would be 
to replace the damping force by one similar to that of Eq. 
(52), so that for the oscillator 

H = {(p2/2mo)e -- )'1 + !moW~2e1'l, 
(P'/2mo) + ~molL)2x2, 

where 

lie - 1'1> !1Uu, 

lie -' 1'1 = !1Uu, 
(53) 

{j)2 = (U~ - y'14, 
- 1 II + TI2 
H= - dt(H), 

T I 1'12 

(54) 

(j) being the displaced frequency, and libeing the Hamilton­
ian averaged over a period. 

This Hamiltonian would keep the oscillator frequency 
at {u for all times. It is primitive in that it introduces excessive 
transient effects in matching the solutions during the discon­
tinuous switching of the Hamiltonians. (BecauseH oscillates 
in time about a fixed average, one must average over a period 
to determine the appropriate switching energy.) 

A more refined procedure would be to consider the par­
ticular problem on hand, whether it is statistical or other­
wise, and attempt to modify the Hamiltonian to preserve the 
correct correlations <t/J(t )t/J(t + r». However, one must be 
careful not to confuse the statistical correlations with the 
quantum mechanical ones, as mentioned in the introduction. 
For example, in the case of the damped free particle, if the 
particle comes to rest and nO further observations are made 
upon it, its initial velocity uncertainty will cause an ambigu­
ity that only a clear insight into the problem at hand can 
resol ve, if one wants a truly realistic model. Because of the 
damping, the initial velocity uncertainty will certainly 
damp, unlike a true free particle, in the sense that in what­
ever direction it takes offin, it will surely slow down. On the 
other hand, constant interaction with the damping medium 
will serve to continually relocalize the particle, as in a cloud 
chamber, and thus constantly renew its velocity spread, con­
verting the problem into a many-body statistical one. 

The important point is that one is not doing any vio­
lence to the physics by modifying the Hamiltonian in such a 
fashion. One is merely removing a classical problem, which 
becomes much more bothersome in the quantum case. It 
might be pointed out that this procedure makes r a function 
of energy, rather than time, since for a highly excited initial 
state, it takes longer to decay to the ground state energy­
and it is the energy, not the time, that sets the criterion for 
the change in Hamiltonian. 

Whatever model one chooses, one can now interpret mo 
as representing the constant mass of the particle. Once the 
particle has decayed to its physically lowest energy, the fluc­
tuations will cease to shrink, because of the modified Hamil­
tonian, and the problems associated with the original Kanai 
Hamiltonian no longer occur. 

The specific procedure for reinterpreting the solution as 
representing a constant mass damped particle depends on 
noting that while the variable x still denotes the position of 
the particle, the canonical momentum, 
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P = m(t )v---+(fzIOJIJx, no longer represents the physical 
momentum. Rather, in the constant mass reinterpretation 
the physical momentum is represented by 

(55) 

Thus if the system is, for example, a damped harmonic oscil­
lator originally in a highly excited state, it will originally 
have .1p,Ax~fz. As it decays, the uncertainty product will 
decrease exponentially until such a time that it would take 
the particle to decay to the ground state, and at this time 
Jp ,Ax - h. Beyond this time, if one used the original Kanai 
Hamiltonian, the system would keep decaying and offer no 
possibilities for reinterpretation. But with the modified Ha­
miltonian, there will be no further decay, and for later times, 
one uses Pk = P = mov---+(fzli)JIJx. The Hamiltonian 
changes discontinuously at the critical moment, but the 
wavefunction is kept continuous. As an example, if one 
wanted the kinetic energy in the constant mass interpreta­
tion, at some time before the critical time: classically, one 
would take pll2mo = !mov2 = e - 2rp'/2mo; quantum me­
chanically, one would calculate 

K.E. = e - 21't<.p'/2m o) 

= - (fz'/2mo)e- 2)'1 f dx t/J* J't/JIJx'. (56) 

So the modified Kanai Hamiltonian offers one viable 
method for treating the problem of a constant mass particle 
subject to damping. Its solutions represent the effects of the 
damping up until a certain physically reasonable cutoff 
point, after which the effects due to the damping cease. It is 
also true that once one accepts the modified Hamiltonian, 
with a constant mass interpretation, the entire concept of a 
variable mass becomes superfluous, and one can restate the 
problem so that one need not think in terms of a changing 
mass at all. This is best done by introducing a new dynamical 
variable, the "dissipation variable." This line of thought will 
be pursued further in Ref. 6. 

V.SUMMARY 

We have shown that the most straightforward ap­
proach to the problem of a damped particle, namely via the 
Kanai Hamiltonian, actually yields unphysical results. This 
is because the Hamiltonian does not really represent the sys­
tem it is expected to. While in the classical limit the theory 
can be interpreted as representing either a constant mass 
damped particle, or a particle of increasing mass, quantum 
mechanically, only the variable mass interpretation is cor­
rect, and this leads to the often noted violation of the uncer­
tainty principle when it is misinterpreted as representing a 
constant mass particle. 

Nonetheless, we have shown that as the particle contin­
ues to damp and its energy decreases sufficiently, there is an 
ambiguity in the physical situation itself, when treated as a 
one-body problem, both classically and quantum mechani­
cally. We have also shown that one may modify the Hamil-
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tonian so as to eliminate any further damping. Once this is 
done, one may reinterpret the Hamiltonian so that it really 
does represent a particle of constant mass. From this point of 
view, the mass of the particle is constant, and it is rather the 
dissipation process that is varying. 

The alternative point of view, that of the nonlinear po­
tentials, produces a set of solutions that behave quite reason­
ably as representing damped particle motion. Unfortunately 
this method produces other solutions as well, whose physical 
interpretation seems very strange. There are totally un­
damped solutions, as well as solutions which damp to states 
of arbitrarily high energy, and width. In fact the entire 
"damping" procedure seems to single out stationary states, 
rather than low energy states. Thus the method is plagued 
not only by the intrinsic difficulties of nonlinearity, but by 
very basic questions of interpretation as to what the Hamil­
tonian represents. 

Therefore, the modified Kanai Hamiltonian, despite its 
disturbing pedigree-having evolved from the original vari­
able mass Kanai Hamiltonian-actually yields (along with 
the treatment in the companion paper6) the only one-particle 
treatment of the damping problem to date whose solutions 
can be thoroughly understood and represent physically well­
behaved damped particles of constant mass. 
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ADDENDA 

We have recently come across a paper by Feshbach and 
Tikochinsky,11 based on a Lagrangian suggested by Morse 
and Feshbach, 12 which attacks the problem of damping from 
an apparently different point of view. However, their ap­
proach is actually equivalent to that of Kanai. 

Their Lagrangian, 

L" = moiy + (moy/2)(xy - yx) - mow1rxy, (57) 

leads to the equations of motion for the independent varia­
bles, x and y, 

ji + yy + wt.v = 0, 
(58) 

x - yx + O)6x = 0, 

wherey is a damped oscillator, andx is an "antidamped" one 
(i.e., of exponentially increasing amplitude). The apparent 
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time independence is due to the canceling of the damping 
and antidamping exponentials. However, if one adds to L" a 
total time derivative, 

L =L,,- dl, 
d! 

1= (mor/4)[(xe)'t/~)2 + (ye )'t12)']. 

and then makes the substitution 

x = (5 + i17e )'1)/ Vi 
y = lte l'l 

- ir/)! Vi 

(59) 

(60) 

both of which operations formally represent canonical trans­
formations which do not change the physical problem, then 
one obtains 

L = (mo/2)(g' - (uf)s 2)eJl + (m o/2)( ij' - O)~172)e )I 

(61) 

Comparison with Eqs. (12), (14), and (17), for the 
Kanai Lagrangian, and Eq. (15) for the Kanai Hamiltonian. 
shows that Eq. (61) is just the Kanai Lagrangian for a 
damped particle (5), plus an anti damped one (17). The Kanai 
form represents the uncoupled normal coordinates for the 
problem. And in fact, while (elegantly) solving the problem 
quantum mechanically, the authors 1i introduce raising and 
lowering operators which decouple the modes. Their wave­
functions are therefore equivalent to the Kanai solutions 
(and also exhibit the attendant physical difficulties with the 
uncertainty principle). 
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The usual treatment of damping forces in quantum mechanics starts from the introduction of the explicitly 
time dependent Kanai Hamiltonian, which actually represents a variable mass particle, and the 
misinterpretation of this Hamiltonian as representing a particle of constant mass leads to certain physical 
difficulties. However the Hamiltonian can be modified so that it can be reinterpreted as describing a 
constant mass particle. Here we explicitly introduce the mass as a new dynamical variable, which allows 
us to write a linear, time independent Hamiltonian for the system, which can be solved by conventional 
methods. The damped harmonic oscillator and damped free particle are treated in detail, both for the 
Kanai Hamiltonian and for our case, and the solutions are compared. Our solution can be reduced to the 
Kanai one in appropriate circumstances, but in general it has a much greater versatility, as a result of 
which it can be more easily reinterpreted as describing a constant mass particle subject to a damping 
force, which reinterpretation is of course necessary if the method is to have practical applicability. We 
also show how such a reinterpretation can be carried out in detail by introducing a "dissipation variable", 
in terms of which one may avoid the concept of a variable mass altogether. 

LINTRODUCTION 

In the companion paper' we discussed some of the phys­
ical considerations relevant to the treatment oCa quantum 
mechanical system with a damping proportional to its veloc­
ity. The most direct treatment is through Kanai's time-de­
pendent Hamiltonian2

) [see Eq. (3.6) for the harmonic oscil­
lator case], which reproduces the classical equation of 
motion. We noted during that paper that the Kanai Hamil­
tonian actually represents a particle of varying mass, 
m = m oe2

J'1, which fact explains the peculiar quantum me­
chanical features of the solution, when misinterpreted as re­
presenting a particle of fixed mass subject to a damping 
force. The problems that arise concern the fact that as the 
energy of the system decreases, so do the fluctuations in posi­
tion and in the physical momentum, until ultimately they 
become so small that they violate the uncertainty principle. 
We also showed that one could alter the Kanai Hamiltonian 
at low energies so as to provide a reasonable constant mass 
reinterpretation of the problem. 

Here, we are going to exploit the varying mass to intro­
duce a new mathematical technique for solving the problem. 
It turns out that the mass and proper time of a particle can 
easily be treated as conjugate dynamical variables, obeying 
their own equations of motion: We happen to believe that 
since the formalism is so simple and suggestive, it most likely 
provides a clue to a more fundamental application of the 
ideas involved. However, we will not pursue such ideas here. 
Rather, we will show that from a purely computational point 
of view, it provides a linear, time-independent treatment ofa 
problem where the physical energy is clearly time-depen­
dent, and where previous 'tr~atments are either explicitly 
time-dependent, or nonlinear. Furthermore, the general idea 
of taking a parameter of the problem, and making it into a 
dynamical variable in its own right, should prove a versatile 
technique applicable to other problems. 

There is another advantage to specifically treating the 
mass as a dynamical variable. Normally, if one wants to treat 

an interacting system, one introduces a potential which pro­
duces the desired interaction. Then if one is interested in 
only part of the system, sayan almost isolated atom, the 
potential can be viewed as an external force which causes 
transitions between states of the atom in question, and which 
gives rise to an energy spread in the states of the atom. 

But what if one's basic isolated entity is itself a compos­
ite system, with internal degrees of freedom? Any energy 
spread of the system's states can normally only be treated by 
introducing a model which includes these internal degrees of 
freedom, even if one is not specifically interested in them. 
For example, we might have a nucleus subject to a force we 
want to treat, but this nucleus may happen to be unstable to, 
say y radiation to a lower energy state. If we do not care 
about the details of the y decay, our formalism allows one to 
treat the excited nucleus as a particle of indefinite mass (a 
"mass" wave packet) without having to inquire about its 
internal structure. This represents a definite advantage over 
the conventional formalism. 

A further advantage of our method is the flexibility of 
the solutions. We will show that they reduce to the Kanai 
solution in special cases, but in general they can encompass a 
much wider range of behavior of the physical system. 

A feature that our Hamiltonian shares with the Kanai 
one is that it can also be interpreted in the classical limit as 
representing a damped particle of constant mass. However 
the specific Hamiltonian we introduce to approximate the 
Kanai Hamiltonian, has the same quantum problems associ­
ated with the constant mass interpretation, so that the wave­
packets shrink beyond the limit prescribed by the uncertain­
ty relation. But in our method, one may also introduce a 
class of Hamiltonians which eliminate the damping beyond a 
certain point, in order to provide a quantum mechanical 
constant mass reinterpretation. As an example of the flexi­
bility of the method, we show that one can do this in a con­
tinuous manner just as easily as in our discontinuous treat­
ment of the Kanai Hamiltonian. 
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Once the problem is reinterpreted in terms of constant 
mass, the concept of a "variable mass" actually has no fur­
ther relevance. It becomes the vestige that remains of our 
search for an interpretation of the Kanai Hamiltonian. So 
one can at this stage again reinterpret the formalism in such a 
way as to eliminate all mention of a variable mass. This is 
done by introducing in its stead a '''dissipation variable" 
which keeps track for liS of the damping mechanism. 

In this paper we will primarily treat the damped har­
monic oscillator, as a representative problem in damped mo­
tion. In Sec. II, we shall present a brief account of the general 
idea of our approach. In Sec. III, we discuss the classical 
damped oscillator from both the conventional Kanai ap­
proach and from ours. We treat the Kanai solution of the 
damped quantum mechanical oscillator in Sec. IV, in some 
detail, so as to be able to compare and contrast the solution 
with that of our treatment, which is presented in Sec. V. In 
these two sections we also show how to reinterpret these 
solutions so as to describe damped particles of constant 
mass. We also introduce here the dissipation variable as a 
method to avoid the concept of a variable mass altogether. 

With both the Kanai Hamiltonian and our Hamilton­
ian, there are problems with the uncertainty principle in 
such a reinterpretation. However, in Sec. VI, we show how 
to modify the Hamiltonian at low energies in such a way as to 
circumvent these physical problems, and thus make possible 
a consistent constant mass reinterpretation of the solution. 
Finally, in Sec. VII, we briefly solve the damped free particle 
by our approach, and we close with a short summary in Sec. 
VIII. 

II. MASS AS A DYNAMICAL VARIABLE 

It is very easy to extend the formalism of classical phys­
ics to treat systems whose mass is variable: The general pro­
cedure merely consists of considering the mass, m, of a sys­
tem and its proper time, 7, as conjugate dynamical variables, 
so that the Hamiltonian, which was formerly of the form 
H = H (x,P;! ) now takes the form 

H == 11 (x,p;7,m;t). (2.1) 

(We will always work in one dimension·-the results are easi­
ly generalizable. Also, we take the mass in units of energy, 
me', where we will always take e = 1.) The "velocities" are 
given by 

(HI 
v=x= 

ap 
7= 

aH 
am 

(2.2) 

The equations of motion, one for p, the other for m, become, 

. aH 
p= --, ax 

. a11 
m= --. a7 (2.3) 

Thus a potential depending on x provides a force which al­
ters the momentum, and similarly, a potential depending on 
7 provides a "force" which changes the mass of the particle. 
The relation between p and v is dynamically determined by 
the equation of motion for x, Eq. (2.2). Similarly, 7 is no 
longer given kinematically, as in special relativity 
[d7 = (1 .- v') i12dt], but through its own equation of motion, 
Eq. (2.2). 
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A simple example, to illustrate the procedure, is given 
by a relativisitc free particle. We have chosen this example 
because the difference between t and 7 is familiar here, and 
has physical significance, and also comes immediately from 
the formalism. However, there is nothing intrinsically rela­
tivistic about the formalism itself, as we use it here, and we 
will be applying it to nonrelativistic problems only. The Ha­
miltonian takes the form 

(2.4) 

The velocity is given by 

aH 
u = = p(p' + m't'i2. 

ap (2.5) 

This equation can be inverted to give the momentum, p, 

p = mvy, y = (1 - V')~I!2 = (P2 + m 2)'!2lm. (2.6) 

This is the conventional approach to the problem. How­
ever we can also, in our formulation, write 

7= 
aH 
am 

(2.7) 

which dynamically defines the behavior of the proper time. 
Of course, for a free particle, jJ = m = O. So, from the point 
of view of our formalism, we can say that conventional clas­
sical mechanics leaves out half the subject, since the kinema­
tical background for the problem must be independently 
postulated. For nonrelativistic problems this is usually done 
implicitly, by assuming that the mass is constant, and that 
7 = t. 

The question arises as to what new physics is intro­
duced by the formalism. Ifthe mass remains constant, as in 
our example above, there is no new physics in the classical 
case. However even here there will be a difference in the 
quantum case. This is because the very introduction of the 
mass and proper time as dynamical variables guarantees the 
uncertainty principle ..1m..17-fz. So one can compose a wave 
packet of different mass states, whose expectation value 
obeys the classical equations. Only in the limit ..17 -~ 00 , 

..1m --+0, does the system approach the conventional classi­
cal limit. (We might point out that the Bargmann theorem, 
preventing the superposition of different mass states in con­
ventional nonrelativistic quantum theory, does not apply to 
our formalism 4

.) 

If the Hamiltonian has a 7 dependence, so that the mass 
changes, then the problem will be formally equivalent in the 
classical case to a classical problem with the mass postulated 
to change in the specified manner. In the quantum case, the 
expectation value of the mass will change in this manner, and 
there will also be fluctuations in the mass governed by the 
uncertainty principle. 

We shall apply the formalism in the next section to the 
classical damped harmonic oscillator. 
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III. THE CLASSICAL DAMPED HARMONIC 
OSCILLATOR 

The Hamiltonian for an undamped harmonic oscillator 
is 

Ho=p'/2mo+~moW~'. (3.1) 

Here mo is the constant mass and Wo the (angular) frequency. 
The velocity, from Eq. (2.2), is 

x = v =plmo, 

and the equation of motion, from Eq. (2.3), is 

p = mol) = - moW'fr, 

u=x = -w~. 

Ho also plays the role of the physical energy, 

Ho = E = const. 

The solutions take the form 

x = Xocoswot + (volwo)sinwol, 

where Xo and Vo are the initial position and velocity. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The damped harmonic oscillator can be described by 
the Hamiltonian due to Kanai,2 

HI = (P' !2mo)e - 2yr + ~moW~2e2yr. 
The velocity in this case is 

x = v = (plmo)e - 21", P = move2y,. 

The equation of motion becomes 

p = mo(u + 2yv)e2yr 
= - moW'fre2yr, 

x + 2yx + w'fr = O. 

The solutions are given by 

x = xoe -- yrcoswt + w-I(VO - yxo)e - Y'sinwt. 

The frequency of oscillation is w, 

w' =w~- r>O. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

We will assume throughout this paper that the system is 
underdamped. 

The Hamiltonian HI is not constant, however it is ap­
proximately constant and varies only to order ylwo. The 
physical energy, E is time-dependent and is given by 

(3.11) 

Note that the "kinetic" momentum, Pk = mov, is given by 

Pk = mov =pe- 2y" (3.12) 

so that the canonical momentum, p, is not the same as the 
physical momentum. It was pointed out in Ref. 1 that this is 
because the Kanai Hamiltonian actually refers to a particle 
of increasing mass, 

m(t) = m oe2Y,. (3.13) 

The canonical momentum refers to the momentum of this 
varying mass particle. If one interprets the system instead, as 
applying to a constant mass particle of mass mo, subject to a 
damping force, then its momentum is given by p k' Classically 
one can use either interpretation, because both systems have 

773 J. Math. Phys., Vol. 20, No.5, May 1979 

the same equation of motion. But quantum mechanically, 
the constant mass interpretation runs into trouble with the 
uncertainty principle, and cannot be maintained unless the 
Hamiltonian is modified. 

One can also treat the problem by writing a specifically 
chosen variable mass Hamiltonian, 

(3.14) 

We have left out the term relating to the rest mass of the 
particle, which will in turn rob T of any interpretation as a 
physical time. The Hamiltonian above should be interpreted 
as a formal treatment of the problem, which is closely related 
to the above time-dependent treatment. For the "velocities," 
we have 

v = plm, 

aH 
T= am 

The equation of motion for m becomes 

. -aH 
m= ---= +2ym, aT 

with the solution 

(3.15) 

(3.16) 

(3.17) 

which is the same as that of the "proper" interpretation of 
the Kanai Hamiltonian, Eq. (3.13). The equation of motion 
for x is 

p = (mv)' = - mw~, 

x + (mlm)x + w'fr = O. (3.18) 

Together with Eq. (3.16) this reduces to Eq. (3.8). 

The Hamiltonian, since it is explicitly independent of 
the time, will be a constant of the motion. The physical ener­
gy of a particle of constant mass mo would be given by 

E=moPtolm, A'~=p2/2m+~mw~2. (3.19) 

It should be pointed out that just as the Kanai Hamil­
tonian can be interpreted in the classical case as applying to 
either a constant mass or variable mass particle, so too can 
the same be said of our Hamiltonian. For our variable mass 
Hamiltonian, since the velocity is given by v = p/m, then if 
one wanted to interpret the theory as applying to a particle of 
constant mass mo, subject to a damping force, one would use 
for the physical momentum in this case 

po = mov = mqp/m. (3.20) 

However, since we have chosen this specific Hamiltonian to 
do exactly what the Kanai Hamiltonian does, we shall see 
that quantum mechanically, it runs into the same problems 
in the attempt to give it a constant mass interpretation, and 
for exactly the same reasons. But again, we shall be able to 
modify it to make such an interpretation possible. 
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IV. QUANTUM TREATMENT OF THE DAMPED 
OSCILLATOR 

We present here a brief quantum treatment of the Kanai 
Hamiltonian, since we will want the solution for detailed 
comparison purposes, both for the similarities and differ­
ences it presents to our treatment. We will solve it by using 
operator methods, which we present in some detail since it is 
not covered in standard texts. 

First we write the solutions of the undamped oscillator, 
to establish our notation. The Schrodinger equation be­
comes, using the Hamiltonian of Eq. (3.1), 

H o(x,p)1/I= _ ~ a¢, p= ~~. 
I at I ax 

Then, introducing the length scale defined by 

Ao = (lilm oUJo)ll2, 

we introduce the dimensionless variable 

(4.1) 

(4.2) 

x I a 
y = Ao' p,. = i ay' (4.3) 

The Hamiltonian then becomes 

Ho = mo (_ ~ + y,) = mo (p~ + y'). (4.4) 
2 ay' 2 

The step-up operator a+, and the step-down operator a, are 
defined as 

a+ = (VV2)(Py + iy), a = (lIY2)(py - (V), (4.5) 

and obey the following commutation rules: 

(Py,y] = Iii, [a,a'] = 1, 

The Hamiltonian then takes the form 

Ho = m(a+a + !). 
The stationary state solutions are 

¢ = U ne - IE"I Iii, E" = (n + !)mo, 

obeying 

( 
a2 ,) _ 2 _ 1 - - + y U" - E"U", E" - n + :2 
ay> 

with solutions 

(4.6) 

(4.7) 

(4.8) 

u
l1 

= NIlH/y)e -y/2, N" = eY-;2"nuJ-1I2, (4.9) 

where the H n are the Hermite polynomials, and N n is chosen 
so that Su~ dx = 1. 

The Kanai Hamiltonian is given by Eq. (3.6). In this 
equation mo is a constant, but it should be borne in mind that 
physically, this equation represents a particle with mass 
m(t) = m oe2Y1. The canonical momentum, p, represents the 
classical quantity met )v. This has no effect on the technique 
of solution, which proceeds formally. Making the substitu­
tions (4.2) and (4.3), we have 

H 1/1 = mo (e - 2Y'p2 + e2Y1y')¢ = _.!!.- a¢. (4.10) 
1 2 y i at 
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We will also need to introduce the first quadrant angle e, 
defined by 

tane = ylUJ. 

Defining the operators 

b + = (l/Y2)(e - Ylpy + eY1iy), 

b = (l/Y2)(e- Y'py - eY1iy), 

which obey the commutation rules 

(4.11 ) 

(4.12) 

[Hl,b] = - mob, 
(4.13) 

we have, for the Hamiltonian, 

Hl = mo(b +b + !). (4.14) 

Unfortunately, here the similarity with the undamped 
case ends, as the b 's are explicitly time-dependent, and there 
are no stationary states. However, we have 

[ - ~~, b] = ~ yb " 
I at I 

[ - ~~, b+] = ~yb, 
I at I 

(4.15) 

and introducing the complete Schrodinger operator U, 

Ii a 
U=H1 +--, (4.16) 

i at 
in terms of which the Schrodinger equation becomes 

U1/I=0, (4.17) 

we find 

[U,b +] = mob + - (lili)yb, 

[ U,b ] = - mob - (lili)yb +. 

(4.18) 

We can still find raising and lowering operators for U as 
linear combinations of band b .. 

[U,d+] = md+, [U,d] = - md, (4.19) 

where 

d = b - itanC8 12)b" d + = b + + itanCe!2)b, (4.20) 

with 8 defined by Eq. (4.11). Using these definitions, d andd + 
are not normalized, and 

[d,d +] = coselcos'(e/2), 

so that we could introduce new operators 

D = cos(8/2)(cos8tl12d, [D,D+] = 1, 

but for our purposes we will not need them.' 

(4.21) 

(4.22) 

The operators d + and d are step-up and step-down oper­
ators for U, but they have no simple relation to H 1• Nonethe­
less, we can use them to construct eigenfunctions for U 
satisfying 

(4.23) 

and from these we easily construct solutions of the Schro­
dinger equation, since U contains an explicit time derivative. 
In fact, if 

./, _ -iA,,1/1i 
'fll - iplle , 
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then "'n satisfies the Schrodinger equation, U"'n = O. 

To find the lowest state, we set 

dcpo = O. 

Then 

(4.25) 

U (dcpo) - d (Ucp ) = - d (Ucpo) = - w(dcpo) = 0, 
(4.26) 

which implies 

Ucpo = Ao({Jo, "'0 = cpoe - iA-oIIIi. (4.27) 

One cannot find a lower state, since reapplying d will give 
zero. Using definitions (4.20) and (4.12), the solution to Eq. 
(4.25) is 

and 

Ucpo = (wo/2)e i8cpo. 

Finally 

The general solution (unnormalized) is 

"'n = (d +Y"'oe - in"'l, 

where from Eq. (4.20), 

d + = (IN2) sec (OI2)[pz + iz], 

z = ye - i812 + YI, pz = (l/i)~. 
Jz 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

To express the answer in Hermite polynomials, we note 
that for the undamped oscillator, 

a+H/y)e - (1/2)y' = CV2j) - I(~ _ Y)Hn(y)e - y'/2 

- (JH ) = CV2j) -I Jyn - 2yHn e- y'/2 

- CO< /2') - IH -y'12 - V I n+ Ie , (4.33) 

from the recurrence relation for theHn 'So Similarly, because 
of the ( - !z2e1i8

) ofEq. (4.30), we can write 

d+[Hn(cz) exp( - !z2e2i8
)] 

= A (! - z )Hicz)exp( _ !z2e2i8
) 

= Hn + I(CZ) exp( - !z2e2W
), 

for the specific choice of c, 

c = ei8 /2(cosO )112 cz = (cosO )ll2yeY1. 

(4.34) 

(4.35) 

HereA is a constant whose value we need not determine. The 
factor (COSO)1I2 = (WIWO)112 has the effect of changing the liJo 

in AD andy, into w [Eqs. (4.2) and (4.3)]. So finally, we can 
express the normalized solutions, Eq. (4.31), as 
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N~ = Nn(cosOt ll
., (4.36) 

where N n is given in Eq. (4.9). 

The unphysical feature of this solution comes from the 
fact that the decreasing exponential determines the spread of 
the function, so that 

I'" 12-exp( - y2cosOe2Y1)_e - y'/.:1', (4.37) 

which implies 

LP-e - 2yl. 

For the momentum 

(Llp)2 _ e4ylLl 2 _ e 2Y1• 

(4.38) 

(4.39) 

Thus the solution formally satisfies the uncertainty relation 
(Llp )2(Llx)2 _1l2. 

But here, in the quantum case, if one wanted as an alter­
native to be able to maintain a constant mass interpretation 
for the solution, as one can do classically, and consider rno as 
the mass of the particle, one would run into trouble. Because 
in this case the "kinetic" momentum, p k = rnov = pe - 2YI, is 
not equal to the canonical momentum, so that 

(Llpk)2-e- 2Y1
, (4.40) 

and so the product 

(4.41) 

Thus, as t ---+ 00, the uncertainty product goes to zero. 
Therefore, as was discussed in Ref. 1, the interpretation as a 
constant mass particle must break down, because ultimately 
the uncertainty relation will be violated. 

One can however save the constant mass interpretation 
by modifying the Kanai Hamiltonian, as indicated in Ref. 1. 
The way one would apply a constant mass reinterpretation 
of the problem would be to note that x still represents the 
position, but for a constant mass particle, the momentum 
would bepk'Pk = e - 2

yp ---+ e - 2 YI(IlIOJIJx. The expecta­
tion values of this operator, or functions of it, will give values 
that one would interpret as representing rnov. We will see at 
the end of the next section how this fits into a general scheme 
for such a constant mass reinterpretation. 

V. QUANTUM TREATMENT WITH VARIABLE 
MASS 

Now we are going to solve the variable mass Hamilton­
ian ofEq. (3.14). Remember that here rn is a dynamical vari­
able, which quantum mechanically becomes the "mass oper­
ator." Its classical value, rnoe2Y1, will have meaning only as 
an expectation value. We will actually find it expedient to 
work in the "rn representation," where l' becomes a differen­
tial operator. 

The variable mass Hamiltonian ofEq. (3.14) is indepen­
dent of time and one can find stationary state solutions. If 
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one represents the T dependence in the form 4 

tp(X,T) = (21Tt1i2f dm tf;(x,m)eimT
/
Ii

, 

then the operator m becomes 

m = (nli)~, 
aT 

while in the m representation, we have 

T = - (fzli)~. 
am 

(5.1) 

(5.2) 

(5.3) 

The solutions to the problem will only make sense for m > 0, 
so we will place this restriction on m here, for purely math­
ematical reasons. This also has consequences for the analy­
ticity in T, which we will not need. 

The operator product (mT) must be symmetrized, 

mT --+ ~(mT + Tm) = - (fzli)(malam + ~) (5.4) 

so that the Schroedinger equation becomes 

h' U! = [ - 2: ~2 + + m(U~r2 + 2~fz (m ! + +) 1 w 

n aw 

i at 
(5.5) 

Again we introduce the length A, but now A is a function of 
m, 

A = (fzlm(Uo)li2 =f(m), 

so that 

.W = mo ( _ A' ~ + _1_ X') 
2 ax' A' 

+ 2yfl (m ~ + ~). 
i am 2 

(5.6) 

(5.7) 

Once again we take y = xl A, but now the change in 
variables from (x,m) to (y = xlA (m), m) implies 

y = XIA = x«(uolfz)I/'ml12, 

a I a 
--~--, 

ax A ay 

(5.8) 

a y a a 
am ---+ 2m ay + am' 

f dx dm ---+ f dy A (m)dm. 

The relevant operators become 

a a 
A ----+-, 

ax ay 
(5.9) 

and finally, the Hamiltonian becomes 

cy' mo ( a' , 2y a) 
Jl =- --+y+-y-

2 ay' iwo ay 
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+ 2yfl (m ~ + ~), 
[ am 2 

(5.10) 

and is separable. It should be noted that in the variable mass 
case the switch to dimensionless coordinates is no longer 
merely convenient, but is necessary to make the equation 
separable. 

We write 

w= Y(y)M(m)e i<l 

where 

and 

(- a' -a' +y' 
T 

+ -y- Y=2AY, 2y a) 
icuo ay 

[m(a~) + + 1M = (i/2)(JM 

fzE = mu,,A + fzy(J. 

The solution to Eq. (5. 13) is 

M = (41Tmtli2(mlmo)'fJ 12 . 

(5. I I) 

(5. 12) 

(5.13) 

(5.14) 

(5. I 5) 

The normalization will be explained at the end of this 
section. 

To solve Eq. (5.12) we write 

Y = ehVU(y). 

The choice 

K = yli(u 

eliminates the first-order term, giving 

( a' W') ( Y ) - -, + 2 y' U = 2A + -. - U, 
ay Wo two 

(5. 16) 

(5. I 7) 

(5. I 8) 

which is nothing but the undamped oscillator equation, Eq. 
(4.4), in the variable u = Y(Wlwo)112 = x(mwlfz)ll2, which 
converts the frequency appearing in A from Wo to w. The 
solution is 

U = N ;,HI/(u)e .. 1112, (5. 19) 

where N ' is the same numerical normalization factor appear­
ing in Eq. (4.36), and where 

2A + yliwo = 2(wlwo)(n + ~), (5.20) 

which gives for the energy factor, fzE, 

fzE(n,(J) = (n + ~)m - fzy/2i + (Jny. 

Thus the complete solution becomes 

tf;(x,m,t) = If d(J al/((J)(41Tmtll2(mlmoyfJI2 
1/ 

X e - x'(mlli)(w I iy)/2 

(5.21) 

(5.22) 

The exponential factor w + iy can be written woeie
. For each 

value of n, the mass dependence becomes a wavepacket, 
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m-' 12f d{3 a,,(f3)(m/moy/3IZe i(3)'1 

= m-' 12f d{3an(f3) exp[i{3(! In(m/mo) - yt)] 

= (21Tm)-·I2A,,(! In(m/mo) - yt) 

= m-'/~fn(m - moeZY1 ), (5.23) 

where An is the Fourier transform of an' 

A,,(5) = (21Tt ·12f d{3an(f3)ei/3?'. (5.24) 

The functions A n must be normalized in accordance with Eq. 
(5.32), which in turn determines the normalization of the 
an(f3). Each of these packets is centered about the "classical" 
value m = moe1)'1. However the superposition of different 
masses, plus the independence of the shape of these packets 
for each value of n, gives the solution far greater flexibility 
than the solution of the Kanai Hamiltonian. 

We can recover the Kanai solution by requiring the A" 
to be Dirac 8 functions. This is done by choosing the a ,,(/3) to 
be constant, for all {3. If we take an = c/mJ/2

, then 

f A (m )dy dmc(mom)'12 f d{3 exp [i{3 (! In(m/ mo) - yt ) ] 

(fz/womo)'1221TC f dy(dm/m)8q In(m/mo) - yt) 

A041TC f dy dm8(m - moeZY1 ) 

= 41TC J dx I m ~ m,e' , 
(5.25) 

and if one·replaces m by moeZYI everywhere it is left in Eq. 
(5.22), 

and remember that 

x'(mwo/fz)eili = y'eili + ZYI, 

x(mw/fz)1I2 = y(cose)· 12eyt, 

(5.26) 

(5.27) 

then one has exactly the expression (4.36) for the Kanai solu­
tion. When one considers the entirely different logic leading 
up to the two formulations of the problem, one can see that 
this reproduction of the Kanai solution proves our conten­
tion that it represents the problem of a particle of definite 
(i.e., Ll m = 0) but changing mass. [Equation (5.25) was inte­
grated at T = 0.] 

We add a final word on the normalization of the solu­
tion. When the solution t/J(x,m,t) of Eq. (5.22) is integrated 
over (3 to give 

t/J(x,m,t) = (2mt·12I Anq In(m/mo) - yt) 
n 
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we can check the normalization, 

f dx dm II/t(x,m,t) IZ 
= 1. (5.29) 

The integral over x gives 

f~: eYI(:orIZ~ IA n(+ln(:J- yt)12. (5.30) 

The factor (m o/m)'12 comes from the fact that N' contains 
the constant mass m o, while Hn contains the variable m. Ifwe 
now replace m by 11, defined by 

11 -! In(m/mo) - yt, - 00 <11 < 00, 

dl1 = dmi2m, 
(5.31) 

then this integral becomes 

(5.32) 

which determines the appropriate normalization of the An' 
and which is time-independent. 

This solution, like that for the Kanai Hamiltonian, re­
presents a variable mass particle. The mass in this case is a 
distribution (actually a separate wavepacket for each value 
of n), centered about moeZ)'I, and like the Kanai wavefunc­
tion, it cannot be given a constant mass reinterpretation, for 
exactly the same reasons, namely that the damping proceeds 
to t ~ 00. 

However, as in the Kanai case, we will be modifying the 
Hamiltonian in order to be able to provide a constant mass 
reinterpretation. To that end, let us explain exactly how to 
interpret our wavefunction, and then how one would reinter­
pret it as representing a damped particle of constant mass. 
Again, the variable x represents the position, and 1/1 is nor­
malized according to Eq. (5.29). The momentum, 
p = mv ~ (fz/i)a/ax, represents the momentum of the 
packet, whose mass is centered about the value m = moez)'t. 
The classical velocity would be given by the expectation val­
ue of the operator (p/m). 

If one wanted to reinterpret the results as applying to a 
particle of constant mass, the first restriction one would have 
to apply is that the wavefunction in "mass space" be rather 
narrow. This is necessary, so that Llp could be interpreted as 
mLlv. Otherwise contributions corresponding to terms i!..1m 
would appear, and have no constant mass interpretation. 

In order to apply a constant mass interpretation to the 
problem, one merely considers the entire concept of "chang­
ing mass" as we have introduced it, as a formal manipulation 
of symbols. Then our variable m can be written as 

(5.33) 

where 7J is a dimensionless dynamical variable, which we can 
call the "dissipation variable." As long as the system exhibits 
dissipation, 7J will be increasing. Its expectation value for the 
Kanai Hamiltonian will be eZY1, but for our modified Hamil­
tonian it increases only to a certain value and then remains 
constant. 

Thus the mass is always m o, and the momentum, 
po = mov, becomes 
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p" -,-" In,,1' -= Irlo(p/ln) = p,,/r! = (~)~. 
It! ax 

(5.34) 

Expectation values of functions of the momentum, for the 
constant mass particle, become 

(j'(p,,)) =.-c fin" d11 dx U!*f(~ Y-) r/!. 
111 ax 

(5.35) 

The operator (n/i)a/am becomes 

( ~) a~7 = C:J :t!' (5.36) 

With this interpretation, or reinterpretation, of the formal­
ism, one need never introduce the concept of changing mass, 
but rather consider that one has a damped particle of con-
stant mass. 

We shal! not attempt a further physical interpretation 
of the dissipation variable at this time, except to note that it is 
obviously related to entropy production. And just as the en­
tropy itself in classical physics can be thought of as a variable 
which somehow contains on a macroscopic level all the inte­
grated microscopic information relating to "order" in the 
system," so too the same can be said for the dissipation 
variable. 

This is the prescription for interpreting the formalism 
as applying to a constant mass particle. It will run into trou­
ble for the Hamiltonian we have been treating, Eq. (3.14), 
because of the same uncertainty principle problem as with 
the Kanai Hamiltonian, namely that .Jp.Jx ---+ 0. However, 
the causes are identical as for the Kanai case, and here too we 
will be able (0 modify the Hamiltonian to provide a reason­
able constant mass interpretation. 

VI. MODIFICATION OF THE SOLUTION AT LOW 
ENERGIES 

We have seen that if we want to maintain the interpreta­
tion of the solution to either the Kanai Hamiltonian or the 
variable mass one as relating to a particle of constant mass 
m", rather than increasing mass, then we must cope with the 
fact that the physical momentum, p" = m"v, and the posi­
tion, x both damp without limit, so that the uncertainty rela­
tion is violated, as in Eq. (4.41). It was pointed out in Ref. 1 
that one can modify the Kanai Hamiltonian to eliminate the 
damping for small enough energy. The same can be done for 
our Hamiltonian, and we can easily write down a whole class 
of Hamiltonians that accomplish this. 

In our problem of the Harmonic oscillator, "small 
enough energies" means for energies of the order of Yuu. 
Since we are working in a system where fl is diagonal, we can 
write 

t/!(x,m,t) = I a,,1 fl,m,t ), (6.1) 

" 
where the right-hand side is defined by Eq. (5.22). And since 
we know what the initial physical energy of the particle in 
state fl is, at t = 0, namely E:: ) ~ (n + !) fuv [from Eq. 
(5.21 )], then we also know how long it wiJl take this state to 
decay down to energy Ca- !fuv. Specifically, this time is giv­
en by 
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t,,:.::::(1I2y)ln(2n + I). 
(6.2) 

Once we know this time tIl' which is different for each 
state fl, we can modify the Hamiltonian, which is diagonal in 
fl, 

(6.3) 

After we have the totality of numbers .W:" it may be quite 
difficult to reconstruct the form of the new operator H' 
which is valid in any representation. However we do not 
have to face this problem, so long as we remain in the repre­
sentation I fl). The chief requirement on ,'}y:, is that 

:.r ;, ---> Jr II' t ~tll' 

Jr ~ --> Ir" = p'/2mo + !m"u,>'x2
, t}> til' (6.4) 

so that the Hamiltonian ultimately becomes that of an un­
damped oscillator of frequency (U (not (Ua). The conditions of 
Eq. (6.4) actually define an entire class of Hamiltonians with 
the desired properties. 

The proper way to modify the Hamiltonian depends on 
the particular problem one is solving, and on what particular 
features of the actual problem one considers most realistic, 
and worth preserving. So without attempting to discuss the 
problem in any generality, we will merely outline two solu­
tions as representative. First, the simplest thing to do is, at 
I = I" ' to abruptly change the form of ,W" to H ", 

Jr I aI/In) = I all j(JI(t - t,,)II7) 

(6.5) 

[8 is the step function. 8(x) = 1, x> 0; 8(x) = 0, x < 0, and 
1i = 1 - 8]. Then at t = tn' one will have to express the state 
In" in terms of the eigenstates of HO, denoted by 1/)0, 
I / 

(6.6) 

Actually, one is guaranteed that by time til' most of the 
contribution to this sum will come from the few lowest states 
of H a, as required by consistency. One can see this first by the 
fact that the time has been specifically chosen so the average 
energy will now be close to co, so that the lowest states must 
dominate the expansion. However one could also look at 
(x2). In the initial state, (x 2)11_ n(x2)o, from the properties 
of the Hermite polynomials. But in time tIl the factor m '12 In 

the argument of Hn will effectively create the proper time 
dependence, e 2)'1, which will bring down the width by a 
factor ofn, from Eq. (6.2). These proofs are important in the 
case ofhigh n, the semiclassical states. For small n, the states 
are already of the appropriate energy and width. 

The second solution method we will discuss, is to alter 
the Hamiltonian continuously. For example, instead of the 
perturbation )1"/ = - 2ymr, one could have 

W'; = -- 2ym(1 - m/m,)r. (6.7) 
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This replaces y by 

Yolf = y(1 - mlm]). (6.8) 

At t = 0, one chooses m, such that m < m], so that Yelf-Y' 
But as m approaches m" Y ---+ O. The constant m, is then 
chosen appropriately, m, = f(n), so that this will happen at 
time t,.. The classical solution for the Hamiltonian (6.7) is 

mlmo = (mJ.1 )e2YI /O + (mo/.:1 )e2YI
) (6.9) 

where 

.:1 m, - mo:::::;m, for n> 1. (6.10) 

For small and large times, 

(6.11 ) 

The transition region is determined by the point of inflec­
tion, m = 0, given by to, 

e2l'l, =.:1 Imo (6.12) 

So if 

.:1 Imo = tltlto~2n + 1, (6.13) 

then 

to = tit' (6.14) 

The quantum solution to the Hamiltonian of Eq. (6.7) 
starts by replacing mT by its symmetrical equivalent, Eq. 
(5.4). and the term m 2

T, by its symmetrical equivalent, 

!(m'T + Tm') = (~) (m 2alam + m). (6.15) 

(One could weight in any amount of the term mTm without 
altering this result!) This would replace the function M of 
Eq. (5.15) by 

mU{3 
M = const X -------

(m, _ m)(i{3 + 1)12 

1)/2 

(6.16) 

which produces a wavepacket centered about the solution to 
the classical equation (6.9), in the same way as the function 
M of Sec. V was related to its classical behavior. 

One final remark concerns the appearance of the con­
stant (uo. This is the frequency of our original unperturbed 
Hamiltonian, (u~ = (u 2 + y'. But we want our final un­
damped Hamiltonian to have frequency (u. So (Uo can no 
longer be considered a constant but must be interpreted as a 
function of m, 

(U~(m) = (U2 + ~If' 
Then 

(Uo(m) - (uo, t< tit' 

(uo(m) ---+ (u, t > t,.. 

(6.17) 

( 6.18) 

Since we are working in a representation where m is diag­
onal, this will still be a number, not an operator, so this offers 
no complications. The evolution of the variable T is made 
quite complicated by altering ,/Y, however, we are basically 
not interested in its behavior. 

What have we accomplished by modifying the Hamil­
tonian in this manner? We have noted that each state takes a 
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specific time to decay to a minimum wavepacket, at which 
time it approximates a particle in the ground state of the 
undamped oscillator. Beyond this point the particle will not 
decay further, because of the uncertainty principle, and so 
we have effectively replaced the Hamiltonian for later times 
by that of an undamped oscillator. Thus the wavepacket will 
never shrink beyond being a minimal wavepacket, for a par­
ticle of constant mass, and one can apply the constant mass 
reinterpretation to the modified Hamiltonian. as outlined at 
the end of Sec. V. 

We remind the reader that by using this reinterpreta­
tion, and introducing the dissipation variable 71. one need 
never talk about a changing mass at all. The mass of the 
particle is mo always, and the behavior of the variable 71 regu­
lates the degree of dissipation present. And thus the Hamil­
tonians (6.4) or (6.7), where m is replaced by moTf, will refer 
to systems of constant mass showing a physically reasonable 
behavior. 

We might note that if the wavepacket is narrow in mass, 
as it must be if we want to maintain a constant mass interpre­
tation, then there are certain approximations one can use in 
this case. For example, one could alternatively use the Kanai 
definition, p,,:::::;e 2rlp , for times t < tit' and po:::::; (molm ,)p, 
for times t> lit' in the discontinuous case. In the continuous 
case, one could use po:::::; e 2rlp, for times t < tit' and 
po:::::; (m,/m,)p, for times t > tit' while for 1 ~tlt' these approxi­
mations are not valid. 

VII. THE DAMPED FREE PARTICLE 

We close with a brief treatment of the force-free 
damped particle, in the variable mass formalism, because the 
solution we are interested in does not quite parallel that of 
the oscillator. The Kanai solution to the free damped parti­
cle, with the Hamiltonian 

(7.1 ) 

is treated, among other places, in Refs. I and 3. The variable 
mass treatment of the problem starts from the Hamiltonian 

i7' = p2/2m -- ]lmT, (7.2) 

which leads to the time independent Schrbdinger equation 

_ ~ (a 2if;) + yfz (m ~ + ~)u' = __ Ii. aif;. (7.3) 
2m ax' i am 2 i at 

The distance scale in this problem is set by 

A. = (fz/my)'l2, 

in terms of which the equation becomes 

_ £ a'l/J + ~ (m ~ + ~)U) = 
2 ax' i am 2 

I al/J 
i1' at 

(7.4) 

(7.S) 

The length A. has a similar definition to that in the oscillator 
case, and we can use the substitution (5.8) (reading l' for (uo), 
which yields the equation 

[( - ~~ + ~y~) + ~(m~ + ~)]l/J 
2 ay' 2i ay i am 2 
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~ aif;. 
iy at 

(7.6) 

The m solutions are exactly as before, and we can write 

if; = M(m)cp (y,t)e ... i(31'I12, (7.7) 

where M is given by Eqs. (5.13) and (5.15). However, in 
order to produce a solution directly comparable to the wave­
packet formulation of the Kanai solution, I we proceed not by 
directly solving Eq. (7.6), but by first making the 
substitution 

z =ye r,12 

Then for the variables z and t, we have 

a 
-~e 

ay 
P/2~ 

az 
Z a 
yaz' 

and Eq. (7.6) becomes 

)'1 a'cp _ 

az' 

a 

(7.8) 

y a a ) -z- + (7.9 
2 az at' 

(7.10) 

which is exactly the quantum Kanai equation, Ref. 1, Eq. 
(11). The solution is 

'P (z,u) = f dz' G (z - z',u)CPo(z'), (7.11) 

where 

cpo(z) = cp (z,O), (7.12) 

the initial value of 'P, and 

G (z,u) = (21Tiut'ne iZ
/

211
, (7.13) 

the Green's function for the problem, and the variable u is 
given by 

u = 1 - e )'1 

So finally 
uI,(z,m,u,t) = (41Tm)·' 12f d(3(m/mo)'(312 e -i(JYI/2 

X f dz' G (z - z' ,u)cp ~3)(z'), (7.14) 

w here one may arbitrarily choose a different function 'P ~3) for 
each value of (3, and 

t/I(x,m,t) = 1/;, [(xe )'112)!.Ii (m),m,1 - e )'I,t], (7,15) 

The (3 dependence of cp ~(; \z') plays the same role as the func­
tion a(jJ) appearing in Sec. V and the (3 dependence may be 
integrated first. 

As with the oscillator, the center of each packet obeys 
the "classical" equation, m = moe"l, Also the explicit time 
dependence in the term (xe )'112)/.Ii, plays the role of cancel­
ling the time dependence due to the m ,12 which appears in.li. 
So each separate mass piece of the solution behaves similarly 
to the Kanai solutions, but the freedom to create mass super­
positions gives far greater flexibility to the total solution. 

As the sol ution damps out, the considerations of Sec. VI 
are applicable here, and can be used to bring the particle to 
rest without further damping, and provide for a constant 
mass reinterpretation. However, for the free particle case the 
physical considerations must be very carefully taken into 
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account in any particular problem, as pointed out in Ref. I, 
Sec. IV. 

VIII. SUMMARY 
The standard approach to the damped harmonic oscil­

lator, via the Kanai Hamiltonian, actually treats a particle of 
varying mass. The mass still plays the role of an external 
parameter in that theory, albeit a nonconstant one. We have 
gone a step beyond this and shown how one may treat the 
mass as a dynamical variable. Thus our solution consists of a 
superposition of "mass packets," the expectation value of 
which varies as the Kanai particle mass. 

Classically, both these Hamiltonians have an alternate 
interpretation as a particle of constant mass subject to a 
damping force. However this interpretation breaks down 
quantum mechanically, because in both cases such an inter­
pretation leads to an ultimate violation of the uncertainty 
principle. The mechanism for this is that as the particle keeps 
damping, its wavefunction keeps narrowing indefinitely, 
both in configuration and momentum space. 

Nonethless, both the Kanai Hamiltonian and ours may 
be modified, so as to provide a viable constant mass reinter­
pretation. This procedure makes use of the fact that beyond a 
certain point, it is physically impossible to detect that the 
particle is still damping, and so the damping force may be 
safely turned off. We have also given a specific procedure for 
carrying out such a constant mass reinterpretation of the 
Hamiltonian, provided the mass wavepacket is narrow. In 
fact, we show that by introducing the dissipation variable it 
becomes possible to avoid mention of changing masses alto­
gether. Thus, through the use of the modified Hamiltonian, 
the method allows one to treat the practical problem of the 
damped constant mass particle. In this regard, our variable 
mass method is more flexible than the Kanai Hamiltonian, 
and has the mathematical advantage of being time indepen­
dent. It is also linear, of course, which gives it important 
advantages over the various nonlinear approaches to the 
problem.' 
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We specify the class of perturbative complex matrix potentials for which the corresponding many-channel 
Marchenko type transformation operators are bounded and integrable. Our reference matnx potential 
contains Coulomb interactions, different threshold energies, and centrifugal potentIals with different 
angular momenta. Estimates for the transformation operator and its derivatives are obtained; they· enable 
us to improve our recent results and are necessary for the establishment of a Unique solution to the 
"generalized Marchenko fundamental equation." From the eXistence of an Integrable transformatIOn 
operator, the analyticity of the lost solution as a function of k, IS deduced In the upper-half of the 
physical k, plane. 

1. INTRODUCTION 

The transformation operator plays a prominent part in 
the theory of the inverse problem of scattering: Indeed, the 
starting point of the method developed by Agranovich and 
Marchenko' is to specify the class of potentials for which the 
existence of a bounded transformation operator can be 
proved. Within this class of potentials, a fundamental equa­
tion for the inverse problem is then derived. In the first part 
of their monograph, however, they only considered coupled 
channels without either the centrifugal terms or Coulomb 
interactions and with the same threshold energy in each 
channel. In the second part of their book, an indirect itera­
tive approach for the singular centrifugal part was then used 
via the transformations introduced by Crum and Krein.' We 
consider here a system of differential equations containing 
different (and even not necessarily integer) angular mo­
menta, different threshold energies and Coulomb interac­
tions, by a direct method using the Riemann-Green 
solution. ' 

Cox4 considered a system of coupled channels with dif­
ferent threshold energies. He was able to apply the method of 
Jost and Kohn s and to get a generalized Gel'fand-Levitan 
equation. However, he did not say for which potentials his 
equation is valid. His Gel'fand transformation operator is 
not necessarily a bounded function; it could happen that the 
transformation operator is only defined as a distribution. In 
that case, it is only useful if we can show that its diagonal 
part is bounded so that a well-behaved potential can be ob­
tained by differentiation. Therefore, we want to find the class 
of perturbative potentials for which a transformation opera­
tor exists in the sense of functions theory and not in the 
enlarged sense of distributions. We only consider Marchen­
ko's type transformation operator for the reasons explained 
in Ref. 6, and upper bounds for this operator and its deriva­
tives are obtained. These bounds are necessary for the estab­
lishment of a stable and unique solution to the generalized 
fundamental Marchenko equation.' The recent results ob-

'''Chercheur U.S.N. 

tained in Refs. 3,6,8 must be modified according to our new 
estimate of the Riemann-Green solution. The present paper 
is divided into five sections: The introduction forms the first 
section. In Sec. 2, the definition of a transformation operator 
and the use of the Riemann-Green functions are briefly re­
called. New estimates for the Riemann-Green solution are 
found in Sec. 3. In Sec. 4, the results for the Riemann-Green 
function enable us to obtain new upper bounds for the trans­
formation operator and to specify the class ofperturbative 
potentials for which a bounded integrable transformation 
operator exists. From the existence of an integrable transfor­
mation operator, the analyticity of the Jost solution in the 
upper half of the physical k, plane is shown in Sec. 5. The 
paper includes five appendices. In Appendix A, a spectral 
representation is derived for the complete Riemann-Green 
solution. Upper bounds for the unperturbated Jost solution, 
the derivatives of the unperturbated, and the complete Rie­
mann-Green solution are obtained in Appendices B, C, D, 
respectively. The derivatives of the transformation operator 
are estimated in Appendix E. 

2. THE TRANSFORMATION OPERATOR AND 
THE USE OF THE RIEMANN-GREEN SOLUTION 

Two systems L" and L of n coupled differential equa­
tions are defined by the following two equations: 

and 

[ 
d' ] Lo(x)tb,,(A,x) = -, I + A - Vr,(x) tboCA,x) 
dx' 

(I) 

L (x)tb (A ,x) = [~I + A - Vrlx) - V(X)]tb (A,x), 
dx' 

(2) 

where I, A, Vo, V stand for the unity matrix, the diagonal 
matrix of different channel wave numbers k 7 (i = I ,n), the 
reference matrix potential and the perturbative matrix po­
tential respectively. The reference diagonal potential con­
tains the usual singularities: The centrifugal potential and 
the Coulomb interaction, while the perturbative potential is 
allowed to be complex (non-Hermitian). The Jost matrix so­
lutions tbo and tb satisfy the same boundary conditions: 
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lim [ ¢ (A ,x) ] ij 
x-oo 

= lim [¢o(A,x)]ij 
X-oo 

= oijexp{i[k)x -1/lTI2 + 0") - (a/2k) In(2kpx)] J, 
(3) 

where the Coulomb phase 0") is defined by Eq. (4): 

2ia r (I) + 1 + iaj 12k) 
e '= r(lj+ I-iaj 12k)' (4) 

¢o is the irregular Coulomb diagonal matrix defined by Eq. 
(5): 

X exp [ - 4i1r«( + 1 + ia/2k) + iO",j, 

(5) 

where W denotes the Whittaker's function (see Ref. 9). From 
Ref. 10, we know that when the Coulomb interaction is at­
tractive, the reference and the perturbated problems have 
both an infinite number of bound states. 

We are looking for a possible integral representation of 
the form: 

¢(A,x) = ¢o(A,x) + 100 
K(x,t)(Po(A,t)dt, (6) 

when A belongs to the spectrum ofL¢ = Oand whereK (x,t) 
is the transformation kernel. This kernel K (x,t ) is connected 
with the solution of the inverse problem by the equation: 

d 
-2-K(x,x)= V(x). 

dx 
(7) 

We want to specify the class of perturbative potentials V 
for which such a continuous bounded kernel exists. 

It is shown in Ref. 3 that the transformation matrix 
elements have to satisfy the partial differential system (8): 

[
a' 2 Ill, + 1) a i ] - + k. - - - K(xy) 

ax' I x' x IJ' 

I Vi/(x)Kij(x,y) 
I 

[
a' Ipj + 1) _ aj ] 

= - + k 2 
- K,/x,y), 

ayl J y' Y 
(8a) 

lim K,/x,y) = lim ~Kix,y) = 0, 
y-> 00 y-- 00 ay 

(8b) 

K,/x,x) = 4100 

V,/s) ds, iJ = I,n. (8c) 

The partial differential system (8) is equivalent to the inte­
gral system (9): 

K,/x,y) =! (00 Ry(x,y;s,s)V,/s) ds 
J(x + y)/2 

+! r f Rix,y;s,u) I VAs) J/ I 
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XKIj(s,u) du ds, iJ = l,n. (9) 

In Eq. (9), !iJ denotes the Marchenko domain represented in 
Fig. 1 and the Rij(x,y,s,u) are the Riemann-Green solutions, 
satisfying the partial differential equations (10): 

[ 
a2 2 Ill; + 1) a;] 

ax2 + k i - x 2 - ~ Ry(x,y;s,u) 

[
a' 2 Ipj + 1) a)] 

= ay2 + k j - y2 - y Rij(x,y;s,u), (lOa) 

R,/x,y;s,u) = 1 if Ix - sl = Iy - ul· 
If we use the canonical variables 

x+y y-x 
TJ=-2-' s=-2-' 

Eq. (10) reads 

[
a Ipj + 1) 

aTJ as (TJ + S)2 

Ill, + 1) 

+ <'q - s)' + 
XR'/TJ,S;TJo,So) = 0, 

u +s 
TJo= --, 

2 

Rij(TJ,S;TJo,so) = 1 if TJ = TJo, or S = So. 

(lOb) 

u -s 
So= -2-' 

(11 ) 

(l2a) 

(I2b) 

In Appendix A, the spectral representation (A lO)-(A 1 1) is 
obtained for Rij(x,y;s,u), using the techniques of Ref. 11. 
However, we are not able to write this spectral representa­
tion into a close form. Simple expressions for the Riemann 
functions f!Ji ij and R Z corresponding to the cases ( = a; = 0, 
i = l,n and k; = a; = 0, i = I,n respectively, can be deduced 
from this spectral representation: 

f!Ji y(x,y;s,u) = /0<[..1 ~[(x - s)2 - (y - un J 1/2), (l3) 

where /0 is the Bessel function of zero order and 

(14) 

and 

R 2(x,y;s,u) = PI(l - 2x,) 

(5 ) 

(O,x+y) 

(O,(x+y)/2) 

(O,X) 

o 

- 2x, (1 P I ,(1 _ 2x, + 2x,t)P ;,(1 - 2x,t) dt, 
Jo 

(15) 

FIG. I. Marchenko domain. 
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where 

("I - "10)(5 - 50) 
XI = ("I - 5)("10 - 50) , 

("10 - "1)(5 - 50) 
X= , 

("I + 5}(YJo + 50) 

and PI, is the Legendre polynomial. 

(16) 

(17) 

This last function R ~ will be used in the next section in 
order to evaluate the complete Riemann solution Rij' 

3. UPPER BOUNDS FOR THE FUNCTIONS FfJ 
ANDRij 

In the domain!iJ ofMarchenko, the following inequal­
ities are satisfied: 

0<50<5<"1<"10< 00. 

From Eqs. (16) and (17), one easily gets 

xI<O 

and 

or 

0<1- 2X2<1. 

Our next step is to prove the inequality (21): 

(18) 

(19) 

(20) 

1 < 1 _ 2xI = 1 + 2 ("10 - YJ}(5 - 50) < 2("1 + 5)("10 - 50} . 
("I - 5)("10 - 50) ("I - 5)("10 + 50) 

(21) 

After multiplication of both sides ofEq. (21) by 
("I - 5)("10 + 50)/("1 + 5)("10 - 50);;;,0, we must show that 

E ("1,5;"10,50) 

= ("I - 5)("10 + 50) + 2 ("10 + 50)("10 - "1)(5 - 50) <2. 
("I + 5)("10 - 50) ("I + 5)("10 - 50Y 

(22) 
The following inequalities are successively obtained: 

E ("1,5;"10,50) 

As 

< ("I - 5}(YJo + 50) + 2 ("10 + 50)(5 - 50) 
("I + 5)("10 - 50) ("I + 5)("10 - 50) 

< ("I + 5)("10 + 50) - 250("10 + 50) 

("I + 5)("10 - 50) 

< ("I + 5)("10 - 50) + 250("1 + 5 - "10 - 50) 
("I + 5)("10 - 50) 

< 1 + 2 50("1 + 5 - "10 - 50) . 
("I + 5)("10 - 50) 

~(YJ+5-YJo-50)= "10+50 >0, 
as "I + S ("I + 5)2 

(23) 

(24) 

(25) 

(26) 

the right-hand side of Eq. (26) is certainly overestimated, if 
we replace S by "I> S. Finally, we get the requested result 
(21): 
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(27) 

We are looking now for an upper bound for IR ~I. Starting 
from its representation (15), we get 

I R ~ I < I PIP - 2X2) I 

(28) 

Since 

0<1 - 2xl1 - t)<1 

and 

for O<t< 1, we can write 

I R Z(YJ,S;YJo,So) I 

<1 + IP,,Cl- 2x1) - 11 

<P,(1 - 2x,)< [4 ("I + 5)("10 - SO)]\ 
, ("I - S)(YJo + So) 

(29) 

where the following property has been used: 

1 <P,(x)«2x)' for X > 1 and I real ;;;,0. 

We can construct the complete Riemann function Rij from 
the function R Z, using the composition formula 

RuCYJ,5;YJo,5o) 

= R ~~(YJ'5;110,So) + ii: dsJ't

> dYJI R ~;(17'S;YJ]'5]) 
!-' '1 

The bound (29) for I R Z I is then used to find an upper bound 
for I R ij I. Setting 

ROr f;- f;-) ROr f;- f;-)[(71 - 5 )(YJO+so}]" (31) 
ij\YJ,,=,;YJo,,=,o = ij\YJ,,=,;YJo,,=,o 4("1 + 5)("10 - So) , 

- [ ("I - S)(YJo + So) ]" 
Ry(YJ,S;YJo,50) = Ry(YJ,S;YJo,So} 4("1 + S)(YJo - 50) , 

,u~ = 4" I k 7 - k] I 
and 

2(2', + I) ( ) aij = max ai,a} , 

Eg. (30) can be written as 

R/YJ,S;YJo,So) 

= R Z(YJ,S;YJo,So) + l~ ds] f'> dYJ] R Z(YJ,S;YJ"S]) 

X4
/'[(k7- k])+ (~+ ~)] 

"II - SI "II + SI 

(32) 

(33) 

(34) 

XRJYJ],S';YJo,So), (35) 
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where 

(36) 

The successive approximations applied to the absolute value 
of Eq. (35) lead to 

1 R &O)(1],S;1]o,So) 1 < 1 R ~(1],S;1]o,So) 1 < 1, (37) 
- (1) 

IRij 1(1],S,1]o,So) 

= I ~s dSI i'l" d1]1 R 2(1],S;1]I,SI) 
J~." 1/ 

X41'(k~-kJ+ ~ -~) 
1]1 + SI 1]1 - SI 

XR ~?>(1]I'SI;1]O'SO) I 

< f dS I II d1]1 0t + 1]Ta~1]~ t) 
< f dSI r" d1]1 ~~ + ~ k ) 

s' J" 1]1 ~ I 

J'" 1 
X d1]l'( ~ II! 

",,' 111' - S ) 

(notice that for p = 0, SI' = S, and 1]1' = TJ), 

I R W'(r7,S;TJo,So) I 

< [/l;/l/o - 50) + a,)]p 

[Si" dsJ(TJ - SI)ll2l" [J;:dTJJ(TJI - 5)112]" 
X-':::------

p! p! 
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(38) 

(39) 

Since the modified Bessel function can be defined by 

GT ( ) _ ~ (z
2
/4Y _ ~ LIT zcose de z 

,/ 0 Z - L, - e <;;;e , 
p ~ a (P!)2 1T 0 

(40) 

we easily get the following upper bounds: 

The same method, directly applied to the case a, = 0, leads 
to 

1 RiTJ,S;TJo,So) I 

<4'[(TJ + ~)(TJo - So)]" exp[2,u,/TJo - 50)] (42) 
(TJ - ~ )(1]0 + So) 

The inequality (42) differs from the inequality (41) with 
au = 0, by a factor 2 in the exponent; this is due to the ap­
proximations we have done, in the evaluation of (41), in or­
der to get separable integrands in Eqs. (38), (39). The esti­
mate (4Ia) of Rij is much more general and much easier to 
use than the estimate (58) of Ref. 3. 

Several further approximations to Eq. (4Ia) can be 
performed: 

(i) Since TJSo<1]o5, we have 

(1} + 5)(1]0 - 5o)/(TJ - 5)(TJo + So» I 

and 

I R,/TJ,S;1]o,So) I 

<4,,(TJ + S )(TJo - so»)'"'"' 
(TJo + So)(TJ - 5) 

X exp(4j [,u;(1]o - So) + a,](TJo - 50)! 112), (4Ib) 

where 

and 

a,= maxa'j 
) 

(ii) Since 

'I + ~- ,;; 11 + S ,;; 17 + ~- ~2, 
'I" + So '/0 'I 

we can also get from Eq. (41a) 
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I R u\7},S;7}o,So) I 
<8,,(7}0 - so)" 

7}0 + So 
Xexp(41 [,u~(7}0 - So) + ai ](7}o - So)J1/2). (41c) 

This inequality (41c) was the only one obtained in Ref. 2 by 
another method. In Sec. 4, estimates of K are obtained from 
the different approximations (41), and we explain why the 
use of inequality (41 b) must be preferred. 

4. AN UPPER BOUND FOR THE 
TRANSFORMATION OPERATOR 

Using the canonical variables (II), the integral equa­
tion (9) for the transformation kernel reads 

K;/7},S) = 1 f'" d7}o RJ7},S;7}o,O)U/7}o) 
') 

x I Ui/«7}o - So)KIj\7}o,So). (43) , 

Ifwe introduce, in Eq. (43), the matrices R, K, and U defined 
by the following equations, 

R,/",S;7}o,So) 

-R- ( ~. ~)[ (7}+5) 
- ij 1],S,1]n,lj;o ( '") 

1]0 + 50 

(1]0 - So) ])"". 
(17-5) 

K ( '") K ( k)(7} + S)'''' " iJ 17,1j; = Ij 1],,:> --r.- ' 
17-':> 

where 

and 

II, = max(,u ,) 
J 

a, = max(a,), 
/ 

we get 

785 

K,/17,S) = ~ ('" d170 R/7},S;110,O)U,/170) J,/ 

x I Ui/(17o - 5o)KIj(7}0,So). , 
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(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

From Eq. (41b), we see that I Rifl < 1 and successive approxi­
mations applied to the absolute value ofEq. (49) give 

I KlJl(17,5) I <! La' d170l U/7}o) I 

<! fOC d1]oIIU(17o)11 = !~(1]), 
') 

where 

n 

IIA II = sup I IAul, 
I j ~ I 

I KV)(17,O I 

< f YC d170 i~ dso I I Ui/( 170 - Sc» 1 I K ;7)( 17o,So) 1 

') 0 I 

<!O"'(17)f
x 

d1]°isd5oIlU(170-so)I[, 
1) 0 

and finally 

[[K(17,S)[[ 

< ~(17) exp[fOC d170 e'd5o I[ U (170 - 50)11]. 
2 q Jo 

Using the physical variables again, we get 

f 'x d170 (Sdso l[U(170-5o)[[ 
'I Jo 

=! rXCY

)/2 ds fi'x, 'du[[U(s)[1 

+! r" ds r Xi' ciu [[U(s)l[ Jx f y)/2 j, 

f
(' -, y)/2 

= x cis [[ U (s)[[(s - x) 

+ ! I:. ))12 ds [[ U (.1')[10' -- x) 

<IX [[U(s)[[sds=al(x) 

and also 

<10' - x)a(x). 

So we have 

and also 
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(51) 

(52) 

(53) 

(54) 

(55a) 

(55b) 
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21","" I (+) < I n (jl""" ~ exp[(jl(x») 
x""" 2 

if (jl""" exists and where 

-I (x + y) , f I" I I, 
(T -- = sup L.. 7704 I Uij(770) I 

2 I jc_ I (, t y)/2 

f.17 = max( 4
1
, I k 7 - k J I ), 

j 

(21, "- I) ( I) a i = 2 max laj . 
j 

(56) 

(57) 

(58) 

(59) 

The same method with the use of estimate (41c) leads to the 
estimate 

I Kij(x,y) 1< + (~ )1'(jI{X ~ y) exp[(j(I, -1,+ I)(X»), 

(60) 

which corresponds to the one obtained in Ref. 3 and used in 
Refs. 6 and 8. However, from estimate (60), it is not obvious 
if lim, .oK (x,x) is finite while it is so from estimate (55). 
From that point of view, Eq. (55) is much better. Ifwe use 
estimate (41a), without any approximation, the method of 
successive approximations gives 

IKlj(x,y) 1< +( ~yan(x ~ y) exp[ 11..r(x,y) II ], (61) 

with 

! I(X I y)/2 ds IY 
x I 'du I Ujs) I (~)I, -- I, 

x x ! y \ S 

+! IX ds IY ,+, du I Vi~) I (~)I, I, (62) 
J(X -+ yi/2 s s 

If II > Ii' since u/s > I, we have 

11..r(x,y)11 <(jI(X). 

For Ii < Ij , we get 

..rJx,y) 

<3(1, 1')(jI(X ~ y) 

+! r' t y)/2 ds (Y x +, du I VJ,s) I (~)I' -- I, 
Jx J~ -t y - , s 

(63a) 

(63b) 

From estimate (61), it is not obvious whether limv "DK (x,y) 
is finite whereas it is the case from estimate (56). The most 
general estimate (4Ia) for R li will, however, be used in Ap-
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pendices C, D, E in order to get estimates for the derivatives 
of R Z, Rlj, and Kij" The results of Refs. 6 and 8 may be modi­
fied according to our new estimates for K. 

In order to ensure the convergence of the integral in Eq. 
(6), since, in Appendix B, an upper bound (B 12) for the func­
tion ~o(A ,x) is found for Imki = 15>0, i kl i >s > 0, and 
a l >0, it is sufficient to impose that 

for x;>O 

or 

JY dy (jl""" ( x ~ y) 

= 4
1 
.. "" J-< dyf.Y d77077;i''''IIV(770)11 

x (\:- t y)/2 

= 4
1",,, J" d770 f)I" dy 77;i" "II V (770)11 

<2(21""" I I) Jf d770 1';;'''' . III V(770)11 

= 2(j1 .. "" + I (x) < 00. (64) 

. h -I I I() . C" 0 .. Slllce we suppose t at (T .. ,," x eXists lor x;> ,we canJustl-
fy the interchange of the order of the integrals in Eq. (61) by 
the Tonelli-Fubini theorem. Equations (55)-(64) show that 

xl"'''K (x,y) is bounded and integrable if (jl""" t 1(0) remains 
finite. Nowhere have we made the assumption that U is a real 
or Hermitian matrix; our results are thus valid for non-Her­
mitian potentials. We see that an exponential decrease is re­
quired for the perturbation potential; the rate of this de­
crease is measured by 4(,112X' + ax)'i2. In absence of 
Coulomb interactions, Uij(x) must decrease faster than 

/ I, ) ) b . d' exp [ - 2" I k ~ - k; Ilnx . (The exponent 0 tame III 

Ref. 3 contains a wrong factor.) In Appendices C and D, 

bounds for the derivatives of R ~; and RI' are obtained. These 
bounds enable us to get a bound for the derivatives of the 
transformation operator K in Appendix E. The estimates 
(50), (5\), and (E3) obtained for K (x,y) and its derivatives 
are necessary if we want to prove the unicity and the stability 
of a suitable solution to the fundamental equation of the 
inverse problem the existence of which Coz and the author' 
have generalized for non-Hermitian systems of coupled 
channels . 

5. ANALYTICITY OF THE JOST MATRIX 
SOLUTION 

We first consider the Jost solution as a function of the 11 

variables (k" ... ,k,,). Equation (6) yields 

[~(A,x) Li = bli[@,lA,x)lij 

(65) 

Since [~(l(A ,x) 1 ii depends only on k, and since the solution 
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K;/x,y) ofEq. (8) is an entire function of 

Ll ~ = k J - k 7 (66) 

(from a theorem demonstrated by Poincarel'), [<p(A,x)] ij is a 
function of kj and Ll J; only. This shows that [<p(A ,x) ] ij is an 
even function of all the k/s, except k j as is well known from 
Ref. 12. 

Instead of considering <p(A,x) as a function of many 
variables k, (/ = I,n), the conservation of energy (66) be­
tween the channels may be used to eliminate k" ... ,k" in favor 
of the largest variable k 1 and the n - 1 constants Ll T, 
(/ = 2,11). By doing this, we must define, as in Refs. 13, a kl 
Riemann surface, consisting of 2" - I sheets, having branch 
points at kl = ± Ll'1 (I = 2, ... ,n). With each sheet, Weiden­
muller" associates a vector l' of n - I elements" = ± 1, 
defined according the rule 

sgn Rek, . 1= ',.Ign Rekl' 

sgn Imk, f 1=" sgn Imk J • 

(67) 

(68) 

The physical sheet is defined by '/ = + 1 (l = I,n - 1). In 
order to prove the analyticity of qJ(khX) with respect to k, in 
the upper half of the physical plane, the existence and the 
continuity ofqJ(k"x) and its first derivative with respect to kJ 
must be shown. The existence of a bounded continuous 

qJlk"x) has already been shown if I/m .. , + 1(0) exists for 
ImkJ > 0, hence for Imkj > O. Since the integral in Eq. (6) 
converges absolutely, the differentiation of qJ with respect to 
k, can be performed under the integral sign: 

[~ qJ (kL,X)] .. = [~qJo(k"x)] 151} + (CO Klx,t) 
dk, lj dk, JJ L 

Since [Cd IdkL)qJo(k"x)] exists and can be bounded for 
Imk, > 0 and since Kij(x,t) is absolutely integrable, 

(69) 

[Cd Idk,)qJ (k"x)L; is well defined and bounded. The matrix 
function qJ(k"x) is thus analytical in the upper half of the 
physical k L plane, for all fixed x > O. 

6. CONCLUSION 

We have found sufficient conditions that the matrix 
perturbative potential should satisfy in order to get a bound­
ed and integrable transformation operator with bounded 
first derivatives. These conditions are, of course, dependent 
on the reference potential: The centrifugal part imposes that 
the perturbative potential has certain moments [see Eq. (56)] 
while the Coulomb interaction or the different threshold en­
ergies lead to an exponential decrease of the potential [see 
Eq. (57)]. For this class of potentials, the analyticity of the 
Jost solution has been shown in the upper half of the physical 
k, plane (for a i > 0). This property of analyticity is essential if 
we want to establish a fundamental equation for the inverse 
problem. The upper bounds (55), (56), (E3) that we have 
obtained for the transformation operator and its derivatives 
are of basic importance for two reasons: 
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(i) They allow us to get an upper bound for the kernel of 
the fundamental equation and consequently give us the con­
ditions to be imposed to the scattering data in order to have a 
suitable solution to the inverse problem. 

(ii) They are also necessary to ensure the stability of the 
inverse problem (see Ref. 14). Indeed, the experimental scat­
tering data are only known up to a certain energy and the 
question naturally arises whether this is sufficient to well 
define the potential. Of course, this is not sufficient if we do 
not restrict the class of acceptable potentials (see Ref. 15). 
On the other hand, if we impose that the solution of the 
inverse problem should belong to the above-defined class of 
potentials, then the estimates obtained for K and its first 
derivatives will enable us to show that the solution is stable 
with respect to small changes in the phase shifts above a 
certain energy. 
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APPENDIX A: SPECTRAL REPRESENTATION 
OF THE COMPLETE RIEMANN-GREEN 
FUNCTION 

Since the partial differential Eq. (lOa) satisfied by the 
Riemann-Green matrix element Ri/x,y;s,u) is separable 
with respect to the variables x,y, a spectral representation 
can easily be obtained, by a generalization of a method devel­
oped by Riemann and described p. 328 of Ref. 11. 

Setting Ll~ = k ; - k j, we consider the following two 
differential equations: 

[ 
d 2 1(1 + I) a ] _ + Ll 2 + A. 2 _ I I _ .....!.. u(A. x) = 0 
dx' IJ x' x' , 

(AI) 

[~ + A. 2 _ liJ) + 1) _ aj]W(A.,y) = O. 
dy' y' y 

(A2) 

The regular F/A.,y) and irregular G/A.,y) real Coulomb func­
tions, defined by the equation: 

(A3) 

form a system of two linearly independent solutions of Eg. 
(A2), the Wronskian W of which is constant: 

W = Wr[F,G ] = F ~ G ~ G ~ F = - 1. (A4) 
Jy Jy 

The solution ux , ofEq. (AI) is chosen in such a way that the 
boundary conditions (AS) and (A6) are satisfied: 

U,,(A.,x) = 0 for x = x, (AS) 

and 

d 
- Vx (A.,x) = 1 for x = x,. 
dx . 

(A6) 

An expression for u" (A. ,x) in terms of Fi and G, is easily 
obtained: 

v. (A. x) = [G.«A. 2 + Ll 2)'12 x )F«A. 2 + Ll 2)'/2 x) 
~,' ! Y' 1 I lj' 

Pierre Rochus 787 



                                                                                                                                    

(A7) 

We consider the solution W(A,y) ofEq. (A2) with which a 
function W(A,y) can be associated, such that the following 
equality is verified for any functionf(x) belonging to 
L 2(0,00): 

f(x) = (f L )dA W(A,X) 1" dy W(A,y)((y) (A8) 

where (f~) denotes the integration over the continuous spec­
trum, plus an infinite summation over the point spectrum 
when aj is negative. From Refs. 10 and 16, we know that 
such functions W(A,y) and W(A,y) exist: 

W(A,y) = !1TW(A,y) = Fi(A,y). (A9) 

The Riemann-Green matrix element Rij can be written for 
I x - s I > Iy -- u I, which is always satisfied inside the Mar­
chenko domain (and also inside the Gel'fand domain): 

Rix,y;s,u) 

= 2 sgn(s - X)( f L )dAW(A,Y)W(A,U)V,(A,S), (A 10) 

where 

sgn(a) = all a I . 

Of course, when 1 x - s 1 = Iy - u I, we have 

Rix,y;s,u) = 1. (All) 

However, we did not manage to rewrite the spectral repre­
sentation (A 10) for the complete Riemann-Green function 
into a close form. This can only be done in particular cases 
when a, = I; = 0 or when a; = k; = 0 and leads to well­
known results."1''' We must acknowledge that not very 
much progress has been achieved since 1930: Most of the 
actually known Riemann-Green solutions were already dis­
covered at that time by Darboux ll and Chaundy,l' in spite of 
the fact that new constructive methods lUo have been 
proposed. 

APPENDIX B: BOUND FOR ~o 

Taking the absolute value of Eq. (4), we get 

I [¢lo(A ,x) 1 ij I 
" W ( 2'k)1 a,,,/4k, =uijl -ia/Zk,'/,+I!2 - 1;C e . (Bl) 

Assuming that the Coulomb interaction is repulsive (a;»O) 
and setting Z = - 2ikrX, K = - ia/2k;, v = I; + !, the 
Whittaker's functions W can be expressed in terms of the 
Kummer function Uby the Eg. (82) [see Eg. (13.1.33) of 
Ref. 9] 

W, ,(Z) = e - Z 12Z" t- I!ZU (! + v - K,I + 2v,Z), 
. ~~ 

If Re(l + 2v) > Re(! + v - K) > 0, the integral representa­
tion (13,2.5) of Ref. 9 for U can be used: 

U(! + v - K,I + 2v,Z) 
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1 100 

r(V+!-K) 0 

e - ZIt v - K - IIZ(1 + tV + K -- liZ dt 

(B3) 

if 

Re(/; + 1 + ia/2k) > 0, (B4) 

or 

U(! + v - K,l + 2v,Z) 

1 1 

rev +! -K) Z 

X e - 1 + _ 2 dl. 1-£ t( t )" A' 1( t )"+A' , 
() Z Z 

(B5) 

It readily follows from Eqs. (B2) and (B5) that 

e - Z/2 

W,,CZ) = ------
. r(V+!_K)Zv-1/2 

(B6) 

if 

(87) 

Our CPo Jost solution behaves like Z I at the origin and has a 
discontinuity along the imaginary negative k; axis [we take 
- rr < argZ < rr, arg( -- i) = - rr12, and 3rrl2 < argk, 
< - rrl2l 

Setting k, = Y + i8, we get for 8;>0 and I k, I»s > 0 

1 [!bo(A < x) Li I 

< exp(a;rr8!4 1 k; I' - 8x) exp(a;1T!2s)I>" 
, I 

I ru; + 1 + ia/2kJ I (21 k;lx)' 

xJx e tt 2/{1 + 21~;1 Ydt, (B8) 

smce 

I(~ + It ;a,m')1 

=IZ +11(1, a,/l/2!k'I')exp[~arg(l+ Z)] 
t 21 k;I' t 

= 11 + 21~; I x 1/e",;r/2s. (89) 

The integral in (B8) can be evaluated: 

(OC e- 't I,(t + 21 k; I X)I, 
Jo 

I, 

= L C~,(21 k;lx)l, l(l; + j)! (BI0) 
i () 
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«2/;)![1 + 2Ikdx]\ 

so that the final result can be written as 

exp(3a j1T/4s - !5x) 
1[I,Po(A,x)lul< Ir(/;+ 1 + ia/2k

j
) I 

where 

{( 
2 a; )[ a; ] = I + - (/-1)2+ - .. , 
, 4k 2' 4k 2 , , 

( 
a2 ) 1Ta. } 112 X 1+_' , . 

4k; 2ki sinh(1Ta/2k) 

APPENDIX C: BOUNDS FOR 
I (a/(hdR~(1h~;1)O,~o) I, I (a/a~)Rt'(1),~;1)o,~o) I 

(Bll) 

(BI2) 

(B13) 

The derivative of Eq. (15) with respect to 1] or 5 can be 
written as 

R J = - 2xiP ,(1 - 2xJ - 2x; (I PI (1 - 2x21) 
I Jo ' 

(CI) 

where the primes denote derivatives with respect to any of 
the two variables 1] or 5- Before proceeding further, the fol­
lowing bounds are recalled: 

I PI (x) I <I for Ixl<l, (C2) 

+ Ixi IIPi + 1)[ 1 + 1,(/j + 1)(2Z)I,], (C6) 

I R ijo I «2Z)\ I x; I + I xi I}/max(/max + 1) 

X2[1 +/max(/max+ I)] 

<A(2Zi'(lx;1 + Ix~l}. (C7) 

To pursue, we have to find upper bounds for [ I (a/a1])x I I 
+ I (a/a1])X2 I] and [ I (a/a5)X I I + I (a/a5)X2 I ], where 

~ aXI = 1]0 - 5 <0, 
XI a1] (1] -1]0)(1] - 5) 

~ aXI = 50 - 1] >0, 
XI a5 (5 - 50)(5 - 1]) 

~ aX2 = 5 + 1]0 <0, 
X 2 a1] (1] -1]0)(1] + 5) 

~ aX
2 = 1] + 50 >0. 

X 2 at (5 - 50)(5 + 1]) 

I~~I + I~~I 
.;;: (5 - 50)(1]0 - 5) + (1]0 + 5)(5 - 50) 
'" (1] - 5)2(1]0 - 50) (1] + 5)2(1]0 + 50) 

< (1]0 - 5) + (1]0 + 5) 
(1] - 5)2 (1] + 5)2 

.;;: 21]0 
~(1]-5)2' 

I~;I + I~;I 
.;;: (1] - 50)(1]0 -1]) + (1] + 50)(1]0 - 1]) 

'" (1]-5)2(1]0-50) (1]+5)2(1]0+50) 

.;;: (1] - 50) + (1] + 50) 
'" (1]-5)2 (1]+5)2 

21] < ---'--
(1]-5)2 

The bounds for the derivatives of R ~ read then 

I ~ R Z(1],5;1]0,50) I 

< 2A1]0 [4 (1] + 5)(1]0 - 50)]/, 
(1] - 5)2 (1] - 5)(1]0 + 50) 

(C8) 

(C9) 

(ClO) 

P,(x)<l(l+ 1)/2 for Ixl<l, 

PI (x) < (2x)1 for x> I, 

(C3) and 

P i(x)<l (/ + 1)(2x)l- 1 for x> 1. 

(C4) 

(C5) 

Setting Z = 1 - 2x I and using Eqs. (20) and (21), we obtain 

IR ,jOI <lxiI1i1j+ l)+4I x;IIP,,(z)1 
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I ~ R Z(1],5;1]0,50) I 
.;;: 2A1] [4 (1] + 5)(1]0 - 50)]/, 
'" (1] - 5)2 (1] - 5)(1]0 + 50) . 

(CII) 

APPENDIX D: BOUNDS FOR I (a/a1)Rij I AND 
I (a/a~)Rij I 

In this appendix, the estimates (29, (41), (ClO), and 
(CII) for R g, RiP and the derivatives of R ~ are used to find 
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bounds for the absolute values of the complete Riemann 
function derivatives. Taking the derivatives with respect to 7] 
and 5 of Eq. (30) and setting 

Ti7].t) = k 7 - k J - a/(7] - 5) + a/(7] + 5). it readily 
follows that 

~ Ri,(7J.S;7]O'~o) 

= ; R ~(7].5;7]0.50) - i~ d51 R ~(7].5;7].t\) 
X Ti7].5r)Ri7].5r;7]0.5o) 

+ f d5r J,'7
0 

d7]1 ~ R ~(7].5;7]r.5r) 
X Ti7]I.5r)Ri7]r.51;7]0.50). 

a 
a5 Ri7]·5;7]0.50) 

= :~ R ~(1].5;7]o.5o) 

+ J"o d7]1 R ~(1].5;1]I.OT;/1]r.O 
'I 

Eqs. (01) and (ClO) lead to 

(01) 

+ L~ d51 L17
0 

d7]l ~ R ~(7].5;7]1.51) 
X Tij(7]r.51)Ri/7]r.51;7]0.50), 

Defining 

D;/7].5;7]0.50) 

_ [(7]0+ 50)(7]-5) ]I'~R(1]f;'1] k) 
- lJ ,~, o,~o, 

4(1]0-50)(1]+5) a1] 

Ci1]·5;1]o.50) 

_ [ (1]0 + 50)(7] - t) ]" ~ R('YI k.'YI f;) 
- 4(7]0 - 50)(7] + t) a5 I) ·"~'·IO.~O • 

R-o( ~ ~) ii 1].1,:, ;1]0,1,:,0 

= [ (1]0 + 50)(7] - t) ]1'R ~(7].5;7]0,50), 
4(1]0 - 50)(7] + t) 

Ri7].5;1]0.50) 

= [ (7]0 + 50)(1] - t) ]" Rij(1].5;1]0.50). 
4(1]0 - 50)(1] + 5) 

E (1]0 - 50) 

= 4" exp [4[.ut(1]0 - 50)2 + ai7]o - 50)] 112 j, 

I Di1]·5;7]0.50) I < (7]~~)2 +E(7]0-50)[.ut«-50)+aijln ~=~o] 

and 

If we use the well-known fact that Inx < x for x > 1. Eqs. (07) and (08) can be written as 

I ~ Ri1],~;1]0'50) I 

<[4(1]0-5
0
)(1]+5)]1;{ 2A7]0 +E(1]0-50)[.ut«-50)+aij 7]1]=~] + (1]~5Y £(1]0-50) 

(7]0 + 50)(7] - t) (7] - 5)2 ~ 

and 

I :5 R/7],5;7]0.50) I 

<[4 ~~:~::~i~~:;r{(1]~;)2 +£(7]0-50)[.ut(1]0-1]) + aij ~o~:] + (1]~;)2 £(1]0-50) 
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(05) 

(06) 

(07) 

(010) 

790 



                                                                                                                                    

(D11) 

APPENDIX E: UPPER BOUNDS FOR THE DERIVATIVES OF THE TRANSFORMATION OPERATOR 

Performing the derivative of Eq. (43) with respect to 1], we obtain 

~ KJr/,O = - !Rij(1],S,1],O)U;/1]) +! 1'" d1]o :1] R i/1],S,1]o,O)Uij(1]o) 

Setting U;/1]) = E (1]) Uij(1]), we get the following upper bound: 

1 ~ KJ1],S) 1 [(1]1]+-/)4 rm 
... ~!U;/1]) + ! 1" d1]o[ (1]~~)2 + E (1]o)Gu- + aij 1] ~ s) + (1] ~ s)2 E (1]0) 

Since we have 

I K 1j(1]o,Su) I ~ ~(1]0 + SO)''''''ii''( 1]0) exp [0-1(1]0 - So)], 
2 1]0 - So 

it readily follows that 

11:1] K(1]'S)II[4(~~~)rm", ~!IIU(1])II+ (1]~S)2 (T1(1]) + wU-[ii"(1]) + (1]~S)2 0->(1])] 

(E2) 

(55b) 

+ aij 2(1] ~ 0 [ii"(1]) + (1] ~ 00->(1])] + ~ ii"(1]) exp[o-l(1] - 0] f'- s" IIU(s)11 ds 

+ nii"(1]) exp[o-l(1] - S)] A 2 fOO d1]o r~dso 1]011U(1]0 - So)11 
(1] - 0 7, Jo 

+ aij [ As 2A(1]+5) 2]}11- <-(1] - 0 1] + (1] - 5) 1]0 + (1] _ S)2 1]0 U(1]o - ~o)ll· (E3) 
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To proceed further, we must evaluate the following integral: 

roo d7Jo r
s 

dSQ 71£/(710 - So) 
)'f JI 

with / = 0, I, or 2 and/(7fo - So) = II U (770 - So)11 or II U(7fo - So)ll. We easily obtain 

1" d770 L~" 5 ds 7fb/(s)< fl~!,; ds f + 5 d770 77~/(s) 

f OC (S+S)/+I -S'+I 
= ds 1 (s) --'----"--'------

'1-5 1+1 
(E4) 

where 

(ES) 

If U has the moments implied by Eqs. (E3), (E4), and (E5), the transformation operator has a bounded first derivative with 
respect to 77. (If Imax>3, this does not introduce new conditions.) The same simple but tiresome considerations will prove that 
the t derivative of K is bounded and so are the x and y derivatives. 

'L. W. Agranovich and V.A. Marchenko. The Inverse Problem in Scattering 
Theory (Gordon and Breach, New York. 1963). 

'M.M. Crum. Quart. J. Math. 6,121 (1955); M.G. Krein, Dokl. Akad. 
Nauk. SSSR 113, (5), 970 (1957). 
'M. Coz and P. Rochus, 1. Math. Phys. 17.894 (1976). 
'l.R. Cox, Ann. Phys. (N.Y.) 39, 2.17-52 (1966). 
'R. lost and W. Kohn, Kg!. Danske Videnskab. Se1skab. Mat. Fys. Medd. 
27 (9), (1953). 

'M. Coz and P. Rochus.1. Math. Phys. 18,2223 (1977). 
'M. Coz and P. Rochus, "A fundamental equation for a non-Hermitian 
differential system," preprint. 

'M. Coz and P. Rochus, J. Math. Phys. 18,2232 (1977). 
'M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions 
(Dover, New York, 1964). 

WH. van Haeringen, C.V.M. van der Mee, and R. van Wageningen, J. Math. 
Phys. 18,941 (1977). 

"E.T. Copson, Arch. Rat. Meeh. Anal. t. 324 (1958). 

792 J. Math. Phys., VoL 20, No.5. May 1979 

<OR.G. Newton, J. Math. Phys. 2, 188 (1961): Scallerillg Theory 0/ WOI'('S 
and Parricll's (McGraw-Hill, New York. 19(6). 

"(~) H.A Weidenmiiller, Ann. Phys. (N. Y.) 28,60 (1964): (b) J. Humblet. 
Nuel. Phy,. 57, 386 (1964). 

"(a) V.A. MarchenkQ, Mal. Sbornik Tom 71,119 (1968); (bIDS. Lundina 
and V.A. Marchenko. Mat. Sbornik Tom 78. 120 (l969). 

"(a) G.A. Viano, NuO\o Cimcnto A 63, 58 (1 ()69); (b) S. Ciulli, C. Porn­
ponill. ;wd [S Sref<lncscu. Phys. Rep. C 17, 134 (1 n5). 

"'(a) LC. Tirchnl<lrc·h. Eigcnjimcliol/s EXPQlll'io1ls I (Clarendon, Oxford. 
19(2). p. 98: (b) W.O. Amrein. 1.M. Jauch and K.B. Sinha, S((Jllaillg 
lhl'ory ill Quall/um "'Il'chanics: Physical Pril/ciples ami JIa/helnulieu! 
M('fhod (Addison-Wesley, Reading, Mass., 1977). 

'·G. DarbDux. Ihi:or/e Gel/cru!l' des Sur/uen, 2 (Paris, 1915). 
'TW. Chaundy, Quart. J. Math. 10, 237 (1939). 
'·E.A Daggit, J. Math. AnaL Applies. 29. 91-108 (1()70). 
"J's PapCidakis and D.H. Wood. J. Dilf Eq. 24. 397-411 (1977). 

Pierre Rocl1us 792 



                                                                                                                                    

On conserved quantities in general relativity 
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Recently. definitions of total 4-momentum and angular momentum of isolated gravitating systems have 
been introduced in terms of the asymptotic behavior of the Weyl curvature (of the underlying space-time) 
at spatial infinity. Given a space-time equipped with isometries. on the other hand. one can also 
construct conserved quantities using the presence of the Killing fields. Thus. for example, for stationary 
space-times, the Komar integral can be used to define the total mass, and, the asymptotic value of the 
twist of the Killing field, to introduce the dipole angular momentum moment. Similarly, for axisymmetric 
space-times, one can obtain the ("z-component" of the) total angular momentum in terms of the Komar 
integral. It is shown that, in spite of their apparently distinct origin, in the presence of isometries, 
quantities defined at spatial infinity reduce to the ones constructed from Killing fields. This agreement 
reflects one of the many SUbtle aspects of Einstein's (vacuum) equation. 

I. INTRODUCTION 

Consider a self-gravitating system in the framework 
of general relativity. Let us suppose that matter 
sources are confined to a spatially bounded world tube. 
Let, furthermore, the space-time (M, gab) describing 
the gravitational field of this system admit a Killing 
field fa. Then, the Komar integral' 

f.>=j· ? ve~ddsab 
"-t' s2Labcd 

represents a conserved quantity; the integral is inde­
pendent of the particular choice of the 2-sphere 52 
surrounding the matter sources, made in its definition. 
[Here, l.bed and ~a are respectively, the alternating 
tensor and the derivative operator on eM, gab)'] If ~a 
is a stationary Killing fie ld, Q represents the total 
energy of the isolated system, while if ~a is an axial 
Killing field, Q has the interpretation of the component 
of the total angular momentum along the corresponding 
axis. These conserved quantities have played an im­
portant role in the understanding of stationary, axisym­
metric isolated systems. 

If a given stationary space-time has the property that 
the manifold of orbits of the stationary Killing field is 
asymptotically flat at spatial infinity, one has also 
available the Hansen2 multipole moments. These arise 
from an examination of the as.vm/)[o/ic properties of the 
norm and the twist of the Killing field on the manifold 
of its orbits. Of particular interest to the present 
analysis is the dipole angular momentum moment. Con­
sider the case in which such a stationary space-time 
is equipped also with an axial Killing field. Then, one 
has available two "angular momentum like" quantities. 
the dipole moment constructed from the timelike Killing 
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field and the Komar integral constructed from the axial 
Killing field. What is the relation between these quanti­
ties? On intuitive grounds, one might expect the dipole 
moment to "point along the axis, " and its norm to 
equal the value of the Komar integral. However, de­
tailed analysiS of this issue is complicated not only 
because the two notions refer to two different Killing 
fields but also because whereas the Komar integral in­
volves an integral on space-lime, the dipole moment is 
a vector at the point at infinity on the (three-dimen­
sional) !I1anifold oj orbit s of the stationary Killing field, 

Recently, Ashtekar and Hansen3 have introduced the 
notion of the total (ADM) 4-momentum ' and angular 
momentum of isolated systems in yet another way. 
Their definitions make no reference to isometries at 
all; these quantities are constructed by examining the 
behavior of the Weyl curvature at large space like 
separations from sources. This construction may be 
summarized as follows, First, a notion of asymptotic 
flatness at spatial infinity is introduced. In effect, a 
space-time is said to be asymptotically flat provided 
one can "attach" to it a point analogous to the 
Minkowskian i C such that the metric obtained by a suita­
ble rescaling of the physical one admits an extension to 
this point which is smooth in "angular directions" and 
has only finite radial discontinuities in its first deriva­
tives. (These discontinuities turn out to be a measure 
of the total energy-momentum of the given space-time 
time. ) In the second step, using asymptotic conditions, 
the group of asymptotic symmetries at spatial infinity­
called the Spi group-is obtained. In its structure, the 
Spi group closely resembles the BMS group5. it is a 
semidirect product of an infinite dimensional Abelian 
group (of Spi supertranslations) with the Lorentz group, 
it admits a preferred four-dimensional normal Abelian 
subgroup, but neither a preferred Lorentz nor a 
Poincare subgroup. (However, it does differ from the 
BMS group in an important respect: while the BMS 
supertranslations correspond to free functions on a 
2-sphere, the Spi supertranslations correspond to free 
functions on a timelike three-dimensional hyperboloid. ) 
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In the third step, asymptotic gravitational fields are 
introduced. These are represented by two second-rank, 
symmetric, tracefree tensor fields Eab and Bab on the 
hyperboloid [) of unit space like vectors in the tangent 
space at ie, "the point at spatial infinity. " The informa­
tion about the "1/r3 part" of the Weyl curvature of the 
physical space-time is contained in this pair of fields 
on f), In the last step, one uses these asymptotic sym­
metries and asymptotic fields to construct conserved 
quantities. 6 The 4-momentum Pa may be regarded as 
a vector at i e

• Its definition involves Spi translations, 
i. e., the elements of the preferred four-dimensional 
normal subgroup of the Spi group and the asymptotic 
field Eat. (The corresponding quantity constructed from 
Bab which would represent the" magnetic analog of the 
gravitational charge" vanishes identically! 7) To intro­
duce angular momentum, an addiliOll(ll condition is re­
quired. If Bab=O, Le" Hthe "1/r3 part"ofthephysi­
cal Weyl curvature contains information only about the 
4-momentum as one intuitively expects it to, and if the 
"1/ /,1 contribution to the magnetic part" of the asymp­
totic curvature is well behaved one can define the total 
angular momentum Vanishing of Bab causes a reduction 
of the Spi group to the Poincare, and angular momen­
tum then arises as a linear mapping (involving the 
"1/1"1 part") from the Lorentz Lie algebras of this 
Poincare group to the reals. In the finished picture, 
angular momentum is represented by a skew, second 
rank tensor Mat at to which "transforms" in the familiar 
way under the action of Spi translations. 8 One can also 
construct, in the usual fashion, the spin vector Sa: 
Sa:=(:abcdPbMcd, where Cabcd is the alternating tensor at 
1°. Like the 4-momentum P a' the spin vector Sa is a 
fixed vector at iO; it is invariant under the action of Spi 
translations. 

The availability of these apparently distinct notions 
of energy-momentum and angular momentum raises a 
number of questions, Fix a space-time (M, It:,,) satis­
fying the asymptotic conditions at spatial infinity, 3,9 

Then, one has available the 4-momentum Pa and the 
angular momentum Mab at ie• Let us now assume !hat 
the space-time admits a stationary Killing field la, 
i. e., a Killing field which gives rise to a Spi time 
-translation. What then is the relation between the 
Komar scalar and the 4-vector Pa at i°'? Is Pa necessar­
ily time like ? If so, is the "asymptotic rest frame" 
selected by the Killing field 1" the same as that selected 
by P" '? Consider, next, the notion of angular momentum. 
Does the presence of ia automatically imply the vanish­
ing of B',b required for Mab to be well defined? Does the 
spin vector Sa at i' "project down " to the Hansen dipole 
moment defined at the point at infinity of the manifold 
of orbits of fa? Let there exist, in place of to, an axial 
Killing field Ji.a, Does it then also follow that Bub = ° at 
j' ') If so, what is the relation between the Komar scalar 
involving kG and the spin vector Sa at i V ? The purpose 
of this paper is to answer these and related questions. 

The plan of the paper is the following. Section II is 
devoted to preliminaries. Various facts about the 
conformal completion involving the point i e

• at spatial 
infinity are recalled and the asymptotic properties of 
Killing fields available on space-times admitting this 
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completion are discussed, In Sec. III, asymptotically 
flat space-times admitting translational Killing fields 
are considered. It is shown that if the 4-momentum Pa 

is nonzero, such a field can not be spacelike at infinity. 
Under the assumption that it is timelike, Pais shown 
to be proportional to Ka, the vector at iO which corres­
ponds to the Spi translation induced by the Killing field. 
Finally, the proportionality factor is shown to be pre­
cisely the Komar scalar constructed from the Killing 
field, In Sec, IV, we examine angular momentum, 
Given the stationary Killing field, Bab is shown to vanish 
and an expression is given for the spin vector Sa in 
terms of the asymptotic value of the twist of the Killing 
field, This expression is the natural "lift" to i" of the 
Hansen dipole moment, defined at the point at infinity 
of the manifold of orbits of the Killing field. Finally, 
nontranslational Killing fields are considered, Under 
the assumption that the 4-momentum Pa is time like, it 
follows that the action of the Killing field on the tangent 
space at iO must be a spatial rotation in the 3-plane or­
thogonal to Pa. It is shown that Bab must gain vanish and 
that the resulting spin vector Sa must point along the 
"axis vector" at iO defined by this rotation, its norm 
being equal to the Komar integral constructed from the 
Killing field. 

II. PRELIMINARIES 

Defillitiol1 1: A space-time (M, i ab ) will be said to be 
asymptotically empty and flat at spatial infinity provided 
there exists a space-time (M, gab) which is smooth 
everywhere except at a point 1" where M is (;" and g"" 
is (;>0, together with an imbedding of M in to M (with 
which we shall identify M and its image in M) satisfying 
the following conditions: 

(i) J(n=M -M; 

(ii) There exists a function 11 on M which is (;~ at {' , 
smooth elsewhere, such that on M, gab =c \12 .Q·a" and, at 
ie, \1=0, ~,,\1=0, and ~n'i.\\1=2';:ab; 

(iii) There exists a neighborhood N of i' in M such 
that in M (', N, ;;.," satisfies the vacuum Einstein 
equation. 

Here, J(i") denotes the topological closure in M of the 
set of points which are causally related to i O and the no­
tion of (;>k differentiability is the same as in Refs. 3 and 
9. (Thus, for example, the condition that g"b be C A' at 
[" ensures that it is smooth in its "angular dependence" 
and its connection, i. e , the Christoffel symbols, have 
only finite "radial" discontinuities. For details, see 
Ref. 9,) This notion of asymptotic flatness is weaker 
than the one used in Ref. 3; we have omitted the condi­
tions at null infinity since they play no role in the pres­
ent analysis. Throughout this paper, we shall assume 
that the phYSical space-times under consideration 
satisfy these three conditions. 

Given such a space-time, it is easy to show'," that 
the Hiemann tensor H"bCd of the rescaled metric gab is 
such that \1 1 UU";Cd admits a direction-dependent limit at 
i", Set C"I>CCI(lj)oc-olim_ iL I1 1

/"C"bCd' E,,/l/)~~C.'bcdTtl7" and, 
B',e(1/) , .. *C""Cd1J "lJ d

, where 1)" denotes the unit vector 
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tangent to the curve of approach to iO. The fields Eab 
and Bab are smooth, second rank, symmetric, tracefree 
tensor fields on f), they carry information about the 
"1/r 3 part" of the physical Weyl curvature, The Bianchi 
identity on C.

bCd 
yields the asymptotic field equations, 

D[aEblc=O and DraBbJc=O onf), (The Ricci part of Robed 
only provides certain potentials for Eab and B ab • ) We 
shall refer to these asymptotic fields and equations 
repeatedly in the next two sections. 

Next, we wish to discuss symmetries. Fix a space­
time eM, irah) satisfying Definition 10 Then, the group of 
asymptotic symmetries at spatial infinity is the Spi 
group. 3,9 Given a completion (M, gab) of (M, gab)' every 
infinitesimal Spi symmetry is characterized by a pair 
(F ab , Ka (l/)), where Fab is a fixed skew tensor at iO and 
Ka(l}) a direction-dependent vector at iO satisfying Ka(1}) 
= lim ~ aX, where X is a C>o scalar field. 10 Infinitesimal 
Spi symmetries with F ab = ° are the supertranslations; 
their action leaves not only iO but also the tangent space 
at iO invarianL If, in addition, Ka(T}) happens to be 
direction il/dependellt, the corresponding Spi symmetry 
is a translation_ 

Fix a Killing field ~a on (M, Rab)' ~a will be said to be 
a I rails! ali 0lla1 Killing field if the diffeomorphism it 
generates induces ll a Spi translation at spatial infinity. 
(It is straightforward to verify that if the induced action 
of ~a is a Spi supertranslation, then it is necessarily a 
Spi translation. ) [a will be said to be a rotational Killing 
field if the induced ll Spi symmetry is a spatial rotation, 
In this paper, we shall be concerned only with these two 
types of Killing fields, In either case, the pair 
(Fab' Ka(r})) at iO arises in the following way. Since ~a is 
a Killing field on (M, '~~b)' it is a conformal Killing field 
on (M, gabL Hence, ~a (~~a) is completely characterized 
by the quadrupl~t (~a, Fab="1ra~bl' <I>=t"1a~a, Ka=V'a<p) 
at any point of M, where indices are raised and lowered 
using gab' 12 Then, Fab = lim. jO Fab and Ka = lim.;c Ka 
characterize the Spi symmetry which arises from ~a. 

(The other two pieces of the conformal Killing data, ~a 

and <P, vanish in the limit refle cting the fact that the 
isometry generated by ~a leaves both iO and the metric 
gab at iO invariant. 10,'2) 

Consider the case when the space-time admits a 
translational Killing field la, Then, lim. jO ia = 0, 
lim. ioFab = ° and lim. jO<P = 0. USing the fact that the 
metric gab is C >0 at iO, a repeated application of the 
l'Hospital rule yields the following information: (i) 
lim. ie rr'i" = - iKa + (K .1})1}a; (ii) the norm ~ =gab [aft' of 
ia is C>o at iO

, with lim. iO V'a~ = f1Ja where f is a smooth 
function on f), and, (iii) lim. ien 1 /2Wa = 0, where, wa 
=[abedtb-$eid is the twist of the Killing field fa. Next, 
using the fact that in the vacuum region, wa admits a 
scalar potential, wa = -$"w, 13 it follows that lim. iOn-l/2wa 
exists as a regular, direction dependent vector at to. 

Next, consider the case when the space-time admits 
a rotational Killing field !i a , Then, lim.jo!ia=O, 
lim. jO <P = 0, and lim. joFab is direction independent. 
The differentiability of gab at iO yields, as before, the 
following asymptotic properties of fia: (i) lim.jewI/2fiu 
= Fab1Jb; (ii) J;, = gaJ?a/i.b is such that j.L = lim. ionJ1 is a 
regular direction-dependent scalar, and (iii) 51&a admits 
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a regular direction-dependent limit at iO
, where aa 

=[abe/<'b-$eR,d is the twist of fia. Finally, Einstein's 
equation implies a stronger condition on au: aa 
= lim. iO 511 / 2 aa exists as a regular direction dependent 
vector at iO with the property that CTa1Ja = 0. 

These asymptotic properties of Killing fields will play 
a crucial role in the next two sections. 

III. THE ENERGY-MOMENTUM 

Let (M, gab) be asymptoticallY empty and flat at 
spatial infinity, Let it admit a translational Killing 
field fa. Then, we have 

Lemma 1,1; On the hyperboloid f) of unit sp~celike 
vectors at ie, the tensor field E.b must satisfy KmDmEab 
=3 (K.1/) Eab Where, hab is the natural metric on 0, 
Da the derivative operator on (f), hab)' K" 
;:::: lim~~io~ Vn2 mfm is the vector at iO defined by the transla­
tion ta and Ka = habKb• 

Proof: E.b: = lim~io511/2Camb"1Jm'l7q 

= lim _cn'3 / 2c V m '1 1 / 2 V"\11/2 .... , amnn" , 

since 7J. = lim. j oV'·511/2. Using the fact that fa is a 
Killing field on (M, gab) it follows that 

L t l \1-3/ 2Cambn(vm51'/2)(V'nn'/2) J 

=_"- 4>51'3/2C (<2m51I/2)<2nnl/2 
2 ambn 

A A 

+ n-1Cambn("1(mq, )("1nl\11/2). 

The desired result in now obtained by taking the limit 
of this equation at iO if one uses the fact that n1!2cabcd 
admits a regular'O direction dependent limit at ie, that 
the presence of the Killing field fz on M implies Bab 
must vanish at i C (Theorem 3, proved in Sec. IV) and 
the asymptotic properties of f" listed in Sec, IL 

Lemma 1. 1 implies that the presence of the transla­
tional isometry constrains the asymptotic gravitational 
field Eab on fJ in a nont~ivial fashion, This constraint will 
be used to show that if ta is a space translation i. e. , 
if the vector Ka at iO is space like then Eab must vanish 
identically. This would in particular imply the 
vanishing of the 4-momentum Pa> Thus, as one might 
expect on intuitive grounds, physically interesting 
space-times can not admit space translations if they 
are asymptotically flat at spatial infinity. 

Lelll111 a 1.2: If e: = EabKaKb vanishes on f), so must 
E. b , where, as before, Ra is the projection of ~a into 
f), 

Proof: Using the field equation D[aEbJc=O and Lemma 
L 1, it follows that Doe = (K ·1J)EabKb

• Hence, if e 
vanishes on!), so does (K'1J)EabKb. Since (K°1)) vanishes 
only on ~ set of measure zero of j), and s~nce both 
Eab and Kb are smooth, it follows that EabKb=O, Hence, ° =Db(EamKm) = 2(K '1J) Eab , whence Eab = ° onf) ,j 

Remarks: (i) Using the field equation on Eab and 
Lemma L 1, it follows that e satisfies an hyperbolic 
equation on VJ, h.b ): DmDm e - e = 0. Hence, it follows 
that if e and its normal derivative to a 2-sphere cross 
section of!) vanish on that 2-sphere, e must vanish 
everywhere. 
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(ii) Without reference to any isometries, one can show 
that if Eab vanishes on a 2-sphere cross section, it 
must be zero everywhere on f). 

Theorem 1: If t~e asymptotic field Eab fails to vanish 
identically on f), t« can not be a spatial translation, 
i,e" the vector K" at i G can not be spacelike. 

Proof: Using Lemma 10 1, it follows that KmDme 
=(K'1) e onf), where, as before, e=E.bKaKb• Hence, 
along any integral curve of Ka , the field e is given by 
e = C(K' K - (K . 17)2r1f2 where C is a constant on the 
given integral curve, but can change from one curve to 
another. Let Ka be a spacelike vector at iO. Then, 
c/'ery integral curve of j(a enters an arbitrarily small 
neighborhood of some point at which K' K - (K '1)2 
vanishes. 14 Since e is smooth everywhere on /), it 
fOllows that the constant C must vanish for all integral 
curves, whence, e = ° on /), Lemma 1. 2 now asserts 
that Eab must also vanish identically on f), -1 

Relll(11'ks: (i) As one expects to be the case, the 
argument is inapplicable when Ka is time like: in this 
case, K· K - (K 0 1))2 can vanish nowhere, since it is 
bounded above by K' K, What is the situation when 
Ka is null? Now, there do exist points where 
K" K - (K '1))2 = - (K' 1)2 vanishes, However,}t is no 
longer true that, given an integral curve of K", one can 
find a point on f) at which - (K '1)2 vanishes and whose 
arbitrarily small neighborhoods are reached by the 
integral curve, Hence, it appears that one cannot rule 
out the possibility that space-times under consideration 
admit a null translation; additional asymptotic conditions 
at lZull infinity may be necessary for this purpose. 

(ii) Note that the theorem implies, in particular, that 
space-times which are asymptotically empty and flat at 
spatial infinity cannot admit two translational Killing 
fields in this case, one can always obtain a space 
translation by taking suitable linear combinations of 
these Killing fields, This result is of relevance, e, g. , 
to the issue of uniqueness of the vacuum state in 
stationary space-times: If such a space-time satisfies 
the present asymptotic conditions, there is available a 
canonical vacuum state for linear quantum fields on this 
space-time, 

From now on, we shall assume that the available 
translational Killing field is timeZike; although the 
analysis involving null translations is straightforward, 
this case has little physical interest, The next step is 
the investigation of the relation between this Killing 
field and the ADM 4-momentum Pa , We begin by showing 
that the asymptotic rest frame defined by the Killing 
field is the same as that defined by Pa: 

Lemma 2.1: The 4-momentum Pa at iO is proportional 
to the vector Ka defined by the Killing field Fa 0 

Proof: Fix any vector va at iO satisfying Y , K = 0, 
We wish to show that P . Y = 0, By definition of Pa, one 
has 2Paya = fs2E abVa dS b where va =h~yb is the projection 
of ya into the hyperboloid f), and where the integral is 
taken on any 2-sphere cross section off). 3,9 Choose for 
52 the 2-sphere cross section 5 defined by K'1) = 0, 
Then, from Lemma L 1, it follows that on 5, 
r:yg D p(EmJKm) = 0, whence, r:y~Dm(Ep.KPr~) = 0, where 
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rab c=hab + (-KmKmf1KaKb is the intrinsic metric on S. 
The last equation states that the vector field EabKay~, 
tangential to S, is covariantly constant thereon. Since 
(S, Yab) is of constant curvature, it now follows that 
EabKay~ = ° on 5, whence EabKayb = 0. Since K" is normal 
to S, one has 2Paya= fsEabV"dSb=O, I: 

Next, we wish to reexpress the norm of Pa, Leo, the 
total mass associated with the space-time, in terms of 
the asymptotic properties of the Killing field. The 
expression for mass involves the asymptotic value of 
the Weyl curvature of the physical space-time" 
Since vacuum equations hold in a neighborhood of iV, we 
have, in this neighborhood, 'fla'flJc=Ccbamlm• The Iwv 
idea is 10 use this relation to re-cxpress "mass aspc('t" 
ill lerms of lhe KillinK field Fa and to /Ise the (ls\'mptotic 
projJeyties 0/ tile norm (lild twist disCilsseri in Sec. II. 

I,emma 2.2: The 4-momentum Pa is given by 
Pa = III (- K . Kt1 f 2Ka with m = - ~ fs(1)P~p) dS, where 
Xp = lim_i°'fl p~, S is the 2-sphere defined by K . 1) =-c 0, 
and dS the natural volume element15 on S. (Here, the 
Killing vector fa has been so rescaled that X 
= lim~iO - kaJ"/" =·1, ) 

Proof: Set III = - P n ( - K . Kr' / 2Ko
• Then, 

JI7 =- Hs2EabKb(-K·Kt1f2d,cf'. Choosing for S2 the 
2-sphere S, one obtains 

III = - ,\ J' E tilt; dS - 's ah 

where 7)a = V' a n' /2 is a vector field whose limit at iO 
yields the unit tangent 1/a to the curve along which the 
limit is taken, and Cambn is the Weyl tensor of the 
rescaled metric gab' In terms of the phY!ii,cal metric 
g~b' one has 11/ = - Hslim_iolnlf2Cambn7)m17n(n_l[a fbldS. We 
now focus on the integrand. In the neighborhood of 
i C where g., satisfies the vacuum equation, one has 

A ~A " ~~ ~~ ~~ 

Cambnt"tb =Rambnt"l = t«V'n V'afm' Next, using the expression 
for vim in terms of the norm and the twist of fa, 
~~A ~ A A lA fl>A • 
AV'atm=t[m'{aJ>t +zCmap.t w·, and the asymptotlc pro-
perties of A and w·, \ is C>o at iO and lim_iow. vanishes 
at iO, one obtains m=-Hs1/P~pdS. L. 

Finally, we wish to relate the proportionality factor 
m between Pa and (-K'Kf1!2Ka to the value of the, 
Komar integral involving the timelike Killing field 1". 
The integral itself is defined over a 2-sphere ,52 in the 
vacuum region surrounding sources, the value of the 
integral being independent of the choice of the 2-sphere. 
Since the factor m has been expressed above in terms 
of the asymptotic properties of the Killing field, we 
shall evaluate the Komar integral also on a "2-sphere 
at infinity 0 " 

Lemma 2,3: The value of the Komar integral, 1,15 
m~ =HSZ{abCd val" a§Cd equals In, the magnitude of the 
4-momentum vector Pao 

Proof: Fix any three-dimensional submanifold T in 
M (C>1 at iO and C~ elsewhere) which is orthogonal to 
K a at iO

, Consider a sequence of 2 -spheres 52 in T 
which converges to the point iO

• Then, 
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= js· 2litt1[{abCd(n-ltd)V'C~ - 2(Q-1[a)~bJdSab . , 
where, S is, as before, the 2-sphere cross section of 
j) defined by K'1)=O, and where {abcd and V' are, 
respectively the alternating tensor and the derivative 
operator compatible with Kab' Here, we have used the 
expression for ~;tb in terms of the norm and the twist 
of 7a and the fact that the volume element on S can be 
obtained by rescaling the volume elements (induced by 
gab) on the sequence of 2-spheres by 11:1 and then taking 
the limit. Finally, using the fact that A is C>o at iO, 
lim. i ,Il- I [a exists and lim. iowa vanishes, one obtains 
Jllk=-~JsT6'adS, l 

Collecting the results of Lemmas 2.1, 2,2, and 2.3, 
we now have. 

Theorem 2: The 4-momentum Pa is given by Pa 

= 1I1 k(- K Kr1 
/2 Ka , where, Ink is the value of the Komar 

integral and where Ka is the (timelike) vector at iO de­
fined by the time translation [a on (M, gab)' 

Remarks: (i) Note that the results obtained above de­
pend quite crucially on the "fall-off" properties of the 
norm and the twist of the time like Killing field. The 
fact that these properties can be deduced directly from 
basic definitions at iO therefore lends independent sup­
port in favor of the asymptotic conditions introduced 
in Definition L In particular, although results relating 
the ADM 4-momentum with the Komar integral have 
been announced before, 16 to our knowledge, their deri­
vation has always involved an imposition of asymptotic 
conditions on the norm and the twist of the Killing field 
by hand, Also, since a precise formulation of the notion 
of the "asymptotic rest frame selected by the Killing 
field" was not available in absence of ie, these results 
were somewhat heuristic. 

(ii) Using Lemma 10 1, one can easily show that in 
presence of a time translation, the "mass aspect" 
Eab KaKb is sPherically symmet1'ic on the 2-sphere S de­
fined by K, 71 = 0 (but not on any other 2-sphere! L Us­
ing Lemma 1. 2 it then also follows that, if the mass 
happens to vanish, so must Eab itselL We shall see in 
the next section that the presence of a time translation 
itself implies that Bab must vanish on D, Thus, at least 
in the stationary case, the "1/y3 part" of the Weyl 
tensor in the physical space-time contains "only the 
mass information, " 

IV. ANGULAR MOMENTUM 

This section is divided in to two parts, In the first, 
we assume that the given space-time admits a time 
translation isometry and examine the relation between 
the asymptotic properties of the twist of the transla­
tional Killing field and the spin vector Sa defined at iO 
in terms of the asymptotic behavior of the Weyl curva­
ture. In the second, we assume that the space-time 
admits a rotational Killing field and discuss the relation 
between the corresponding Komar integral and the spin 
vector Sa' 
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A. Stationary space-times 

Let (M, gab) be asymptotically empty and f~at at 
spatial infinity and admit a time translation t" as in 
Sec. IlL Then, we have 

Theorem 3. The field Bab on 0 must vanish identically . 

Proof: Using the fact3
,9 that Bab admits a scalar poten­

tial B, with Bab = DaDbB + Bhab , one can show that Bab 
vanishes on j) if and only if BabKaKb '= lim_ i 04Ql/2 *C ambn 
X iafrrryn = 0 where 1)a = V'alll/2. [Recall that lim.iota 
= - ~Ka + (K '1)1)a' ] Using the fact that in the neighbor­
hood of io where the vacuum equation holds, one has 
flaflbl,,=Ccbamtm, it follows that BabKai(b =4lim.io[Q 1)"1Jb}. 
Proj. [(2A)-1 gabWmV' mA - V' bWa)], where Proj. stands for 
the operation of projecting the indices of theA tensor 
field that follows in the 3-flat orthogonal to ta , and 
where X and wa denote, as before, the norm and the 
twist of fa. Finally, using the asymptotic properties of 
X and wa, one obtains Babi(aKb = O. L 

Thus, the presence of the Killing field fa ensures that 
the "1/r3 contribution to the asymptotic curvature is 
purely electric, " As noted in the Introduction vanishing 
of Bab enables one to select a canonical Poincare sub­
group of the Spi group. 3,9 (This situation is rather 
analogous to that at null infinity: in stationary space­
times one can also select a preferred Poincarl! sub­
group of the BMS group. ) This selection of the Poincare 
subgroup is the crucial step in the introduction of an 
angular momentum at spatial infinity. Note, however, 
that vanishing of Bab is not quite sufficient for angular 
momentum to be well defined: it is necessary, in addi­
tion, that the "next order," (Le" "the l/r4

,,) contri­
bution to the magnetic part of the asymptotic curvature 
be well behaved. (At least in prinCiple, it may happen 
that the "magnetic part falls off as, say, (r3 10grr1.") 
Nonetheless, Theorem 3 does indicate that in a generiC 
case, stationarity together with the asymptotic condi­
tions introduced in Definition 1 will ensure that the 
total angular momentum is an unambiguous notion. In 
the rest of this subsection, we restrict ourselves to 
space-times for which this is the case, 

Our next task is to relate the spin vector Sa at ie, 
defined by Sa = [abcdMCdpb, to the asymptotic behavior of 
the twisto We have 

Theorem 4.~ The spin vector Sa satisfies15 Sa ya 

=m/2JS(7]aWa)(1jbyb)dS, where va is any vector at iO with 
y. P = 0, wa = lim~ioQ'1/2Wa and S is the 2-sphere cross 
section of [) defined by P 01) = 0, 

Proof: Set {3ab = lim~io *Cambn1jm1)n. Then, the tensorial 
angular momentum Mab is given by3,9 MabFab 

= i fs2 {Jab ta dS·, where Fab is an arbitrary skew tensor 
at iO, t = [abed F ed11b, and where the integral is taken on 
any 2-sphere cross section of [). Using the definition of 
Sa in terms of Mab, one obtains, after some simplifica­
tion' Sa ya = mfs (y, 1)) (lim~ joQCabci)1)bdScd, Next, using 
the expression for second derivative of fa in terms of 
the curvature tensor of gab' the expression simplifies 
to 

Saya = m/2js(Yo 1/) 

x lim (Ql cdmnim(1jb~ bC:;n») dS ed , 
~ 1° 
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Finally. usin~ the fact that ~-1/2W" admits a regular 
direction dependent limit w" at ie, one has 

Sa va = 1II/2J~ (V e 7)) {cdmn(- K e Kt1Km W" dS'Cd 

= 1II/2J~ (1)awa) (V . 1)) riSe r:= 

HCII/llrl.?: Hansen's2 dipole angular momentum moment, 
defined under the assumption that the 3-manifold of 
orbits of fa is asympotically flat at spatial infinity, 
also involves the asymptotic properties of the twist 
field wa' Although no theorem exists to the effect that 
the notion of asymptotic flatness used in the present 
analysis is equivalent to that used by Hansen, on 
intuitive grounds one does expect the equivalence to 
hold in an appropriate sense, One is therefore led to 
ask for the relation between the above expression for 
Sa in terms of wa and Hansen's expression for the 
dipole moment. We claim that there is a sense in which 
the two expressions are the same, Apart from an 
overall factor of 111/2, Hansen's dipole moment may be 
regarded as the projection to the (conformally 
completed) manifold of orbits of la of the spin vector 
S 17 

Q' 

B. Axisymmetric space-times 

In this subsection, we shall assume that the given 
space-time (M, &'0) is asymptotically empty and flat 
at spatial infinity and admits a rotational Killing field 
fta in the sense of Sec, II. (Note that we do /la/ assume 
the existence of a translational Killing field, ) We shall 
first show that the presence of fta again implies that 
Bab must vanish on 0 and then analyse the relation 
between the resulting spin vector Sa and the Komar 
integral involving lia. 

Lemma 5,1: If R a denotes the Killin~ field on (j), h.o) 
induced by the rotational Killing field R a, LRBao = ° on 
0, 

Proof: Set Bao = ~1/2*Camo" "Vm~1/2"Vn~1/2 on M so that 
Bao:= lim_ ioBao' Then, LRBao = J c!>B,b + 4~*Cambn 
x "V(mc!>"Vn)~1!2, where c!> =i"V ,jim, The desired result 
follows by taking the limit of this equation and noting 
that lim.ioBab , lim.io~1/2Cabcd' and lim.j0"Vmc!> yield 
regular direction dependent tensors at iO and lim.joc!> 
vanishes. [ 

Lemma 5,2: BabRaRb vanishes onD if and only if 
Bab itself vanishes, 

Proof~ Since Bab is symmetric and satisfies DraBbre = 0, 
it follows3 ,9,13 that it admits a scalar potential f such 
that Bab=D.Dbf+fh"b; f is unique up to addition of a 
fuction O! satIsfying D.DbO! + ahab = 0, Using this gauge 
freedom and Lemma 5,1, it is easy to check that one 
can always choose a potential f which satisfies LRf = 0, 
Assume that this choice has been made. Then, a direct 
computation yields BabRaRb =~. (Db ~ )(Dbf) + f~ and 
BabRb=[i(Db~)(Dbf) +f~lRa, where ~=RaRa on f). Hence 
if BaoRaRb = 0, we have BabRb = 0, Using this result and 
the field equation, DraBble=O, on f), it follows that 
BabDb~ = 0, Finally, since Bab is tracefree and Ra and 
Da~ are mutually orthogonal (and vanish only on a set 
of measure zero), it follows that Boo itself must vanish 
everywhere onD, 0 
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We are now ready to prove the main result: 

~ Thcorem 5: The presence of an axial Killing field 
HQ implies that Bao must vanish onD. 

Proof The main idea is to use the asymptotic 
properties of the norm Ii and the twist fj of R" to show 
that BabRaRb must vanish on 0, vanishin~ of Bob is then 
implied by Lemma 5.2. We have: BabRaRb = lim •. o~3/2' 
x *C 0 flaftb1Jm1)" = lim .o!V/ 2 ; pqfta1)m1iI"~ ~ R ~here 

am n .. t Cam n ~"q' , 

as before, 1)m = "V mn1 /2, and we have used the expression 
for the second derivative of the Killing field in terms 
C!.f the curvature tensor, Expressing the derivative of 
H a in terms of j'l and a, one obtains 

BabRaRb = lim.io~3 /21)m7]" 

XProj, ((2;it1iaoam~m~ - ~baa) 

where "Proj," stands for the operation of projecting 
all indices of the tensor field that follows orthogonal to 
Aa. Using the fact that lim.jo~;i and lim. jon1 /2& a exist 
as regular direction dependent tensors, it follows that 
BabRaRo=O onf)o '; 

RClllarks. (i) Let us suppose that the ADM 4-
momentum Pa is timelikeo Consider an isometry in the 
physical space-time which inriuces at spatial infinity 
a nontranslational Spi symmetry, Since the 4-momentum 
is necessarily invariant under the action of isometries, 
it follows that the given isometry must give rise to a 
spatial rotalioll at iO (belonging to the rotation group 
acting on the 3-plane orthogonal to Pa in the tangent 
space at iO), in this case, the space-time can not admit 
a "boostlike" Killing field, Thus, if P a is time like, and 
if the space-time admits am' nontranslational isometry, 
Bab must vanish on Do 

(ii) The implications of Theorem 5 are the same as 
those of Theorem 3, the presence of the Killing field 
guarantees the "fall-off" property of the "magnetic part 
of the asymptotic curvature required for the reduction 
of the Spi group to the Poincar~, thereby indicating that 
the (tensorial) angular momentum at iO will probably 
be well defined, We now restrict ourselves to space­
times for which this is the case and examine the relation 
between th!l spin vector Sa at iO and the Komar integral 
involving Ra, 

For Simplicity, we shall now assume, in the main 
part of the discussion, that Pa is timelike and only 
comment at the end on other possibilities, Consider 
the timelike 2-plane in the tangent space at iO which is 
left invariant by the action of Ra

, Leo, which represents 
the axis of Ra (This 2 -plane is spanned by vectors va 
such that F ab V O = 0, where, as in Sec, II, 
F ab =:: lim.io "VaRb' ) Let Aa denote the unit vector in this 
2-plane which is orthogonal to P ao Then, we have. 

Lem ma 60 1: The spin vector Sa is proportional to Aa. 

Proof: The spin vector Sa must be left invariant by the 
action of Ra in the tangent space at iO and is, by defini­
tion, orthogonal to Pa' Hence the resulL ~ 

Thus, what remains is only the computation of the 
norm of the spin vector, We shall first express this 
norm in terms of the asymptotic values of the norm and 
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the twist of fia and then compare the resulting expres­
sion with the Komar integral involving fla 0 

Lelllma 6.2: Sa is given by Sa =jAa where 15 

j = - 4fs Jl. -lRaab dSab , where 5 is the 2-sphere cross 
section of f) defined by P '1'/ = 0, (Here, R a is assumed to 
to be rescaled such that lim_jo'VaRb=r.abCdPcAd.) 

Proof: SaAa = CabcdMcdpbA" =.~ JS2I3a,,~adEt by definition3
•
9 

of M ab , where, ~a =praA b )1]b onf) and 52 is any 2-sphere 
cross section of f), Using the definition of {3ah it then 
follows that Salf =fs - 2 (Jl.r1 Db Jl.lim_ i o(Q3f 2 *C.bcd ka) dS cd, 

where ~ = R . R on D. Next, using the fact that if Rab = 0, 
"~ , ~ ,~ I 

'V.'VbRc=Ccb.mRm; that J£=lim_i0nR oR and (J.=lim_ioQl 2a. 
are well defined, and that a. '1]a = 0, one obtains after 
conside rable simplifications, 

Finally, integrating the second term by parts and using 
the fact that since /J. = R 'R on D, D·D./J. = IL -IDa !J.D./J. 
- 4!J., one obtains the desired resulL :-j 

Using these results, one can now prove 

Theorem 6: The spin vector Sa is given by Sa =j.A., 
1:!:'here jk is the l'aille of the KomaY integral inuolring 
Ra

o 

Proof: In the terminology of Lemma 6,2, we only 
have to show thatj=jko Consider, as in Lemma 203, 
a spacelike three-dimensional sub manifold of M, passing 
through ie, and a family of 2-spheres 52 on this 
submanifold, converging to the point ie, Then 

j. = Jii:abcdvaRb dS cd 

= JS2{abcd(R
b 'V" (i + 1l.bJ"'aM)(i-l dS cd 

Where, 52 is any 2-sphere in the sequence, Using the 
asymptotic properties of fia, ii, and oa' and the fact 
that on f), R a is tangential to S, it follows that 
j,,= -4fs~-lRa(JbdSab, Hence the result, C! 

Remark: If Pa is space like, Theorem 6 continues to 
hold although the axis vector A" would now be timelike 
rather than spacelike 0 If Pa is null, on the other hand, 
some modifications are required. In this case, Sa is 
proportional to Pa' Sa =jPa where the "helicity" j is 
related to the Komar integral as follows. if Iia is 
rescaled such that Fab (= lim_jo'VaR b) =CabcdPcAd for any 
vector Ad satisfying P . A = 1, then j equals jk' the 
Komar integraL 

v. DISCUSSION 

The analysis presented in the previous two sections 
depends quite crucially on the assumption that the 
physical space-time satisfies Einstein's vacuum equa­
tion in a neighborhood of spatial infinity: It is only be­
cause Rab = ° near iO that we could recast the expressions 
for energy- momentum and angular momentum involv­
ing the asymptotic Weyl curvature into expressions 
involving the norms and twists of the available Killing 
fields, Note that each of the definitions considered has 
a direct but independent physical motivation. Thus, for 
example, the definition of mass of a stationary space­
time in terms of the asymptotic behavior of the norm 
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of the Killing field can be motivated using the fact that 
the square root of the norm plays the role of the 
Newtonian potential in the slow motion approximation, 
while the definition in terms of the electric part of the 
asymptotic Weyl curvature seems natural in the light 
of the geodesic deviation, 10 which of course has a 
purely geometric origin. Thus, each definition 
emphasises a particular aspect of one's intuitive 
understanding of the corresponding conserved quantity: 
each has an apparently distinct origin. The fact that 
these different notions actually agree in detail is a 
reflection of the richness of Einstein's equation, 

Throughout this paper, we have focused on asymptotic 
flatness at spatial infinity. There are also available5,19 

definitions of energy- momentum and angular momen­
tum in terms of asymptotic fields at null infinity. 
How do these compare with those at spatial infinity? 
Consider, first, space-times which are sta/iollaYy and 
asymptotically flat at both null and spatial infinity, 9 

Then, the situation is the following, The Bondi-Sachs 
4-momentum, defined at null infinity, is parallel to the 
BMS translation induced by the stationary Killing field. 
(Recall that the Bondi-Sachs 4-momentum is a linear 
mapping from the space of BMS translations in to reals. 
In stationary space-times, every BMS translation, 
"orthogonal" to the timelike BMS translation induced 
by the Killing field, is mapped to zero by the 4-
momentum. ) Now, one can show quite generally, i. eo, 
even in nonstationary contexts, that there is a natural 
isomorphism between the BMS translations and the Spi 
translations, In stationary space-times, the 
isomorphism sends the BMS translation induced by the 
Killing field to the induced Spi translation. 20 It therefore 
follows, from Lemma 2.1, that the two 4-momenta are 
colinear, Finally, their equality follows from the fact 
that the norm of each equals the Komar integral. Next, 
consider angular momentum, Again, using the 
isomorphism between BMS and Spi translations, one can 
show2o that the spin vector defined at spatial infinity 
equals the one defined at null infinity. In non stationary 
contexts, on the other hand, the situation is much more 
complicated, First, a notion of angular momentum which 
is free of "supertranslation ambiguities" is simply not 
available at null infinity, 21 Hence, it seems difficult to 
imagine a simple relation between, say, the spin vector 
Sa at iO and angular momentumlike quantities at null 
infinity. In the case of energy-momentum, the situation 
is somewhat better; one expects that, if the radiation 
"falls off" at a suitable rate as one approaches iO along, 
say, future null infinity, the past limit of the Bondi­
Sachs 4-momentum should equal the ADM 4-momentum, 
However, one still does not know the precise "falloff" 
of the radiation field needed for this purpose. 

Note added in PYGGf: 

1. Note that, unlike in the analyses involving pseudo­
tensors [see, e. g., R. Beig, Phys. Lett. A 69, 
153 (1978)], we do not restrict ourselves to space­
times which are topologically R4. If the topology is 
nontrivial, a given Killing field can give rise to several 
distinct Komar scalars, In this event, the results in 
the paper (Theorems 2 and 6) refer to the Komar 
integrals evaluated on 2-spheres which, in the 
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completed space-time, can be continuously shrunk to 
·0 
1 

2. The issue of the relation between the ADM and the 
Bondi-Sachs 4-momenta, mentioned in Sec. V, has 
been recently resolved (A. Ashtekar and A. Magnon­
Ashtekar; Preprint). 

ACKNOWLEDGMENTS 

We wish to thank Bernd Schmidt and Pong-Soo Jang 
for discussions. One of us (A. M. A. ) thanks the Chicago 
Relativity Group for hospitality. 

lA. Komar, Phys. Rev. 113, 934 (1959). 
2H.O. Hansen, J. Math. Phys. 15, 46 (1974). 
3A. Ashtekar and R. O. Hansen, J. Math. Phys. 19, 1542 
(1978). 

.1The 4-momentum was first introduced by Arnowitt, Deser, 
and Misner in terms of the asymptotic behavior of the initial 
data on a Cauchy surface. See, e. g., C. W. Misner, the 
article in Gravitation, An Introduction to Current Research, 
edited by L. Witten (Wiley, New York, 1962). 

'H. Bondi, A. W. K. Metzner, and M. J. G. Van del' Berg, 
Proc. R. Soc. (London), Ser. A 269, 21 (1962). 

GThese conserved quantities arise only after Einstein's vacuum 
equation is imposed asymptotically, i. e., only after the 
stress-energy tensor Tab (with this index structure) is re­
quired to admit a regular direction dependent limit at iO. 
7This situation is to be contrasted with the one in the electro­
magnetic case: Imposition of Maxwell's sourcefree equations 
in the asymptotic region does not restrict the total magnetic 
charge in any way. 

8Note that unlike the definitions of angular momentum at nu\1 
infinity, the definition at spatial infinity is free of supertransla­
tion ambiguities. 

9 A. Ashtekar, Asymptotic structure of the gravitational field 
at spatial infinity (to appear in the Einstein birth-centenary 
volume. edited by P. Bergmann, J. N. Goldberg, and 
A. Held. Plenum). 

800 J. Math. Phys., Vol. 20, No.5, May 1979 

IOFor details, See Ref. 9. 
l1WC do not yet have a proof that every Killing field on a space­

time satisfying Definition 1 must induce a Spi symmetry at 
spatial infinity. Although one certainly expects the resu It to 
be true, the proof may well be quite complicated because of 
the conformal singularity at in; one cannot, e. g., usc the con­
formal Killing transport equations in a straightforward way. 

12For details, see, e. g., A. Ashtekar and A. Magnon­
Ashtekar, J. Math. Phys. 19, 1567 (1978). 

13See, e. g., A. Lichnerowicz, Theories Relativistes de Za 
Gravitation et de l'electromagnetisme (Masson, Paris, 1955), 
or, R. Geroch. J. Math. Phys. 12, 918 (1971), Appendix. 

t4Choose an orthonormal basis at iO such that Ka points along 
the z axis. Consider, e. g., the cross section of D defined by 
to 11 = 0 where t a is the time like vector in the basis. On this 
2-sphere, Ka=- sinll(%O) and e =f(¢) (sinll)-l. Since e is 
smooth, it follows that f(¢)=O, whence e=O. 

150ur convention is such that Is dS= 1. 
1GSee, e. g., R. Geroch in Asymptotic Structure uf Space-time, 

edited by P. Esposito and L. Witten (Plenum, New York, 
1977), p. 96. 

17Iiansen's dipole moment Sa is defined by Sa = ~lim_ A grad. 
(Q-l/ 2 ~w), where A is the point at infinity on the three­
manifold of orbits of ta, ?i the conformal factor on this three­
manifold, w the" twist potential" (w. = gradw) and grad. 
stands for" gradient." A simple calculation yields, 

where S2 is the 2-sphere of unit vectors 1) at A, Wa is the 
limiting value of !r1/ 2cua and va is an arbitrary fixed vcctor 
at A. 

18P. D. Sommers, J. Math. Phys. 19, 549 (1978). 
1sR. K. Sachs, Proc. R. Soc. (London) Ser. A 270, 10:~ (1962); 

Phys. Rev. 128, 2851 (1962); J. \Vinicour, J. Math. Phys. 9, 
861 (1968); B. D. Bramson, Proc. R. Soc. (London) Ser. A 
341, 46:l )1975); M. Streubel, J. Gen. ReI. Grav. 9, 551 
(1978). 

2oA. Ashtekar and M. Streubel, "On angular momentum of 
stationary gravitating systems" (to appear in J. Math. 
Phys. ) 

21At spatial infinity, the presence of a rotational Killing field 
in the physical space-time implies that Bab must vanish on 
D and thus reduces the Spi group to the Poincare. Is therc 
any hope of a similar reduction at null infinity? 

A. Ashtekar and A. Magnon-Ashtekar 800 



                                                                                                                                    

Thermodynamical properties of a class of solvable statistical 
models for hadronic matter 

David E. Millera) 

Department of Theoretical Physics. b) University of Bielefeld. Germany 

The exact evaluation for the thermodynamical properties of relativistic quantum gas models for excited 
hadronic matter using a statistical picture is carried out from the analysis of the grand partition function 
for a general class of excitation spectra. Some special forms of these energy spectra for hadronic matter 
are discussed for the physical content and the relationship to the known classical limiting cases. 

I. INTRODUCTION 

The basic development of the thermodynamical models 
in high-energy relativistic hadronic systems is briefly dis­
cussed in the context of the presented solutions. 

A. Relativistic gas 

The kinetic theory of the monoatomic ideal gas using 
the special theory of relativity was first investigated rather 
early in this century. In the classical work by Jiittner' it was 
found that an ideal gas within a large volume V in the rest 
system at an absolute temperature T (in atomic units 
fl = e = kh = 1) containing N particles, each of which pos­
sess the rest mass m, the momentum p, and the relativistic 
energy (p' + m')ll2, yielded, after an integration over phase 
space, a partition function proportional to the modified Bes­
sel function' KlmIT). Some years later the relativistic gas 
was reconsidered for the effects of quantum statistics, J 

whereupon it was found that this known solution was re­
placed by the series of such functions with the relativistic 
fugacity A in the form 

f k -'K,(kmlT)A 1-. 

k~1 

In the years following, considerable further analyses and ap­
plications were done for these ideal relativistic gases· which 
provide a rather finished description for these rarified inac­
tive systems. 

B. Statistical hadronic models 

Another side of relativistic statistical mechanics devel­
oped out of the statistical modeJS for high-energy in terac­
tions in the center-of-mass system. Especially important in 
the kinematical structure of the statistical bootstrap model6 

is the solution for the ideal quantum relativistic gases with 
the specified mass spectrump(m). Motivated by thermodyn­
amical considerations, Touschek' made a careful analysis of 
relativistic phase space for the development of a truly covar­
iant statistical mechanics. In further analyses' it was found 
that the difference between the invariant phase space and the 
ordinary separately invariant momentum space generally 
employed for particle physics is significant for the correct 
thermodynamical functions. The most immediately obvious 
contradiction in the use of invariant momentum space for 
the thermodynamics is that it yields for massless particles 

a'Heinrich-Hertz Fellow 1977-78. 
h'Now also a the Center for Interdisciplinary Research at the University of 

Bielefeld. 

the wrong temperature dependence for the photon gas. 

Since we are considering a variable number of particles 
in a given spatial volume V, we shall use structurally the 
previously developed approach8 for the grand partition func­
tion as the beginning point, especially including the usual 
assumption' for the "physical" partition function.' This ba­
sic quantity may be found from rewriting the sum over the 
discrete momentum states p" as an integral over the phase 
space measure da(p,m) so that 

Lexpl -(3p"j- fexPI -(3pjda(p,m). (1.1) 
(l 

This process of summing over these discrete four-momen-
tum states Pa with an inverse temperature four-vector (3 
means(3,,p'~, which is rewritten as (3p,,-(3p in the continuous 
case. For the time being, we shall assume that this sum may 
always be replaced by an integral-this excludes such con­
siderations as Bose condensation. 

In a more thorough investigation in the high-energy 
limit the phase space measure da(p,m) is usually separated 
into a mass spectrum p(m )dm and a part dependent upon the 
phase space variables-the four-dimensional volume and 
momentum, which may be written together as dfl (x fL,p II). 
After a little analysis using the properties of the rest frame' 
where only the time component of (311 comes in, we rewrite 
the integral in (1.1) as 

fp(m)dm fdflexp! -(3E(fl)]. 

The properties of the mass spectrum p(m) is well known 
from the asymptotic properties of the statistical bootstrap 
modeV·lo where it has the asymptotic form 

p(m) = em uexpl bm]. (1.2) 

Furthermore, it is known that within this model the predic­
tion of a highest or "ultimate" temperature· relating with the 
inverse of b can be proven lO for a = - 3. This result is as­
sumed in the high-energy limit where E (fl) asymptotically 
approaches m. It is possible to make further simplifications 
on the evaluation of the phase space integrals for the case of 
noninteracting point particles in a large volume V, where­
upon the four-dimensional volume reduces' to the usual 
three-dimensional volume Vd 3p, and for E (fl) the energy 
spectum H (w) to a simple form dependent upon w, the single 
particle energies (p' + m2)112. We now describe the single 
particle energy spectrum H (w) as the collective state of 
quasiparticles of the excited hadronic matter through a sta­
tistical picture in the rest frame of the total system. 

801 J. Math. Phys. 20(5). May 1979 0022-2488/79/050801-09$01.00 © 1979 American Institute of Physics 801 



                                                                                                                                    

C. Generalized energy spectrum 

The generalized energy spectra provide the structure 
for the total energy of the excitations of hadronic matter. 
The basic assumption for this quantum many-particle model 
is that the density matrix elements may be diagonalized in 
such a way that the form of the energy spectrum can be 
written as a expansion in all the integer powers of the single­
particle energies. This situation allows us, for the general 
complex energy variablez within some region of the complex 
plane containing the positive real axis, to make a Laurent 
expansion for the energy spectrum in the explicit form 

H(z) = ! a,l'" (1.3) 
fl---

With this assumed energy spectrum we are able to inspect 
the structure of the complex integral using a given measure 
dfl (z), 

J dfl (z)exp! - f3H (z) l. 

for its analytical properties. This study must be carried 
through under the necessary physical conditions which are 
imposed by the related real valued integral. This case, which 
corresponds to the expansion in Hermitian operators, will be 
our main interest here. 

First we would like to see what may be simply under­
stood from the structure of (1.3) out of the evaluation of the 
grand partition function which is formally defined for identi­
cal noninteracting particles i as 

E(V,f3) = n(1 + yexp! -f3H(z,)jY, (1.4) 

where y is a factor which distinguishes between the various 
statistics (y = + 1, Fermi; y = - 1, Bose). At this point it 
is necessary to restrict the problem to include known special 
solutions. 

The special cases of this general formal structure, II 
which have been previously investigated, give some specific 
predictions for a range of real values of particular coeffi­
cients a". For the sake of completeness we shall briefly state 
some of the necessary properties for real values of the coeffi­
cients. It is to be remarked that we find the usual grand 
partition function l2 for the ideal relativistic gas3 when all of 
the all vanish except for a l = 1 and 0 0 = - (j1 + m), where 
f.1 is the real chemical potential as given by the Gibbs free 
energy per particle. It must be further stated here that a 
necessary requirement for the replacement of the summa­
tion over states by an integral as in (1.1) with the form of the 
mass spectrum in (1.2) requires that the energy spectrum for 
real values at high energies asymptotically approach the 
mass m. For this reason we redefine ll our series and varia­
bles, especially for real values in the form! an i~! C" I for 
z~my, so that 

H(y) = m ! c"Yn (1.5) 
11:--

has the proper relation to the decomposition of the phase 
space and mass integral. For the time being we shall consider 
only the explicit contribution of the energy spectrum to the 
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phase space integrals. Under the assumption that CO, Ci7"=O it 
may readily be seen that for the real values of y the conver­
gence of the integral for E (V,f3) in the thermodynamic limit 
may be assured by CII >0 for n>2, with no restriction on C " 

for n> 1. Using the properties of the integral representation 
of (1.4) we find that in the thermodynamic limit 

lim~lnE(V,f3)=gmJ ! (-y)' 1 I
k
([3), (1.6) 

/' • '£ V 21T' k I k 

where g is a phase space factor for the internal quantum 
numbers and the phase space integral becomes 

I k ([3) = l'x dyy(y2 - 1)1"exp { - kf3m 
I n 

! .~ C,Jl'}, 

(1.7) 

We see in (1.6) and (1.7) a direct analogy with a cluster ex­
pansion I J in nonrelativistic statistical mechanics where 
k = I yields the simple ideal relativistic gas or single-particle 
term, and the following term k = N contains the clusters 
with N particles with the forefactor ( - y)k I which de­
pends on the type of statistics. 

D. Procedure 

Finally, we make a few remarks about how we shall 
develop and solve this problem as formulated in Eq. (1.6) 
and (1.7) for hadronic matter at high energies. The fact that 
we are primarily interested in real values of the expansion 
(1.3) is similar to working with real values of the spectra of 
the observables in quantum mechanics once one knows that 
the operators have been diagonalized. This similarity means 
that the really strong assumption is made when it is allowed 
a diagonal form in terms of an expansion of single-particle 
energies. We shall point out later the significance of some of 
the powers in this expansion. In the following section we 
shall carry out the evaluation oflnE ([3). Directly thereafter it 
will be shown how some aspects of these results may be un­
derstood. The conclusions report other related work in theo­
retical physics. 

II. EVALUATION FOR THE GENERALIZED 
ENERGY SPECTRUM 

The properties of the generalized energy spectrum stat­
ed in Sec. C of the Introduction are further elaborated upon 
in order to arrive at the general solution, which is comple­
mented by some remarks and special cases. 

A. Thermodynamics 

The general form of the thermodynamic potential ex­
pressed in Eq. (1.6) is similar to the cluster expansion for the 
classical interacting gas, for which ( - y)k - I I k ([3)/ k yields 
the structure of the cluster integral bk ([3)z k in the expansion 
withz, the classical fugacity. As it was mentioned above, the 
ideal relativistic quantum gases involve the replacement of 
Ik ([3) by the form 3 K,(km/T)/k. We now want to propose 
our extension to the expansion (1.6) under the conditions on 
(1.5) for the convergence ofthe integralIk ([3) in (1.7). At this 
point it is proper to propose the restrictions on the c" consis­
tent with thea" in (1.3). Thisproposalmeansthatc i = 1 and 
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Co = - (j1 + m)!m so that the term c,y always dominates 
over all the c. ,.y "terms. For the positive integers n > 1 we 
must in general demand that Cn >0, which always brings as a 
result faster convergence for Ik (fJ) from the dominant an­
harmonic terms. It may be possible to relax this inequality 
for some e" < ° under the restriction that there must exist 
somec,,' > ° for which n' > n. The general convergence prop­
erties of the complete "cluster" series (1.6) is a much more 
difficult problem, and will only be considered in certain re­
stricted cases. 

B. Evaluation of the grand potential 

We shall now state in a precise form the general results 
of the explicit calculation of the integral I" (fJ) given in Eq. 
(1.7) for the evaluation of the thermodynamical functions of 
(1.6). These somewhat more general results will be further 
qualified by a series of remarks and special cases in the fol­
lowing sections. 

Main statement: With the general energy spectrum giv­
en in (1,5), the evaluation of the thermodynamical functions 
from (1.6) through the calculation of (1. 7) under the above 
proposed assumptions on I Ci I may be stated in its most gen­
eral form as 

G (nj,km /3 )(km/3 ) It) (2.la) 

G (nj,km (3) = r (nj + 3,km(3) 

I !I !(km/3 )2'r (nj - 21 + 3,km (3), 
I 1 

(2.1 b) 

The coefficients bllA [cill depend directly upon the set [c i I 
of coefficients in (1.5) and the properly formed products 
thereof. The incomplete gamma function r(a,x) as well as 
the other notation with the double factorials are defined in 
Appendix A. The details for the explicit evaluation of this 
main statement are accordingly presented in Appendix B. 
With this result we shall proceed further by making some 
remarks aimed at deepening our appreciation of these find­
ings. It is, however, necessary for us to be particularly 
strongly warned about the dangers of the limit m/3-+0, 
which in the form of (2.1) is not obvious how to carry out, 
and must be considered separately for various special cases 
of the given spectra in (1.5). 

c. Remarks on Bessel functions 

This main result as expressed in Eq. (2.1) may be en­
lightened by a few remarks on some interrelationships be­
tween these series ofthe incomplete gamma functions r (a,x) 
with the exponential integrals En (x) and the modified Bessel 
functions K" (x) where a and v are real numbers, n a positive 
integer and x a positive real variable. It is generally possible 
to consider many of these results through analytic continu-
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ation under certain restrictions into the complex plane. Al­
though this process is consistent with our original expansion 
of H (z) in (1.3), we shall, for the time being, leave such 
considerations. 

Remark I: Special representations for Klx) and K,(x) 
in terms of the incomplete gamma functions are given as the 
following: 

Klx) = x- 2
[ r(3,x) - ,tl!l!x21r(3 - 21,X)], (2.2a) 

K,(X)=X-'[r(2,X)- ,I
1

!l!x2'r(2-21,X)]. (2.2b) 

These relationships will be important in identifying the 
terms in later work. 

Remark 2: K,,(x) is best represented through Ell (x) as 

Ko(x) = ! !1!E21 t 1 (x)x 2
'. , () 

(2.3) 

A general formula may be derived from the Schliifti integral 
representation' in the given form, 

Remark 3: For v> .-! we have 

v-; 
K (x) = [r(2v,x) 

I x''2'F(v + 1/2) 

(2.4) 

where the coefficient b,(v) must be determined. Equations 
(2.2) and (2.3) may be found as special cases of (2.4) through 
the use of the correct recurrence formulas. 

D. Interpretation of terms 

In this section we want to physically interpret the struc­
ture of the terms a,,z" appearing in Eq. (1.3). The interpreta­
tion for the terms ao and a,z in (1.3) is clear from our discus­
sion in Sec. I.e, where they represent the terms naturally 
appearing in the relativistic free gas and include no informa­
tion about the analytic structure of the hadronic collective 
excitation spectrum. We recall that ao can be directly rdated 
with the chemical potential fl, which disappears when there 
are no conserved particle numbers in the case of the photon 
gas of massless particles ao = 0. Because of the appearance of 
the inverse temperature /3 in the grand partition function 
(1.4), the logical choice for a, is 1. Our next consideration 
comes for the terms of the form a __ ,,(P' + m') - ,,/2 in (1.3). 
Such mometum space "'potentials" relate" directly with the 
Fourier transforms" of the Lennard-Jones type of poten­
tials. It is known, for example, that under certain limiting 
conditions these Fourier transforms in coordinate space are 
responsible for the long-range behavior necessary for the 
phase transitions of the van der Waals type. We shall consid­
er this point further in later work. The other terms with the 
positive powers an(p' + m,),,12 for n > I can be regarded as a 
sort of "anharmonic" corrections in the excitation spectrum. 
This interpretation is particularly meaningful for the case of 
small m where the a,z term relates directly with harmonic 
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oscillator so that the higher powers in (P' + m') ,,/2 contrib­
ute directly to the anharmonicity in momentum space. 

III. ANALYSES OF THE SOLUTIONS 

The general solution which was given in the main state­
ml:nl (2. I) of the preceeding part will be further analyzed 
here for some special cases of physical interest. 

A. Special forms 

In this first section we shall list some special cases of the 
coefficients e" in the expansion of the excitation spectra (1.5) 
under the general assumption that Co and c, are not both 
identically zero. It is generally possible for us to find the 
fitting expressions by using the proper relationships between 
r (a,x), E" (x) and K" (x) as remarked above. Furthermore, 
for simplicity we shall use A = exp! m13co I 
= expj-- 13 (J-l + m) i, C 1 = I and x = 13m. 

1. The case for the ideal relativistic quantum gas' is 
readily found by including only Co and C1 as 

I, (x) = A "KJ!5x
). 

, ' kx 
(3, I) 

The relationship to the main statement (2.1) is obvious from 
the remark (2.2a). This form (3. I) may then be replaced in 
(l ,6) in order to find the thermodynamical functions after 
making the appropriate choice of y for the statistics. 

2, For the case where we have the only additional coeffi­
cient C_I =, c', which is nonzero, we may explicitly write out 
the integral J~ (x) in (1.7) in the form 

J" (x) = £(K2(kX) -- e 'kxK,(kx) 
kx 

-+ I (- c 'kx)", + 2 kx{E,,(kX) 
" () (n + 2). 

(3.2) 

We can see directly here how the additional coupling c' af­
fects the cluster structure as it was elaborated upon in the 
preceeding part. This particular structure in (3,2) relates to a 
special limiting case, which we shall investigate afterwards. 

3. The Yukawa type of expression" is given by a nonze­
ro term of the form C- 2 = e" as the only additional coefficient 
(c_ 1 = 0). For this energy spectrum the evaluation of the inte­
gral yields 

1/. (x) = £[K,(kx) + ! (- c" kx)", ' 1 

kx ,,0 (11 + I). 

We notice a general similarity in form between (3.2) and 
(3.3). However, in (3.2) we have the additional K,(kx) term 
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as well as the odd En (kx). These terms turn out to be quite 
important to the physical structure. 

4, The so-called "anharmonic" terms with c,,::feO for 
some positive n can be in general written as 

A!. x (- kx)" u. . 

J,,(X)=-k I , I b";[!c,,ilK , ,;Ckx), 
x" () 11. /' 

(3.4) 

where b ,,;[ ! e"il depend on products and powers of the var­
ious coefficients of j (', i. The special case of (3.4) for i = 2 
may be readily worked out.,e 

From these special examples of the generalized energy 
spectra we are now in a position to see that any particular 
solutions relating to (2.la,b) can be found for the c "terms 
as generalizations of(3.2) and (3.3), while for the COl terms 
these expressions can be directly derived out of (3.4). With 
this knowledge we shall come to a discussion of some limit­
ing cases, 

B. Limiting cases 

The study of some particular limiting cases brings out 
some special aspects of these models. For these limiting cases 
it is somewhat more convenient to work with the original 
expansion (l ,3) since the limit x~->O can then be treated in 
two ways for {3---+0 (the high-temperature behavior) and 
m--->O (system of massless particles), The interpretation of 
these two limits is physically different. For a finitely massive 
particle system the high-temperature limit results in the clas­
sical ideal gas. However, for massless particles the thermo­
dynamics becomes that of blackbody radiation obeying a 
Stefan-Boltzmann T' law. If, however, we would take the 
form (1,5), the two limits would become equivalent. 

1. We now examine (1.3) for the limit m--.O. It is clear 
that the single particle energy w(P) as (P' + m')'12 becomes 
w(P) = !P[, For the usual photon gas we have in (1.3) only 
a l = I and all the other terms identically zero including a o 

because of the masslessness. This case for Ik (f3) may be im­
mediately solved to find the Stefan-Boltzmann form. The 
additional "anharmonic" terms all for positive n can be put 
in and solved under the above stated conditions, but they 
seem to have little physical relevance since one does not ex­
pect the photons to couple to themselves, However, a special 
case, which is finite for m-~O, involves only a, = u' in addi­
tion to a,. Under this assumption we may solve for the k 
cluster integral as m-.O to find 

(3.5) 

This form of the cluster integral shows that the coupling u 
has taken over the role of the mass for the massless particles. 
This result means that the particles which couple through a_I 

are qualitatively different from photons, in that they possess 
a real clustering property. The further terms in the series for 
H (y) of the form a "z " possess the known "infrared" 
singularities in the small mass limit. This situation is clear 
from the consideration of the term a_,z-', which for m->O 
yields the usual Coulomb structure and its expected infrared 
divergence. The further terms, a_"z-3, a_"z-" etc., diverge even 
more strongly in this limit. 
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2. The other limit m~ 00 is very important for heavy 
resonances. For this case the factorized form of the excita­
tion spectrum (1.5) is more convenient. When we assume 
that every order in the negative powers in (1.5) is coupled in 
the same way so that all the terms c _ n have the simple 
power form (c/m)(c'/m) n where c and c' are two given con­
stants, we have the additional term in the energy spectrum of 
the type (c/m)ln[1 - (c'/my)]. Thus the k-cluster integral in 
(1.7) then becomes 

I
k
(f3) = A k f" dyy(y' - l)lI'( 1 - ;J ... k(3'e km (3y. (3.6) 

The evaluation of this integral follows the form of (2.1) 
which may be explicitly evaluated as 

A kx (kC'fJ)" I k (f3) = -- I bJkcfJ) - [T(3 - n,kx) 
(kfJ)' ,,~() m 

where b" (kcfJ) is in this special case of the form 

bn(kcfJ) = kcfJ(kcfJ + l).,,<kcfJ + n - I), (3.8) 
n! 

which comes directly from the above power form of c .. " . 

3. We now consider another case for this large mass 
limit where only the positive powers cn enter. When we as­
sume the particular structure of the additional terms to Co 
and c, to be of the form Cn as (c"m) "/n!, then the total ex­
pression is of the form given by 

H(y) = com + c,my + c(exp[c"myl - c"my - 1). 
(3.9) 

Again we are able to carry out the expanded integral (1.7) as 

(3.10) 

where XI-.n means m[kfJ (J - cc") - nc"]. This solution is 
regular except in the neighborhood of zero. Because of the 
properties of the modified Bessel function,·17 around the ze­
ros, we find that at any such point the thermodynamics re­
duces to 

lim-lnE(V,T)~ , , 1 (T-T)-3 
/"X V Tc 

(3.11 ) 

where Tc takes the form k (l - cc")/mc" from the zero 
points of KlXk ." ).It is interesting to note that Tcrelates with 
the ratio of k to n for nonzero n, which means that the "criti­
cal" temperature is determined by the additional binding-or 
coherence n due to the additional structure in (3.9) in com­
parison with the cluster size k. In simple terms, this means 
that Tc is the relationship of the cluster size coming from the 
symmetry as compared to the structure from the coherence. 

c. Physical interpretations 

Although it would be possible at this point to do a more 
thorough analytical investigation of some additional special 
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cases including the limiting forms, it is perhaps more infor­
mative to briefly look more deeply into the explicit math­
ematical structure of the above considered terms as typical 
of the others. Surprisingly enough, a numerical investigation 
of these integrals Ik (x) turns out in most cases to be quite a 
lot simpler than one would think. This situation arises from 
the fact that the K,,(x) and En (x) both have rather workable 
asymptotic forms," which for small values of the couplings 
c. "usually lead to rapid convergence for the higher powers. 
This analysis for the Yukawa term''! of Sec. I1IA.3 above 
shows that the main convergence difficulties in (3.3) for very 
small c" come for x around unity, which means that the 
thermal energy is of the same order as the mass energy, so 
that neither thex·..,.O photon gas nor x--. 00 classical ideal gas 
limits come into play. However, as remarked above, one 
must be careful in this case with x-a because of the infrared 
problems. For the sake of more explicit calculations of phys­
ical interest, we mention a particular model. In order to pre­
serve the properties necessary for the thermodynamic limit 
of a statistical system,14 we propose a combination of the 
terms arising from c., and c., so that c' > 0 and e" < O. This 
choice can be seen to give the proper repulsive hard-core and 
attractive long-range behavior using the Fourier transforms 
of these expansion terms as derived in Appendix B. A more 
detailed treatment of this model with a careful discussion of 
the mathematical and physical properties will be carried out 
elsewhere. 

D. Mathematical extensions 

The last point of consideration in this part is the exten­
sion of these analyses to complex variables. Although the 
analytical structure of (1.3) is designed for an expansion of 
the function H (z) of the complex variable z, the evaluation of 
the integral of the type Ik (x) in (1.7) with the necessary con­
vergence conditions upon it would be greatly complicated by 
the presence of the singularities and the multi valued struc­
ture found for such functions in the complex plane. It may, 
however, be appropriately remarked here that the term Go 

could readily be taken as complex, which would effectively 
make A complex as in the Yang-Lee theory of phase transi­
tions. '8 Other terms may be included in principle as complex 
variables, since many of these integrals can be under the 
proper restrictions extended to the complex plane. However, 
the intention of our main result in (2.1) would then be drasti­
cally changed. 

IV. GENERALIZATIONS AND CONCLUSIONS 

In this concluding part of our work we want to assemble 
the various calculations to make some specific predictions 
for the thermodynamical functions. We are able to fully car­
ry out this program only after bringing together the phase 
space parts, which were evaluated above, with the integra­
tion over the mass spectrum in terms of a total grand parti­
tion function Z (V,fJ,A ). After writing Z (V,fJ,A ) we shall 
point out its significance to some problems in hadronic mat­
ter as weII as possible further work in this direction. 
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A. Mass spectra 

up until now we have concentrated upon the analytic 
properties of the phase space integral I" (fJ), treating the 
mass of the particles as a constant. This approach, however, 
is very unrealistic for high-energy physics where one very 
seldom has a single type of interacting stable particle, but is 
usually confronted with a large number of unstable particles 
decaying, forming resonances, and interacting to form 
bound states. This situation may be generally described by a 
mass spectrump(m). We shall now briefly look into the ther­
modynamical functions resulting from these calculations. 

The origin of the mass spectrum arises primarily in the 
applications to relativistic statistical physics in the area of 
multiple-particle production for hadronic systems. For such 
systems one often employs the specific mass spectrap.l(m) 
andp_I(m) for the Fermi-Dirac and the Bose-Einstein statis­
tics respectively. The general thermodynamical treatment of 
this problem was first developed by Hagedorn b

., for the anal­
ysis of the decaying fireballs consisting of many types of par­
ticles and resonances. We may regard the simplified system 
considered in detail above as possessing the simple delta 
function mass spectrum so that there exists only a single 
stable particle of mass mo, the lightest hadron. With this idea 
of extending our system to include a mass spectrum we may 
rewrite (1.6) for the total partition function as a functional of 
the mass spectrum Z[p(m);(V,(3,A)] in the expansion de­
pending upon the statistics from r as 

V-IlnZ
i
· 

( 
g \ x A' fY 

= -,) I -. (- r)' dmp/m')I,,(m',(3), 
2IT " i k m, 

(4.1 ) 

where A is the relativistic correspondent of the activity or 
fugacity for the hadronic matter. The usual statistical boot­
strap model"I" demands that the individual mass spectra all 
have the form (1.2). 

The thermodynamical functions may now be calculated 
whenever the excitation spectrum can be specified within the 
above stated conditions. The pressure is immediately calcu­
lated from (4.1). For the massive particles the average parti­
cle density may be calculated in the usual wayl2 through a 
differentiation with respect to A as A (al aA ) lnZ)' (V,(3,A ), 
which yields a second expansion in the powers of A. 

There has been a considerable amount of work using an 
S matrix approach for the interacting relativistic gas. It is 
found that for this system one can develop an S matrix for­
mulation of the cluster expansion in statistical mechanics. 20 

This approach has been further developed to study the possi­
bility of phase transitions in large hadronic systems. 

B. S-matrix approach 

It is important throughout the present work not to mis­
take the energy spectrum H (w(P» of the excitations in ha­
dronic matter with the formal Hamiltonian operator, which 
itself contains all the various energy contributions including 
those absorbed in the mass spectrum as well as those regard­
ed by us as interactions with the hadronic medium. Thus 
H (w) can be interpreted as the energy "left over" fromp(m) 
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that does not go into pure particle production, but remains 
as an interaction with the hadronic medium. Such an energy 
spectrum only has meaning as quasiparticles or excitations" 
of the interacting hadronic system, not as singly produced 
hadrons. However, this structure reduces to the real particle 
formalism in the case where the particles decouple from the 
medium. 

During the course of this work we have made some 
rather strong assumptions on the excitation spectrum 
H (w(P» in the form mH (w(y), which assured the necessary 
structure for the statistical bootstrap model. 10 A change in 
this assumption or omitting it altogether could drastically 
alter the known critical phenomena associated with the 
model of hadronic matter. 

C. Critical exponents 

At this point we want to state briefly a few of the critical 
properties of some models for hadronic matter. From the 
calculated analytical structure of the partition function in 
the statistical bootstrap model"·lo a singular structure is 
found relating to the parameters a and b in (1.2). When the 
related gas model with a mass spectrump(m) is considered, a 
set of critical exponents21 may be associated with this singu­
lar structure in the thermodynamic limit. These ideal have 
been further developed in work on the quantum relativistic 
gas models" includingp(m), for which an equation ofstate21 

has been recently found. Furthermore, a general type of clus­
ter model has been introduced for statistical mechanics at 
high energy density. 24 It has also been recently found that the 
presence of a coupling between the firebaJIs in a slightly 
modified statistical bootstrap model can give rise directly to 
a phase transition which is characteristic of this model of 
hadronic matter." 

O. Concluding remarks 

Finally we want to make a few concluding remarks co­
eerning the physical nature of our general solution given in 
(2.la,b) along with the special cases mentioned in Sec. III. 

I. Our above proposed model, which is characterized 
by an energy or excitation spectrum H (w(P»), has the general 
effect of introducing a binding together of the clusters 
formed by the statistics in the ideal relativistic quantum gas. 
This structure appears quite openly in the special cases dis­
cussed in Sec. III.A, where, in addition to the known ideal 
cluster terms K2(kx)!kx of the relativistic gas, we also have a 
series in the powers of the relevant couplings. This effect, 
which is particularly apparent in the examples 2 and 3, 
makes a direct contribution to the collective structure ofthe 
hadronic matter. In order to understand this contribution 
more clearly, we shall elaborate more specifically upon the 
structure of the model suggested at the end of Sec. III.C. 

2. The general properties which are derived from a 
model with e' > 0 and e" < 0 bear a resemblance to the known 
interaction potentials of atomic physics after performing a 
Fourier transformation into coordinate space. From the spe­
cific evaluations of the Fourier transforms at the end of Ap­
pendix B we may describe the corresponding interaction po-
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tential t/> (r) for this model in the form 

A. ( ) _ 41Tme' K ( ) + 21T'e" - mr 
'I' r ---- I mr ----e . 

r r 
(4.2) 

We can immediately see that in the limit m--+O the repulsive 
part with e' > 0 goes over to the form 41Te' /r, which is similar 
to the atomic potential arising from the centrifugal barrier, 
and the attractive part with e" < 0 becomes 21T2C" /r, the sim­
ple electrostatic Coulomb potentia1. The situation now has a 
basic similarity with the well-known binding structure of the 
diatomic molecules, for which it is possible to make a de­
tailed analysis for the thermodynamical properties of a gas 
containing separate translational, rotational, and oscillatory 
degrees offreedom. 25 In this sense it may well be possible to 
envision our relativistic gas expansion as forming a binding 
or a coherence between the "elementary" excitations in the 
hadronic matter which in a special sense have a likeness with 
a gas of harmonic oscillators in equilibrium. 26 

3. The primary result of this work is the development of 
the mean field type of picture for the description of the bulk 
properties ofhadronic matter. When we consider specifical­
ly the model suggested above, we see that the basic structure 
necessary for the mean field description is present in the 
potential (4.2), in the small mass limit with its repulsive core 
and its long-range attractive part. These features seem to be a 
direct reflection through the Fourier transform of the origi­
nal expansion of the energy spectrum (1.3) in the one-parti­
cle energy w(P), which arises primarily out of the fundamen­
tal relativistic invariance of p,jI' = m'. 

4. Another model which seems to have a rather direct 
relationship to our energy spectrum arises in the description 
of phase transition to the spontaneous coherent state27 as 
found from the Dicke laser modeJ.2& In fact, it is found that 
the form of the radiation field energy H (w) can be written as 
1Uu(l ~ w~/w') with the extra inclusion of an additional 
(wp / W)4 term from the retardation effects,.29 This first expres­
sion is equivalent to our energy spectrum with an a_I term in 
the limit m-O as discussed in Sec. III.B. Further work in 
this direction has shown how to use a pseudospin model 
based on the Dicke model in order to describe the phase 
transitions in nuclear matter. 30 This model already envisions 
some of our future goals. 

As a final remark in this work we may state that we have 
considered how to evaluate the equilibrium thermodynami­
cal properties of some relativistic quantum statistical models 
for bulk hadronic matter. 
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APPENDIX A: DEFINITIONS OF SPECIAL 
FUNCTIONS 

We shall state here the definitions for some quantities, 
which have been used throughout this work. 

I. The double factorial is defined as 

n!! = n(n - 2)(n - 4) ... , 

which for even numbers becomes 

(AI) 

(2n)!! = (2n)(2n - 1) .. ·(4)(2), 

and for odd numbers becomes 

(A2) 

(2n - 1)" = (2n - 1)(2n - 3)",(1), (A3) 

under the requirement that O!! and ( - I)!! be unity. In our 
particular notation we introduce !l! 

!l! = (21 - 3)!! . 
(21)!! 

(A4) 

2. The incomplete gamma function 11 r(a,x) has the 
integral representation given by 

r(a,x) = l"'dtt a 
- Ie - '. (A5) 

It relates to the ordinary complete gamma function r (a) for 
a =1=0, - 1, ~ 2,·.· by1' 

00 (_ II + IXk 

r(a,x)=r(a)- n~o(a+k)(k)!' (A6) 

and for a = 0, - 1, ~ 2, .. ·, - n ... in the limit x-o as 

r(a,x) 

= ( - I~n + I [ ! ( _ Ilk !.x"- k - 1+ xnlnx + O(Xn)]. 
n. k = 0 

(A7) 

3. The exponential integraP6 En (x) is defined by 

En(x) = ("" ~ - IX. (A8) 
JI In 

4. The modified Bessel functions2 of the second kind 
K,. (x) have the integral representation3l 

K (x) = (x/2)'T (~) /''' dIe - xl (12 - It - 112 (A9) 
v r(v+~) JI ' 

for v> -~. 

5. The asymptotic forms for the functions used above 
have the following structure I6.]l: 

(a) for x-co the exponential integral becomes 

En(x)-- 1--+ - ... ; e ". x [ n n(n + 1) ] 

x X x 2 
(AID) 

(b) for X--+co the incomplete gamma function is given 
by 

r( ) e-x [1 a-I (a-I)(a-2) ] 
a,x =-- +--+ + ... ; 

Xl - a X x' 
(All) 

(c) the modified Bessel functions in the limit X--+ co are 

Kn(X)-~ :x e-X[l + 4n~; 1 
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+ (4n' - 1)(4n' - 9) + ... ]. 
2!(8x)' , 

(AI2) 

(d) while in the x-~O, the form is 

K,Jx) 2" '(n-I)![I_ x' + ... ]. 
x" 4(n - I) 

(AI3) 

6. An important relationship between the exponential 
integral and the incomplete gamma function is 

EII(x) = r(l - n,x)x" (AI4) 

APPENDIX B: EXPLICIT EVALUATIONS 

I. We shall now furnish the details of the evaluation of 
I" (f3 ) in (1.7) in the form (2. I). It is to be first noted that the 
deviations from r (a,x) integral of (AS) come from the pres­
ence of(y' - 1 )';' and the nonlinear terms in the exponential. 
Because of the range of integration (I, oc) it is much more 
efficient to expand the form y( 1 -- Ily')'12 in the powers 
(1 Iy') ". This expansion we perform 

(I -- y')" = 1 -- I!!!y 21 (BI) 
1 1 

from which the form of (2.1 b) is clear. The direct expansion 
of the exponential excluding the linear term forms the sum­
mations in (2.la). In order to insure that these expansions 
are integrable we provided distinct criteria on CII in the pre­
vious section (Sec. II.A). The coefficients hj .n are combina­
tions of the coefficients Cil in the expansion (1.5) and do not 
depend upon the quantity km (3. We separate these terms out 
in such a way as to find the integrals for r (a,x) of (2.1 b). 

2. The ideal relativistic gas may be found as special case 
which is knownl.l to find the K2(kx). This result may be relat­
ed to (2.1 b) by making the above expansion (B 1), which is 
the content of the first remark (2.2a). When the same evalua­
tion is done for the phase space' we find (2.2b). The further 
special cases worked out in Sec. III.A may be found in a 
similar way with the replacement of Ell (x) for r (1 - n,x) as 
stated in Appendix A. 6. 

3. Finally we consider the explicit evaluations of the 
expressions discussed in Sec. II.D which may be directly 
found from the tables of Fourier transforms. From these 
evaluations we may directly calculate the coordinate repre­
sentations of the interaction potentials ifJ (r) as a function of 
the distance r from a given point. The general form of these 
Fourier integrals"·l) for <b (r) are given from real (rational)v 
as 

ifJ (r) = ( 4;) J"'dPP [(P' + m')'i2j'·sinpr. (B2) 

For the particular terms of interest we find that the half­
integer negative powers are given by the integral" 

(' psin !pr I - V--; 
!£[r"K,,(mr)], 
dr Jo (P2 + m')" f 1/2 - 2"m"r(n + 112) 

(B3) 

and the whole integer powers have the form" 

d PSIIl tpr = --(e .. m'). (B4) soc ') I ( - 1)"1T d" 

o p (P2 + m')" + , n!2" + Imn dm" 
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A more general expressionl' for all v> - I, v:f:3/2, 5/2 ... is 

f' dpp(P' + m')' j" 
112') I V--;(2m)'r' K 

Sill, pr = ---'-----'--- Ie m r). 
r(:'" - v) 

2 

(B5) 

For our particular calculations the corresponding coordi­
nate space potentials ifJ" (r) for a ,,(P' + m') . ,,/2 with 
n = 1,2, and 3 respectively are readily found to be given by 

41Tm 
<b,er) = --K,(mr) (B6a) 

r 

21T' 
ifJ,(r) =-e mr (B6b) 

r 

<b,(r) = 81TKo(mr) (B6c) 

From these terms we can see that other similar forms may be 
likewise calculated from (B3)-(B5) with the exception of the 
positive integer powers, which fail to fulfill the necessary 
criteria for Fourier integrals. ", 14 
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Applications of an algebraic quantization of the 
electromagnetic field 

A. L. Carey and C. A. Hurst 
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We quantile the full component electromagnetic potential so that a version of the Haag-Kastler axioms 
applies. The resulting quasilocal theory is viewed as a gauge theory in the spirit of Doplicher. Haag, and 
Roherts. Interaction with a classical current is described and found to yield no surprises. Lacking a 
rigoroll' scattering theory for the electromagnetic field, we comtruct a rigorous analog of the asymptotic 
Hilbert spaces for quantum electrodynamics proposed by Kulish and Faddeev and Zwanziger. On this 
hasis we are able to find the representations of the gauge group that are associated with each charge 
sector III the asymptotic srace These rerresentations correspond. in a sector of charge q. to the 
suhsidiary condit)())) ,1'',4 c( x) ._- q D (x ). 

1. INTRODUCTION 

I n a series of previous papers 1.21 we endevored to estab­
lish an alternative formalism for the quantization of the elec­
tromagnetic field. This formalism suffers from defects when 
compared with conventional Wightman field theory,' never­
theless the approach has some merits. In particular, it dem­
onstrates that Fermi's original method' for quantizing the 
electromagnetic field can be recast in rigorous form and sug­
gests that it is not improbable that a definite metric formal­
ism, which retains most of the features of a manifestly covar­
iant theory, may exist for the electromagnetic field in 
interaction. 

This paper is concerned with applying the formalism to 
some problems to which the indefinite metric approach" 
does not appear to be well suited. In Sec. 2 we recast the 
results of Refs. 1-3 in the Haag-Kastler framework of quasi­
local algebras.' Our aim here is to present the free electro­
magnetic field as a gauge theory in the spirit of Doplicher, 
Haag, and Roberts.' <J This section of the paper corrects and 
amplifies some remarks in Ref. 3. In Sec. 3 we apply the 
Weyl algebra approach developed by Shalelo (and based on 
Cook") to the example of the quantized electromagnetic 
field intencting with a classical current. There are no sur­
prises here and the results of Refs. 10 and II for the scalar 
Bose field carryover without difficulty to the full four-com­
ponent theory. 

Our main results are contained in Sec. 4 and 5. Here we 
are concerned with producing rigorous analogues of the as­
ymptotic Hilbert spaces for quantum electrodynamics pro­
posed by Kulish and Faddeev l2 and Zwanziger. IJ We accept 
the results of Refs. 12 and 13, which are based on perturba­
tion theory, as largely correct, believing that they represent 
at least qualitatively the asymptotic structure of quantum 
electrodynamics. Our attitude here is that, because charge is 
a conserved quantity, and heuristically at least, gauge trans­
formations of the second kind have generators which evolve 
freely, results obtained on charge sectors and gauge transfor­
mations in an asymptotic Hilbert space for quantum electro­
dynamics will remain true in interaction. 

The conclusions we come to are essentially the same as 
those of Zwanziger, I' the main point being that the Lorentz 

condition (JI'A,,(x) = 0 cannot hold in any sense in a nonzero 
charge sector (a result which is reinforced by the indefinite 
metric arguments of Ferrari, Picasso, and Strocchi l

'). In 
fact, in a sector of charge q we find the subsidiary condition 
to be (JI'A,,(x) = = - qD (x), where D is the usual commu­
tator function for a scalar zero mass field. This has the corol­
lary that the algebra of quasilocal observables appears to 
vary depending on the charge sector in question, in contrast 
to what happens for global gauge groups (see Doplicher, 
Hagg, and Roberts'). 

This work is intended as a preliminary step in develop­
ing a definite metric approach to quantum electrodynamics 
which is suited to an analysis of charge sectors and the gauge 
group along the lines of Doplicher, Haag, and Roberts. ,." 

2. C*-ALGEBRA OF QUASI LOCAL 
OBSERVABLES FOR THE ELECTROMAGNETIC 
FIELD 

Let X (if = [kER 'I ko > O,k ' = OJ. Let !./ be the space 
of C " functions with compact support in R J taking values in 
R 4. Each pairoffunctions (f,g)EY X 9 defines a function on 

xot by 

v?(k) = _1_.-J[lU!(X)+ig(X)]e ik,xd'x, (2.1) 
(21T) ./2 

where((} = Ikl. Ifwedefine 

, 1 J d 'k dJ (x) = -- -(v? (k)e 
(21T) 112 20) 

~~ere k·x = ~uxo - k.x), then 1 is an R '-valued solution of 
LJ,6 = 0 and dJ (x,O) = lex), v? (x,O) = g(x). 

Let Mo denote the real linear space of solutions J of the 
wave equation so constructed from initial data in g. The 
Poincare group acts on Mo by J--J', 
where 

cb '(x) = Arj (A -lex - a», (2.2) 

with (a,A ) a typical Poincare group element. It is well known 
that Mo is invariant under this group action. Furthermore 
Mo has a Poincare invariant symplectic form 
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B (J.J ') = + f ~= (4) 1'(k)4> ;,(k) - 4> !l(k)4> ~(k». 
We introduce two Poincare invariant subs paces of Mo: 

No = (¢EMo I Cf"¢/x) = 01. 
To = [JEMo I Jix) = a;r(x) where X = R 4--4R I· 

It is not clear a priori that No and To contain very many 
elements. To see that No and To are "sufficiently large" we 
introduce on Mo a "complex structure" by setting 

(JI.</; )(k) = - ig4> (k). 

where g = diag(1, - 1, - 1, - 1). (Note that J F does not 
leave Mo invariant.) Then Mo becomes a complex pre-Hilbert 
space if we define the inner product by 

<J.J ') = B (J,JfJ ') + iB (J,/b '). 
The inner product < , > is not Poincare invariant, however 
the representation (2.2) and Mo extends to the completion M 
of Mo as an indecomposable representation by bounded 
operators. 16 

The closed subs paces Nand T of M defined by the 
conditions 

k "cb;Jk) = 0 and 4>,,(k) = k;r(k), X = X (t -C, 

respectively, are Poincare invariant. If we denote by Pvand 
PI' the projections onto Nand T, then P s = P,v - P T projects 
onto the subspace of M consisting of radiation gauge solu­
tions of Maxwell's equations. i.e., if /bE(P,v - Pr)M, then 
k·c/1(k) = 0, rPo{k) = O. 

Proposition: No and To are dense in Nand Trespectively. 
This result is easy to prove if one observes that elements of To 
are constructed by taking x: R 4--4R, OX = 0, with initial 
data C x of compact support. Then alXETo and, as To is 
Poincare invariant and the representation of the Poincare 
group in Tis irreducible, To is dense in T. Similarly No con­
tains To as well as elements of S of helicity ± 1. The only 
proper closed subspace of M invariant under the Poincare 
group, containing T and elements of helicity ± 1 is N (see 
Ref. 16). So N,,, being invariant, is dense in N. 

Now we construct the algebras associated with each of 
these spaces. If /bEMo, denote by D", the function on Mo taking 
the value 1 on <i and zero elsewhere. In the usual way form a 
*-algebra .:l(Mo) by taking the complex linear span of the 
D",'s with 

(I.,AiD",)* = I.i{D J), 

and 

bAh' = exp[ -(i/2)B(cb,r/J'»)o",+"". 

Construct .:lJMo), the C *-algebra of the CCR over MO.I.I]." 

Local algebras are obtained by taking for each If ~ R ., 
open and bounded, the algebra.:l (&) consisting of the linear 
span of those D", such that, for some spacelike hyperplane P, 
the initial data for 4> on P has support in Pn(i. Clearly 
.:l(M,J = u/ .:l (1') where the union is over all bounded open 
sets in R 4. 

The algebra .:le(f') [the completion of .:l(t) in .:lc<Mo)] 
is the local field algebra associated with 0 and we have 
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.::lc(Mo) = u .:lJC'). 
" 

We may similarly associate algebras .::lc(No) and .:l,.(To) with 
the subspace No and To of Mo, and hence define algebras 
.:lc(No(o» and .:lc(To(f'» by 

.:lc(No(l"» = .:le(No)n.::1Jf"), 

.:lc<To(l"» = .::lc(To)Mc«()· 

Now the elements of To act as automorphisms of .::lJMo) by 

A--4D Ii!lD _ Ii" AE.::1 c(Mo), ¢ETo. 

In particular, 

b",--40/)",D _ Ii. = e - iB(,] •• ", )D",. 

A straightforward calculation shows that this last expression 
corresponds to the heuristic one, A/,---?A/J + a/X, whereAp is 
the field operator in ~ given,I!Presentation of .:l,(Mo) and X is 
the real valued solution ofUX = 0 such that W = a/X. 

The linear space To is therefore represented as an addi­
tive group by inner automorphisms of.:l ,.eMo). We call To the 
gauge group. To investigate its properties and to determine 
the quasi local algebra of observables for this theory we go to 
a particular representation. 

Let o-pCcb) = exp[ - !B(4),J~)] be the generating 
functional of the Fock representation P F of.:l cCMo). This 
defines a state on .::lc(Mo) which we will also denote by 0-,... 

Noting that Pf'(.:l c(To»" is a commutative von Neumann al­
gebra, we can decompose the Hilbert space ,')~ F of P F as a 
direct integral by "diagonalizing" this algebra. This may be 
done explicitly as follows. 

Denote by Tl the orthogonal complement of N in M. 
Introduce the normal weak distribution p (i.e., cylinder 
measure) on T 1 with characteristic function 
t/'-exp [ - !B (t/,.J[.w)], WET. Define H, to be the Hilbert 
space which carries the representation of .:lJNo) given by the 
state 0-" whose restriction to .::l(;V,) has the form, for each 
?ET1, 

0-:. (.J:;Al5,b) = I Aj exp [ - ~c (<pj>cb) + iB (?,<p) 1, 
j 

where 

C (<Pi,cb) = - f 6;'(k)<p".(k)d 'k/2(!). 

Define the Hilbert space 

HI' = L r H:,ap({;), 

to be the completion of the space of cylinder functions F on 
T i such that Fe; )Ei( (note that all the spaces H~ may be 
chosen to be identical as the states (J. are obtained, one from , 
another by the action of the automorphism 

, ill('-0) "'EM' ). h a;:l5'b-'>e" l5,/>, <P 0, I.e., 0-:, = (T"oa:: In t e norm 

IIFII = f IIFC;)II~ap({;), 
where 1111:: denotes the norm in H:;. The Fock representation 
PFacts by' 
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PF(8<f,)F(t) = p?,(8<f,)F(t), 

for <f>ENo where P!: is the representation corresponding to u?" 

If ¢ETo, this reduces to 

pA8<f,)F(t) = e-1B(?,,<f,lF(t), 

so that <l/To) is diagonalized, For those elements ¢ lying in 
Tl.nMo we have 

p;.(bu,)F(t) = expl - !B(t,J[,~) - !B(¢,JA;)]F(t + ¢) 

(noting that Jr¢ET), It is straightforward to check that this 
is indeed equivalent to the Fock representation (cf. Ref. 19). 

From this realization of the Fock representation one 
observes directly that u?, is a pure state on <le(No), that 
p 1,(<l/7;,»" is the center of p F(<lc(No»", and in fact that 
p F(<lJNo»1 = P F(Ae(To»". The representationp F I <liNo) is 
therefore miltiplicity free, Furthermore we see that 
pt(Ac(No(l» = PF(<l/&»rpF(Ac(To»', 

What now is the algebra of observables for the electro­
magnetic field? We cannot regard A,JNo(&» as the algebra 
of observables localized in r since it contains elements 
which create from the vacuum unphysical states in the Fock 
representation. In order to guarantee that the gauge degrees 
of freedom are eliminated, we need a representation of 
Ac(No) in which the elements of the gauge group To act as 
scalars. Since <lcCTo) is the center of Ae(No) this will occur 
wherever we have an irreducible representation of AJNo). 
Note that every irreducible representation of Ae(No), on re­
striction to <le(To), defines a character of this algebra, A 
physical interpretation of these characters has been pro­
posed by Zwanziger. I

' To discuss it we need to make contact 
with more conventional notation. Let p be a representation 
of <l,.(Mo) such that A-p(8A,p) is continuous in AER.. Then 
p(8

c
l,) = expiA (¢) where A (¢!) may be interpreted as the 

electromagnetic potential smeared by ¢!. In the special case 
where <f>ETn' say <f>ik) = k,X(k), then A (<f> ) may be seen to 
represent the operator au A/L(x), i.e., the supplementary con­
dition operator el'A,'(x) smeared by X. Hence the algebra 
.1,.(7;» is essentially the algebra generated by the supplemen­
tary condition operators elLA/I(X) and each character of 
AJTo) corresponds to a choice of supplementary condition. 
Before pursuing this argument further let us determine the 
set of all characters of <lc(7;», i.e., its spectrum as a C *­
algebra. 

Becausep"is a faithful representation of <lc(Mo) we can 
identify the elements of Tl with a subset of the spectrum of 
.1(,(7;,), dense in the weak topology. In fact we have the 

Lemma: The elements of the spectrum of <l<.(To) are in 
\-1 correspondence with elements of the algebraic dual of 
T". 

Proof Note firstly that all elements of T 1 define charac­
ters of <l<.(7;'). This is because the realization of P F given 
above sets up an isomorphism of <le(To) with a C *-algebra of 
continuous functions on T I, and hence the elements of T.l 
define evaluation functions in this algebra. So in particular, 
the zero element of Tis such a functional, call it To. Given as 
in the algebraic dual of To we may extend it to Mo by defining 
it to be zero on those elements of Mo not in To. Then the map 
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a?,:8<f,_eif;(,p)O,p, ¢EMo, 

extends to an automorphism of <lc(MO)11 and hence of <le(To}. 
The composite character T?, = ToOa?, of Llc(To) exists and so 
we have a map, S-T?, from the algebraic dual of To into the 
spectrum of Ac(To). Now suppose T is any character of 
AcCTo). As the elements of Tl are dense we can find a net 
T?,,,-T with SaET1. We may write T(O,p) = expis (¢) for 
¢ETa where s:To-R satisfies S(¢ + ¢') = ~(¢) + ~(¢'). To 
show that S is an element of the algebraic dual of To we need 
only show that s(A¢!) = As(¢!) for AER., and ¢ETo. But 
expiS (A¢ ) is the limit of both [expiAsa(¢) 1 and 
[expisa(A.¢! )] and furthermore expiASa(¢ )-expiAs (¢ ). 
Hence S is linear, completing the proof. 

Returning to the general argument, Zwanziger 1J pro­
posed that if T!: is a character of <le(To), then S should be 
related to the value of the charge (admittedly this is a restate­
ment in our language of a nonrigorous argument in the in­
definite metric formalism). In particular, if s=O, then we are 
trying to impose the usual supplementary condition 
au A fL = 0 which, on the basis of Refs. 13 and 14, we would 
expect to hold only in the charge zero sector. 

We will return to this discussion of charge sectors and 
characters in Sec. 5; for the moment, we will assume that we 
are considering the case S _0. It then follows that if I denotes 
the two sided ideal of AiNu) generated by the kernel of the 
character To, our candidate for the quasilocal algebra of ob­
servables is the quotient A cCNo)! I. It follows from Ref. I that 
this algebra is isomorphic to a subalgebra of <lcCS) where S 
has the symplectic form induced by B. Physically, therefore, 
<l c(No)/ I has the properties of an observable algebra, since it 
depends only on the transverse components of the electro­
magnetic potential. Noting that the ideal I is the kernel of the 
representation po of <le(N,,) (0 denotes the zero element of 
Tl), we will henceforth write I as kerpo. 

Observe from the definition of po that the corresponding 
state 0'0 is Poincare invariant. Consquently kerpo is Poincare 
invariant and hence the Poincare group acts by automor­
ph isms of <lc(No)!kerpo. There is a local structure on 
Ac(No)!kerpO defined by setting 

~(I") = (<lJNo( I'» + kerpo)/kerpo, 

for each bounded open set (/ CR '. From the fact that Poin­
care transformations act on <lJMu) by 

we have 

U a .A (A c«('» = <l/A (0 + a), 

a".A (Ac(No((i))) = <lc(No(A ( + a», 
and hence 

aa,A (~( 6'» = ~(A I) + a). 

As 0'0 is Poincare invariant these automorphisms are imple­
mented in the Hilbert space Ho of the representation po. Fi­
nally we note that, as 

pA<lJNo( 1"'») Cp [.·(<lc(No(!"' '»)" 

where (J' is spacelike separated from I', we have 
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[~(&),~(&')] = 0. 

Putting the above together, we conclude that the algebras 
Llc(Mo) and Llc(No)/kerpo both satisfy a version of the Haag­
Kastler axioms. 7 

The gauge group To shares some ofthe properties of the 
global gauge groups of Refs. 8 and 15. We shall not discuss 
these here but refer the reader to Ref. 3. 

Finally, it is not difficult to show that Llc(No)/kerpo is 
also isomorphic to the Weyl algebra which is normally used 
for the electromagnetic field,>o.2l namely that constructed 
over the space of functions 

FI". = all¢,. - a,till' </lEMo. 

Finally we remark that the above procedure suffers 
from a number of deficiencies. The most serious, from a tech­
nical viewpoint, is that the local C *-algebras above depend 
rather critically on the choice of test functions Mo. It would 
be desirable to replace them by local von Neumann algebras, 
however we have not yet found a convenient means for doing 
this. To a lesser extent there is the difficulty that Lorentz 
boosts are not implementable in the Fock representationpF 
of LlcCMo). This means that our electromagnetic potential is 
not covariant. However this problem can be overcome by 
using a covariance algebra construction22 as described in 
Refs. 1 and 2 which produces a covariant, though reducible, 
representation of LlJMo). 

3. INTERACTION OF THE ELECTROMAGNETIC 
FIELD WITH A CLASSICAL CURRENT 

We follow here the treatments ofShalelo and Cookll of 
the classical source problem for the case of a scalar Bose 
field. We suppose that} : R 4-+R 4 is a given classical current 
distribution, and we seek the corresponding time evolution 
automorphism of Llc(Mo) and of Llc(N)/kerpo. 

Let us suppose initially that} is sufficiently smooth and 
vanishes sufficiently rapidly at infinity for the definitions 
below to carry through. We will lift this restriction later. 
Denote by t-+T(t) the one-parameter group 

(T (t)<b )(k) = exp(J,M)</I (k), ¢EM, (3.1) 

which gives the free time evolution in the one-particle space 
M. (Here J, denotes the usual complex structure of multipli­
cation by i.) The corresponding automorphism group 
t-+ao(t) of LlcCMo) is given by 

(3.2) 

If j is constant in time [i.e.,j(xo,x) j(x) for all xoER ], 
then following Shale'o we can define the interacting dyna­
mics to be given by t-+a(t) = rpo(t )rj- 1 where rj is the 
automorphism 

r/o</» = exp[ - iB(</I.A -~f)]o</> 

of Ll/Mo), and A is the generator of t-+T(t). 

All of the results of Ref. 10 now carryover to this exam­
ple. We note that aCt ) is implementable in the Fock represen­
tation of Llc(Mo) if and only if the Fourier transform of}, 
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](k) = f eik'Xj(x)d lX, 

is in M. Denoting by w(t) the automorphism aCt )ao(t t' of 
Llc(Mo) we define the MQllIer wave operators by 

w ± = lim wet ), 
1-- ± ex:; 

and observe after Ref. 10, that if 0' is a generating functional 
for Llc(Mo), the generating functional wet )*0' [the * denotes 
the dual action of automorphisms on the state space of 
Llc(Mo) or equivalently, on the generating functionals] con­
verges as t-+ ± 00 in a suitable sense to 

w ~p = rjp. 

Thus the scattering operator S = w+w. is trivial, as is to 
be expected. Consider now the problem of infrared diver­
gences. When the Fourier transform of} is too singular at the 
origin in momentum space to be an element of M, we find 
that aCt ) is not implementable and we have the usual infrared 
problems. However the case of the full four-component the­
ory differs from that of the scalar or radiation gauge theory. 

To see this we impose the condition that the currentjbe 
conserved. For a time-independent source this means 
Jo(x) = ° and V.j(x) = 0. Then rj> as an automorphism of 
Llc(T), acts as the identity for 

(3.3) 

Thus rj leaves the ideal kerpo fixed and consequently defines 
an automorphism rj of ~( by 

riOt/> + kerpo) = (rf</» + kerpo, <bENo. (3.4) 

This isjust a restatement in our formalism of the well known 
fact that a conserved current produces a gauge invariant 
interaction. 

It follows from this observation that it is only the trans­
verse components of J (i.e., those in P,M) which contribute 
to the evolution of the observables, and consequently the full 
four-component theory gives the same time evolution as the 
radiation gauge treatment. 

The second point to note is that the full four-component 
theory automatically includes an infrared cutoff for the ob­
servable algebra. This is a consequence of the elementary 

Lemma: If ¢ENo, then </I vanishes at the origin in mo­
mentum space. 

Proof We have i!l¢ JJ.(x) = 0 which implies for the initial 
data that 

¢ (O,x) = - V.«f,(O,x). 

But from (3.1) 

<bo(O) = ~ f ¢o(O,x)d 'X 
(21T)JI2 
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i f A = -- V'cp(O,x)d 3X 
(21T)312 

=0, 

as ~ has compact support on the surface Xo = 0. But 
kl"<pik) = ° so that, for example, k,<Po(k,;O,O)-
= k,<p,(k"O,O)(k, > 0). That is <Po(O) = <p,(0) = 0, and simi­

larly for the other components. 

By noting that the initial data for ¢EMo have Fourier 
transforms which, as function of k are analytic, we can ex­
pand <P as a Taylor series about the origin and using the 
Lemma and (3.1) we obtain the estimate 

l<pik)I<UI(l + o (k», ,u=0,1,2,3. 

Thus provided} is at worst a tempered distribution and 
the Fourier transform 

J(k) = f eik,x}(x)d'x 

of} is of the form ~ 1/ UI as a function on X 0+ near k = 0 we 
have 

IB(<p,A-J)I<2f 1<pI"(k)}I"(k) I d
3

k <00. 
2U12 

Hence the infrared cutoff built into elements of No al­
lows us to define a(t) as an automorphism of ..:1 c(No) even for 
singular currents}, and hence we obtain, using (3.3) and 
(3.4), a one-parameter group t-a(t) which gives the dyna­
mics of the algebra of observables &. 

The above analysis carries over to the case of a time 
dependent source. In this case, we follow Cook ll and define 
the evolution in terms of a propagator, 

a(s,t) = Yj,? 

where Y}" is the automorphism of ..:1 c(Mo) defined as follows. 
First set 

}'(t,k) = _1_ f e- 'k"j(t x)d lX, 
(21T)lI2 ' 

and then define 

}s,rCk) = i r (TJ)(t' ,k)dt ' 

and hence 

This will be well defined whenever}s"EM and in fact (by the 
preceding analysis) in certain more general cases. 

Now we show how the interacting fields at time t may 
be defined in terms of the asymptotic fields at t = ± 00. 

Suppose that the state of the system at time s is given by a 
generating functional Us' Then at time t > s the state will be 
given by the functional a(t,s)*us where 

(a(t,s)*u)(8¢» = u s(a(t,s)-'8¢» 
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In order to define asymptotic fields we need to show that the 
automorphism a( - 00 ,t), for example, exists and that for 
each generating functional u, a(t,s)*u converges pointwise 
to aCt, - 00 )*u. If} is a Schwartz space function, then it 
follows that 

B (j",,<p ) = r dxo f d 'xj"(x)<pix). 

Clearly therefore, in this case, lims ~ _ wa(s,!) = a( - 00 ,t) 
exists where a( - 00 ,t ) is defined via 

B (j oo,"<p) = r c£ dxo f d lX}I"(X)<p,,(x). (3.5) 

More generally, the automorphisms a(s,t), 

s,tERu[ - 00,00 1 exist wheneverthefunctionf<P1" is integra­
ble on R • for all <pEMo. Finally, the scattering operator is 
defined by s = u( - 00,00). 

Because the elements <pENo vanish at k = 0, the scatter­
ing operator and the propagators will be defined as automor­
phisms of ..:1 c(No) for currents} such that}s,t behaves as 1!lU 
near the origin in momentum space for all s,t. Furthermore, 
if} is conserved it follows from either (3.5) or 

B (j"t'<P) = + f (j~,(k)<pI"(k) - }~t(k)<pi'(k)d 'k 

that a(s,t ) acts as the identity on..:1 c( To) and hence defines an 
automorphism of the observable algebra, 

2( = ..:1 c(No)/kerpo. 

Finally these automorphisms are implemented in the Fock 
representation of ..:1 c(Mo) provided}s.tEM for all 
s,tERu[ - 00,00 1, in which case one can deduce easily from 
(3.5) that the fields at time t are related to the asymptotic 
field at t = - 00 by the usual Yang-Feldman equation 

A I,(X) = A ;(x) + f },,(X')D ret(x - x')d 'x'. 

4. ASYMPTOTIC HILBERT SPACE FOR 
QUANTUM ELECTRODYNAMICS 

Recently Kulish and Faddeev 12 and Zwanziger" have 
sought to formulate the asymptotic dynamics of quantum 
electrodynamics so as to ensure that the S matrix is free from 
infrared divergences. Their work is an outgrowth of that of 
Kibble21.2' and ChungY Our interest in this question is rath­
er different. 

Heuristic calculations suggest that the generators of 
gauge transformations of the second kind evolve in interac­
tion like a free field [these are the operators i}"A,lJ) where! 
is a test function]. Thus we might expect that properties of 
the gauge group which hold in the asymptotic Hilbert space 
for quantum electrodynamics will persist in interaction. 
Naturally we would like to prove a theorem along these 
lines. However, this does not seem to be possible at present. 
So, in order to obtain information about charge sectors and 
their relationship to the gauge and the algebra of observa­
bles, we construct in this section a rigorous version of the 
asymptotic Hilbert space for quantum electrodynamics pro­
posed in Refs. 12 and 13. The essential difference between 
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the space described here and those in Refs. 12 and 13 is that 
we quantize the electromagnetic field as in Sec. 1 rather than 
use the indefinite metric. 

One question we do not attempt to answer is whether 
our results are consistent with a perturbation theory based 
on our definite metric quantization. However, recent work 
suggests that this should indeed be the case.25 

We introduce firstly the Fock space for the electron/­
positron field. We will follow Bongaarts.26

,27 Let H be the 
complex L 2 space offunctionsfR J---+C4 with inner product 

(J,g> = at 1 f la(x) ga(x)d lX. 

Introduce the Fourier transformed space of functions on 

X :i = {PER 4 I p' = m~,po'§>O}, 
where me is the electron/positron mass and 

I(x) = f ](p)e;p,xd Jp/2(p' + m;)'I2. 

Introduce the projection operators y+, y_ onto the posi­
tive and negative energy solutions. They are given by multi­
plication by matrix valued functions y ± (p) onX 'UX - (see for 
example, Ref. 28). So we may write 

I(x) = L. [eiP'Xy+(p}/(p) 

U sing the charge conjugation operation Cwe may identify the 
space of negative energy solutions, H_ say, with the space H+ 
of positive energy solutions, as CY+ = y_c. Let 
H' = H+ 6:1 CH_. This is the physical one-particle space, and 
to distinguish the two spaces in the direct sum we write Hp 
for the particle space and Ha for the antiparticle space, CH_. 

Now form the antisymmetrical Fock space Y e over H', 

C6:lH'6:lH'@H ' 6:I···. 

Then the annihilation operators C <J),fEll ' are given by ex­
tension of the operator which maps the vacuum flo to zero, 
/' r--4 J,)flo and 

pcrmcr 

f---+ v'~ L signa<!Ja(1)<Ja(2) ® '" ®Ia(n)' 
u 

for all finite setsj;,···/"ElI '. Annihilation of particles and 
antiparticles is given by the operators C (y J) and C (y+Cf) 
respectively,fEll, while creation is effected by their adjoints. 

Now for each configuration of in going or outgoing elec­
trons and positrons with asymptotic momenta Pa , a = I. ... n; 
qb' b = I, ... m respectively, we introduce the space 

y+(P,)C 4@"'@Y+(Pn)C4@y+(q,)C 4 

(4.2) 

where K (P" .. Pn,q" ... q m) may be chosen in two ways. Kulish 
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and Faddeev define it as follows. Let Y l denote, for each 
pEX +, the Hilbert space carrying the representation p p± of 
LlcCMo) determined by the generating functional 

0'/ (¢J ) = exp [ Of= ieB (1/p,¢J ) jO' F(¢J ), 

where - e = electron charge and (1/p)j,(k) = ip/,!p.k 
(p.k = Poko - p.k). Let Y denote the direct sum 
.7 F6:I 6:1 pEX .. 7 / 6:1.7 p-). Y' is essentially the nonseparable 
space introduced by Kibble to handle the problem of in­
frared divergences.",'l Then K (P""',Pn,q,,"',qm) is the space 

6:1 a.7 P: 6:1 6:1 hCY q,: regarded as a subspace of .'7. Alternati­
vely, our interpretation ofZwanziger's space leads us to set 
K (p"",p",q""',q,,.) equal to the Hilbert space carrying the 
representation of de(M,,) determined by the generating 
functional 

ap"q,,(<b) = exp[ - ieB (1/p",q",¢J )jO'F(<b) 

when 1/ P ... q" is the function 

1/IL (k) = ,,_ _i'_,a_ +" _6_. 
( 

en/l ) eq/l 

P".q" 7' Pa·k "7:' p".k 

We will adopt the second definition of K (P"",Pn,q"",q m) 
for the remainder of the paper, as it appears to us to be less 
artificial than that of Kulish and Faddeev, This choice in no 
way affects any of the conclusions of Kulish and Faddeev. 

Denote by Hn,m(Pa,qh) the space defined by (4.2) with 
the second choice of K (P""'PIl,q"",qm)' Form the direct 
integral, denoted HIl,m' of the spaces Hn,m(Pa,qh) over 
X'X .. · XX+ (n + m factors), H".m consists of equivalence 
classes of functions F on X' X ... X X' such that 

(a) F(P""·,PIl,q" .. ,qm)ElIIl.m(Pa,qh)' 

(b) f 11F(P"",Pn,q" .. ·,qm)II~,mdpdq < 00, 

where dp denotes 

" d 'Pa 

JI1 2(p; + m~)'I2' dq is 

me = electron/positron mass and the norm 1llln.m is the ex­
tension of that given on functions of the form 

P,,",Pmq""',qm r-j;(P')@"'@!,,(Pn) 

@g,(q,)@ .. ·@g",(qm)@u(Pa,q,,) 

by 

f 1).t:,(PJ*YJ:,(Pa) 

X II gl,(q")*y,g(qh)·/lU(P,,,qh)II'dpdq. 

" 
[Here (Ia l, (g" 1 are elements of HI" Ho respectively and 
U(Pa,qb) is in K (P""',p",q""',q",).] 

Finally the asymptotic Hilbert space is the direct sum 

.r! = 6:1 H n.m' 
n,tn -=- 0 

where Ho.o is by definition and Fock space,(7 Fofthe photon 
field. The physical interpretation of the vectors in this space 
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is most easily established by defining a unitary operator from 
.7" ®.7 pinto .af. To do this we associate with the vector 

C (y j;)*···C (y J,)*C (y+Cg,)* .. ·C (y+Cgm )* flo 

®Oi(8q,)fl, 

[where lfa I, [gh I have Fourier transforms (4.1) in H, ~EMo 
and fl F is the vacuum in .7 fJ the element 

p,,",Pn,q,,"',qm ~y+(P}f;<p,)@ ... @ 

Y+(Pn)f(P ,,)@y+(q,)Cg1(qI)@ .. ·@y+(qm)Cgm(qm) 

® {exp[ - iB(TJp".q,'~ )]pp".q,.(8q,)flp".q) (4.3) 

of .0/. Here flp q is the cyclic vector in K (p,,"'p q,'" q ) 
,,' h ' n' , , In . 

It is straightforward to check that this extends to a norm 
preserving linear map U of Y,. ® .7 F onto .rI. It is not diffi­
cult to show that the linear span of the functions of the form 
(4.3) is dense in .r!, so that this map Vis actually an isometry 
from.7 (' ® .(7 Fonto .af. We note that V is a rigorous version 
of the map given in Ref. 13 by Eq. (A9). The interpretation of 
elements of.if as states corresponding to a certain number of 
particles and antiparticles is now clear. Perhaps not too im­
mediately apparent however, are the reasons for choosing 
the functions TJ p".q,; A fuller discussion of their origin is given 
in Refs. 12,29, and 30. We remark only that the expression 
il,(k) = epl/p·k is the Fourier transform of the current due 
to a point electron moving with 4- velocity vI' = p,/me' 
Hence, loosely speaking, the function TJp,,,q, represents the 
effect of the asymptotic electrons and positrons on the elec­
tromagnetic field. 

One of the main results which Kulish and Faddeev wish 
to establish is the form of the asymptotic dynamics for the 
fields in .rI. Contrary to the claims of Ref. 12 however, the 
expression for the time evolution (Eq. 10) does not define an 
operator on their asymptotic Hilbert space. This is essential-
1 y because the L 2 norm ofk~TJ P".q,.(k) diverges for large k. To 
be fair, However, Kulish and Faddeev point out that they 
expect ultraviolet divergences to be eliminated by a renor­
malization. In any case, since we expect this asymptotic 
space to be a good approximation to asymptotic QED only in 
its infrared behavior we could overcome this difficulty by 
introducing a momentum cutoff as follows. 

Let/be a real function on R which is identically one on 
a neighborhood ofzero and zero on a neighborhood of in fin­
ity. Then we introduce a new asymptotic Hilbert space .w' 
defined in the same way as ,w' except that we replace TJI' by p".q" 
the function TJJ;P,,,q, defined by 

It is then straightforward to write down an operator on .,/' 
corresponding to that given in Eq. 10 of Ref. 12. The difficul­
ty with this procedure is that all the results of this and the 
next section are then cutoff dependent. However, see the 
remark at the end of Sec. 5. 
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5. REPRESENTATIONS OF AclNoJ AND CHARGE 
SECTORS 

In this section our aim is to write down the representa­
tion of..1 JNo} which defines the algebra of observables of the 
electromagnetic field. Recalling the discussion of Sec. 1, this 
means finding a representation of .::1 c(No} in which .::1 c(To) 
acts as a scalar. As with the free field, the representationp of 
.::1 c(Mo) described in Sec. 4 decomposes as a direct integral of 
representations of.::1 iNo}. This decomposition is achieved by 
decomposing, for each asymptotic momentum distribution 
P,,",Pn,q,,"',qm of electrons and positrons, the representa­
tion Pl'".q,,: 

We will choose for our representation of .::1cCNo) one of 
the representations occurring in this decomposition. Our 
only criterion here is that Lorentz transformations be imple­
mented. (We note that for the same reason that the asymp­
totic dynamics cannot be defined in .W' without a momentum 
cutoff, so translations are not implemented in ,W', again con­
trary to the assertions of Ref. 12. So, the closest approxima­
tion we can make to Poincare invariance is to demand that 
Lorentz transformations be implemented.) 

Consider therefore the generating functional 

(Jp".q,. : ~~exp [iB (TJ P".q,'~ ) + !iC (~,~ ) l, ebENo, 

which defines the representation 

Pp",q,,: bd>-~exp[iB(TJp".q,,'~ )po(b.p)] (5.1) 

of ..1 c(No). This occurs in the above direct integral decompo­

sition of Pp".q,: 

Now ~e perform the same construction with the repre­
sentations Pp",q, as we did with the representations Pp".q,' 

(n + 11'1) 

namely, form the direct integral over X+X XX+to 

get a representation .on."" say. Denote byp the direct sum 
Ell '::111_ (PIl.m where pO.D is by definition po· The representa­
tion P of ..1JNo) acts on a space B which can be obtained by 
replacing in the definition of ,('I, the space 
K (P""'PIl,q,,",q,,) by the space'i'p, .... ,P".q, ..... q'" which carry 
the representations .01' ... '1,: 

We first check that the Lorentz group automorphisms 
of ac(N,,) are implemented in B. Given the function 

P, ,""PIl,q""',q,,, --..y.(p,)f,(p,)@·"@Y+(P")/n(P,) 

@y.(q,)Cg,(q,)@ ... @y+(q",)Cgm(q",) ®pP".q"(bq,)nl',,.q,.' 

in B (ebEN".!", g"Ef{ and ilp".q,. is the cyclic vector for PP"''1,.' 

a = I .· .. ,n, q = I , .. ,m), then a Lorentz transformation /I 
takes it to 

p"""PIl,q,,''',q,,, --+y.(p,)/;(p,)@ ... @y.(P,,)f;,(P,,) 

@y.(q,)(g;(q,)@ .. ·@y+(qm)Cg:n(qm) 

® .0 P""I,.(a 1 (8 d> »n p".'1,,' 
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and A ---+S (A ) is the usual Dirac spinor representation of the 
Lorentz group. Observe that P p",q" can be realized in the re­
presentation space of po as the representation 

D<b---+exp[iB (T/p".q,,'CP )]po(D<b)' cpENo, 

so that 

Pp".q,,(a A (D,p »np".q" 

= exp[iB(T/AP".,1 'q",CP)] V1Po(D<b)!lo, 

where A-VA implements a A in the Hilbert space carrying 
po. From this it follows immediately that (5.2) extends to a 
unitary operator on B and implements the Lorentz group 
automorphisms of .d/No). 

Now recall the discussion of Sec. 1. If B is to carry a 
representation of an observable algebra. then the gauge 
group To must be represented by scalars. To see that this is 
the case, restrict P to .d J To). Observe that for each 
PI,"',Pn,qh"',q"" PP".q" restricts to the character 

DIi,-exp [/".",( tI,)]. WE To, 

where 

(5.3) 

I".",(w) = - (n - m)e J [ X(k) - X(k )]d lk!2UJ, 

(5.4) 

and tPik ) = k,X(k). 

Thus P restricted to.d e( To) is constant on the subspaces 
on which (n - m) is constant. Now charge sectors can be 
introduced in the obvious way, namely, we say that a sub­
space of d or B is the charge sector of charge q if it is a 
maximal closed subspace on which (n - m)e = q. Hence p 
restricted to .de(To) is constant on each charge sector. When 
n = m = 0 observe that 10 .0 = 0, that is, 
PI'",q" t .d,{To) = po t .dc(To), and so on the zero charge sector 
P defines a representation of .dJNu)!kerpo. For all n*m the 
kernels of the characters determined by I".", are all equal, and 
so the kernels of the representations p p".q" 
(a = I, .. ·,n,b = l,. .. ,m,m*n) are all equal to some ideal, say 
J. of .d/No). Thus in a nonzero charge sector p defines a 
representation of the algebra .dJNo)!J. 

We interpret this to imply that the algebra of observa­
bles in a nonzero charge sector must be .de(No)! J, which 
differs from the zero charge sector observable algebra 
.d/Nn)/kerpo. Note that I",m is invariant under the Lorentz 
group automorphisms of.d cCTo) so that the ideal J is also 
Lorentz invariant. That is, the Lorentz group acts as auto­
morphisms of .dJNo)!J in the obvious way. FinaIly, using 
(5.4), we see that in terms of the potential AI" this choice of 
observable algebra amounts to setting 

(JI'A,'(x) = - (n -- m)eD (x), 

which is the result we wished to establish. 

We conclude with the observation that.dcCNo)!J and 
.dJNo)/kerpo are "connected" by an automorphism of 
.de(No). Namely, if we let 

tfI,:,m(k) = - i(n - m)ek "!k 6, 
then B (tPn.m.w) = In.m(tP) for t/JEl~. and the automorphism 
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tPn,m : D<b-exp[iB{tP".m'cp )Jo,p of .de(Na) has the property 
that 

.d e(No)! J """'po( Y",m(.d c(No») 

(cf. Refs. 8 and IS). 

Remark: If we were to carry through the construction 
of this section with the cutoff function T/f,p,,,q,,' then it is not 
hard to see that (5.2) stiIl implements Lorentz transforma­
tions. Translations are also implemented (but depend onf) 
so the Hilbert space carries a representation of the Poincare 
group. Unfortunately the representation of .dcCNa) is difficult 
to describe. However, suppose the cutoff is removed by 
choosing an increasing sequence lf~ 1 of cutoff functions 
which are elf. functions of compact support, such thatl>-.l 
as n--+ oc. Then if ( is a region of space-time such that 
k-!,,(k.p) = 1 for kEl" (p fixed), then it is not hard to see 
that the states on.d ,,(Nu( /'» determined by T/j;"P".q" restrict on 
.dc(To(/» to the characters given by (5.4) for Pu' qh in some 
bounded region of momentum space. It is therefore tempting 
to suggest that as n-- X), these cutoff states converge to a 
state on 
.JJNu) which restricts on .dc(T;) to (5.3). Although we have 
not carried through this analysis we believe this suggestion 
to be correct, thus lending support to the relation 

(JI'A,,(x) = - qD (x) 

as the appropriate subsidiary condition in a sector of charge 
q. 

6. CONCLUSIONS 

We have presented here some applications of our pre­
viously developed formalism, They suggest that a definite 
metric axiomatic approach to quantum electrodynamics is 
possible. and give some indication of how one might begin to 
modify the work of Doplicher. Haag. and Roberts' to ac­
commodate gauge groups of the second kind, We have seen 
that the supplementary condition (JI'A,,(x) = 0 does not hold 
in nonzero charge sectors. The next step in this program is to 
produce an axiomatic framework in which properties of the 
gauge group To and charge sectors. analogous to those ob­
tained here, can be proved directly for quantum electrody­
namics itself. 

APPENDIX 

The following question was raised by the referee. If 
(JI'A)x) =- qD (x), then Maxwell's equations (JI' Fin' = i,. 
must be replaced by 

(JI'F,,,. = i .. - J,.«(JI'A ,,). (*) 

and the "compensating current" qJ ,D (x). if due to charges 
"at infinity," has the peculiar property of being strongly lo­
calized at the origin. What is the explanation of this 
peculiarity? 

The currentqJ.J) (x). arises from the choice of the func­
tions T/P."q" whose localized nature is explained by Zwan­
zigerlO in great detail (Ref. 30, p. 3484). This point was also 
touched on by Feynman" see (Ref. 31, footnote p. 445). We 
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refer the reader to these papers rather than repeat the discus­
sion here. We emphasize that one of our aims in this paper 
was to demonstrate that Zwanziger's arguments 13 and the 
possibility irA,,7"=O fit naturally into our algebraic frame­
work, this being independent of the specific condition 
("JI'A,,(x) = - qD (x) which arose from the theoretical de­
scription of a particular physical process, namely the tradi­
tional scattering experiment. 

The remainder of this Appendix is devoted to explain­
ing how the analysis of this paper might be expected to carry 
over to QED itself in an attempt to clarify the implications of 
the referee's question. 

To begin with, one needs a definite metric axiomatic 
approach to quantum electrodynamics which could accom­
modate our quantization of the free field and the equations 
(*). In such an approach we would be given a Hilbert space H 
on which would be defined electron/positron fields, a cur­
rent JII' and self-adjoint operator-valued distributions A I' re­
presenting the electromagnetic potential. (An indefinite 
metric version of what we have in mind appears in Ref. 32.) 
These fields would be related by 04/, = )/', and as the opera­
tors (}I'A"if) are not zero we would have (*). Now construct 
the algebra .7 generated by the smeared electron/positron 
fields and the operators expiA"if/') asfl' ranges over the test 
function space. This is afield algebra in the sense of Ref. 8. 

The vectors in H do not define physical states of the 
system nor does the Fi" appearing in (*) define the observ­
able electromagnetic field. (This point can be understood in 
the context of the indefinite metric formalism of Ref. 32 
where Maxwell's equations hold only on a subspace of the 
space on which the potential and current are defined.) 

Following Bucholz l3 it seems probable that in this ap­
proach a scattering theory for the potential Ai' can be rigor­
ously established. Assuming this to be the case there will 
exist asymptotic fields A ;;Ul(X). Now one can define the C *­

algebra."/ generated by exp(i3-uA ;;ul(}) 1 as/ranges over the 
test function space. If it could be established that. f is Abe­
lian and that the operators expi(}l'A ;:u'if) define gauge auto­
morphisms of the asymptotic fields, then we would have all 
the structure necessary to carry through the analysis of Sec. 
\. 

Namely, decompose H as a direct integral over the spec­
trum off and thereby obtain a direct integral of represent a­
tions of. '/-n.:I-'. Assuming the time evolution is gauge invar­
iant (that is, lies in .T') this decomposition would persist in 
the interaction. The points of the spectrum of.'/ would de­
fine superselection sectors and as before we would try to link 
these with the charge sectors. It is unlikely that a relation as 
explicit as il'A ;:u'(x) = - qD (x) could be proved, neverthe­
less we expect the points of the spectrum of.T to be interpre­
table as classical current distributions (see Zwanziger's argu­
ments in Ref. 13). Given that a charge sector can be defined 
in this context we could proceed to determine the form of 
Maxwell's equations in each charge sector. We would expect 
on the basis of this paper and Ref. 13 something of the form 

;Y'~,.{X) = j,,(x) + J~~(lt(x), 
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wherej~ut(x) is a c-number current. Of course one might try 
to includeJ~ut(x) in the sourcej,,(x), so that Maxwell's equa­
tions are satisfied. However, perturbation theory suggests 
that this expedient would produce infrared divergences. The 
point is that scattering theory is an idealized situation, the 
sources specfied by the points of the spectrum of.:I--, being c­
numbers, are never dynamic and so must relate to accumula­
tions of sources which are asymptotic (i.e., effect but are not 
effected, cf. Ref. 31). As such they describe that part of the 
system being left out of the dynamical discussion, namely the 
long-range Coulomb effect of the asymptotic charged parti­
cles, which, in electrodynamics, cannot be neglected. 
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Formal analytic continuation of Gel'fand's finite dimensional 
representations of gl(n,c)a) 
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The article contains three results: I. It is shown that among the 2 n n!( n + I)! discrete series of 
representations of the Lie algebra gl( n, C) of complex n X n matrices described in the literature, the 
majority are not representations at all. Thus for Il = 3 and 4 one has respectively 12 and 45 series of 
representations instead of 18 and 180. II. In addition to the p + I discrete unitary series of 
representations of u(p, q) [the Lie algebra of the group U(p ,q), P'2 q, and p + q = III there exist other 
discrete series of gl( n, C) which become unitary when restricted to its real subalgebra u(p ,q). For n = 3 
there are four such series all corresponding to the chain u(2,1) :)u(l,l):) u(\); for n =4 there exist six 
such series for u(3, I) and four series for u(2,2). Furthermore, some of the gl( Il, C) series whose 
restriction to the real case do not provide unitary representations in general, do contain (infinitely many) 
particular representations which are unitary. Such unitary representations are contained inside of two of 
the four series for Il = 3 and inside of seven of the 27 series for Il = 4. III. Some properties of 
indecomposable representations of the Lie algebras for the groups of inhomogeneous transformations are 
shown using the discrete series of gl( Il, C). 

I. INTRODUCTION 

The explicit representation theory as given by Gel'fand 
and Tseitlin for the groups U(n) and O(n) and later extended 
by Gel'fand and Graev to some representation ofGl(n,C) is 
undoubtedly the most suitable form of the theory for exten­
sive computations. It is therefore important to investigate 
the limits of its validity. In the present paper we are con­
cerned with this question. 

In a paper by Gel'fand and Tseitlin l every finite dimen­
sional irreducible representation of gl(n,C) is described by 
labeling the basis vectors and giving explicit formulas for the 
representatives of a generating set of gl(n,C). In a supple­
ment to a later paper2 on this subject Gel'fand and Graev 
present a systematic study of formal analytic continuations 

I. 

of both the labeling and the generating operators of these 
representations. The goal of this paper is threefold. First we 
shall show that, contrary to the claim of Gel'fand and Graev, 
a sizeable proportion of these analytic continuations are not 
representations of gl(n,C). In fact we give a necessary condi­
tion to these operators to satisfy the commutation relations 
of gl(n,C). Secondly, we consider the restrictions of these 
representations to the real forms u(p,q) of gl(n, C), determin­
ing in particular all these restrictions which are discrete uni­
tary irreducible representations ofu(p,q). Finally, we shall 
indicate by an example some further applications of these 
formal Gel'fand representations to determine interesting 
classes of explicitly defined representations of certain subal­
gebras of gl(n,C). In order to make this paper as self-con­
tained as possible, we begin with a brief outline of the materi­
al presented in the supplement to Ref. 2. 

As is well known, every finite-dimensional irreducible representation of the Lie algebra gl(n,C) of the group GL(n,C) of all 
nonsingular n X n complex matrices is specified by a set of n integers mln;> .. ·;>m nil' The representation space Hhas an orthonor­
mal basis labeled by all possible triangular arrays (patterns) of integers, 

m= 
(

mill 

m 2,n _ I 

where the components mij satisfy the inequalities 

mij;>miJ __ I ;>m i + IJ for i <j<.n. 

mn-1,n-l (1) 

The algebra gl(n,C) consists of all complex n Xn matrices and has the standard basis [eijlij = 1,2,.··,n I, where eijdenotes 
the n X n complex matrix with I at the intersection of the ith row and jth column and zeroes elsewhere. The commutation 
product of this algebra is then given by 
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where {j is the Kronecker delta function. Thus in order to specify a representation of gl(n,C) on H, it suffices to define linear 
operators Eij (representative of eij) on H satisfying the commutation relations (2). In fact, it actually suffices to define only the 
representatives E kk, Ek.k _ I and Ek _ I,k' since the other operators can be obtained from these. 

Gel'fand and Tseitlin give explicit formulas for these generating operators as follows: For any basis vector S(m), where m is 
the label given in (1), we have 

EkkS(m) = (rk - rk _ I)s(m), (3) 

where r k = ml,k + .. , + m kk for k = 1,2, .. ·,n and ro = 0, 

E k.k _ IS (m) = a 1- IS (m 1- I) + ... + aZ = ls (mZ = l), (4) 

where mik _ I denotes the array obtained from m replacing m j •k _ 1 by mj,k _ 1 - 1, 

do = [_ IT7= I(mik - mj.k_I - i + j + I) IT7==-Nm k,k_2 - mj.k _ I - i + J) ]1/2, 
k - I IT i4i mi,k _ 1 - mj,k _ 1 - i + j + 1)(mi,k _ 1 - mj,k _ 1 - i + J) 

Ek_I,~(m) = b L Is(mL 1) + ... + bZ= ls(mZ= D, (5) 

where mik _ 1 denotes the array obtained from m replacing mj,k _ 1 by mj.k _ I + 1, and 

b j = [_ IT7= I(mik - mj,k _ 1- i + J)IT7==-I2(mi.k - 2 - mj,k -1 - i + j - 1) ]112. 
k - 1 IT i4i mi,k _ 1 - mj,k _ I - i + J)(mi,k _ 1 - mj.k _ I - i + j - 1) 

A detailed derivation of these formulas as well as an 
effective description of the operators of irreducible finite di­
mensional representations of the groups GL(n,C) and U(n) 
is given in the paper of Gel'fand and Graev. 2 (Another deri. 
vation of these results is given by Baird and Biedenharn. l) 

In a supplement to the Gel'fand and Graev paper the 
labeling patterns given in (1) are slightly altered and the gen­
erating operators E kk' E k,k _. \, and E k _ I,k defined to operate 
on the new basis vectors in the following way: To each 
k = 1,2, .. ,n - I we assign a pair of integers [i k,i" ] where 

ikE! 0, 1, ... ,k J,ikE[ 1,2, .. ·,k + 1 J,and ik d k. (6) 

For each such set of indices one defines a Hilbert space 
H ! ik,i" ] having an orthonormal basis labeled by the set of 
all possible triangular arrays of in tegers where the top row is 
fixed and the other components satisfy the following set of 
inequalities, 

(1) mJk>mj + l.k' for j<k<n, 

(2) mj _ I.k + 1 + 1 >mjk>mj.k + I + 1, for j<ik, 

(3) mj.k +- I >mjk>mj +- I,k + I' for i k <j < i", 

(4) mJ + I.k + 1 - 1 >mjk>mj +- 2.k + 1 - 1, for J>i" 
(7) 

(by convention we set mO,k + I = + 00 and 
m k +- 2.k I I = - 00). The original finite dimensional space 
corresponds to the case where i k = ° and i" =.k + 1 for 
k = 1,2, ... ,n - 1. All other spaces defined above are infinite 
dimensional. The operators E kk , E k •k _ \, and Ek _ I,k are 
then defined on H ! ik,ik ] by the same formulas (3)-(5), as in 
the case of the finite dimensional representation, on noting 
that the argument of the coefficients aik _ 1 and b{ _ 1 are 
taken to be (1T/2)N, whereNis the common number of neg a­
tive factors under the radial signs in the expressions for aik _ \ 

and bJ
k _ \. It is clear that these operators map any basis 
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I 
vector of H [ik,i" ] into a finite linear combination of basis 
elements of the same space H [i k,i" ]. In a formal sense these 
operators on H [ik,i" ] represent analytic continuations of 
the finite dimensional operators, It is claimed that in this 
manner, for each set of indices [ik,i" ], one obtains a series of 
irreducible representations of the algebra gl(n,C) on the Hil­
bert space H [ i k,i" ]. In Sec. II we show that this claim is false 
for a sizeable proportion of these sets of indices. 

Leaving this problem for the moment, we now outline a 
second set of results in the supplement to the Gel'fand and 
Graev paper which we wish to expand upon. For any fixed 
nonnegative integersp and q withp>q andp + q = n, we 
denote by U(p,q) the group of all n X n complex matrices 
which preserve the Hermitian form 

Since U(p,q) isoneofthereal forms of the groupGL(n,C), its 
Lie algebra u(p,q) is a real form ofgl(n,C). A representation 
of the algebra u(p,q) is then said to be unitary iff the gener­
ators of the representation are all skew-Hermitian. Gel'fand 
and Graev show that among the representations of gl(n,C) 
defined above, there exist p + I series of irreducible unitary 
representations of u(p,q). This result follows by selecting a 
basis of u(p,q) consisting of 

iekk, for k = 1,2, .. ·,n, 

ekl- elk' i(ekl + efd, for k,l<p or k,/>p, (8) 

ekl + elk' i(ekl- elk) for k > p and i<p, 

and observing that the representatives of these basis ele­
ments on the space H [ik,i~ I are skew-Hermitian iff we have 

(1) E kt = Ekk• for k = 1,2, .. ·,n, 
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and 

(2) E + = { Ek ~ I,k' for k=l=p, 
k,k~ I -E 

p ~ I,p' for k = p. 
(9) 

These conditions are equivalent to requiring that the coeffi­
cients a{ are real for all k=l=p and all} = 1,2, ... ,k, and that af. 
are purely imaginary for} = 1,2, ... ,p. By inspection the onl; 
sets of indices [ik,i" I satisfying these conditions are the 
following: 

i k = 0, i" = k + 1, for k <p, 

ip=l E[0,1,2, ... ,p)' i;=l+ 1, (10) 

ik=l, i,,=l+k-p+l, fork>p. 

In each of these p + 1 cases one observes that the labeling 
formalism yields an explicit description of the branching 
rule for the canonical chain of subalgebras u(p,q) 
-::Ju(p,q - 1)-::J ... -::Ju(p,O)-::J ... -::Ju(l). Note that the opera­
tors Eij for ij<l1leave the top n - 11 + 1 rows of the labels 
invariant, and hence the subalgebra ofu(p,q) consisting of 
linear combinations of operators from [E ijl ij <11 J can be 
viewed as operating only on the bottom 11 - 1 rows of the 
labeling arrays. It is in this sense that we associate a chain of 
subalgebras of u(p,q) with the given basis labels. 

In Sec. III we show that the restriction of other repre­
sentations of gl(n,C) to u(p,q) also provides discrete series of 
unitary irreducible representations of the Lie algebra u(p,q), 
which in some cases correspond to different chains of 
subalgebras. 

Consider the vector 

II. A NECESSARY CONDITION FOR EXISTENCE 
OF A DISCRETE SERIES OF gl(n,C) 

In this section we show that for certain sets of indices 

[ikoi" I, allowed by condition (6), the generators E kk, Ek •k ~ i' 
and Ek ~ I,k defined on H [ik,i" I do not provide representa­
tions ofthe algebra gl(n,C). In fact, we claim that a necessary 
condition for these operators to satisfy the commutation re­
lations (2) and hence provide a representation of gl(n,C) on 
H [ik,i" I is that for each k = 2,3, ... ,n - 1 we have 

i k ~ l,i" _ le[ l,ik - 1 ]U[ik + l,i" - 2]u[i,("k - 1]. (11) 

Here [a,b] denotes the set of integers [a,a + 1, .. ·,b I; by con­
vention [a,b] = 0 if b < a. 

To illustrate this condition consider the case of n = 3. 
Gel'fand and Graev claim that for each fixed set of integers 
m 13 )m23)m J3 their construction yields 18 inequivalent irre­
ducible representations of gl(3,C); one representation for 
each of the 18 different sets of indices (see Table I). Of these 
18 sets of indices, six do not satisfy condition (11). To be 
specific, consider the particular case (i2,ii) = (0,3) and (il,i;) 
= (0,1). These values are clearly within the range allowed 

by (6), but forbidden by (11) because i; = lE[i, + l,i; - 2] 
= (1,1]. From Table lone reads otfthe inequalities imposed 

on the elements of an array belonging to the space 
H ! (0,3),(0,1»). Namely, for any fixed integers m U)m'3)mJJ 
one has 

m= 
(

m13 mJJlu r~ !(0,3),(0,I)J, 

TABLE I. Gel"fand representations of gl(J,C) and their restrictions. 

Jnl,/'nl:~,tm." 

mc,:?m::pm" 

(0,2)= 

ml,,,,,,ml:~m:, 

tn, --lpm i :: 

(0,1)= 

m." - I "3mL'_J3m1\ - 1 
m,,~ L'm,., 

(1.31= 

(1,2)= 
ml.'Jtn l , + I 
m,,' I~m" 

(2,3)= 

(0,2) 

Unitary 
su(3):Jsu(2) 

Unitary if 

su(2.1) :Jsu(2) 

Unitary 
su(2, I):J su(2) 

Unitary if 

su(2,1):Jsu(2) 

Unitary 
su(2, I):J su(l) 

Unitary 
su(2, 1):J su(2) 
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(0, I) 

Nota 
representation 

Unitary 
su(2, I ):J su(I, I) 

Not a 
representation 

Unitary 
su(2, I) :Jsu( 1.1) 

Never 
unitary 

Nota 
representation 

(1,1) 

Not a 
representation 

Unitary 
su(2,1) :Jsu(l,I) 

Not a 
representation 

Unitary 
su(l, I):J su(l, I) 

Never 
unitary , 

Not a 
representation 
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where the elements m 22 and mil have reached their highest values compatible with (12). Then 

EJ1m = alml = al(mll mil _ 1 m23 mn m
33
), (13) 

m 21 -1 

which differs from zero as long as mil > m2J' If, however, mil = m2J, then necessarilyai = 0; otherwise the array ml on the right 
of(13) would not satisfy the inequalities (12). Substituting the values mil = m23, mn = m23, and mil = m21 - 1 into the expres­
sion for ai, one verifies that both the numerator and denominator of al contain a factor equal to ze~o. In order to avoid a 
contradiction one is forced to define that al = ° whenever the numerator contains zero, regardless of the denominator. Indeed, 
that convention is tacitly adopted in Ref. 2. The point we want to make here is that even then a contradiction is not avoided. It 
can be shown as follows: 

(14) 

and 

(15) 

Algebraic simplification of the coefficients verifies that [E23 ,EJ2]S (m) = (En - E 3J)S (m). Now, however, if we assume that 
m l 2 = m2], we have 

(16) 

and 

_( ( )( +2) (m,J-m,J + 1)(m 2J -m23 + 2) )f:"( ) - - m'l - m2] m23 - mH ~ m . 
(m2J - m 21 + 1)(m z3 - m" + 2) 

(17) 

[Note that the term (aD' of Eq. (15) does not occur in Eq. (17).] Equating the coefficients in (16) and (17), we obtain 
(m'J - m ll - 1)(m" - m33 + 1) = 0, which is impossible, since m'l?>m,;;;;,m J3 . We may thus conclude that the operators Ei; 
defined as above on H ! (0, 1 ),(0,3) I do not provide a representation of the algebra gl(3, C). The problem arises here in the passage 

from Eq. (15) to Eq. (17) asmll-m'J' In particular the coefficient (aD' tends to (mll - m'J + 1)(ml1 - m Jl + 1)*0 asmll-mZl 
whereas in the limiting case of m 12 = m 21 this term must vanish due to the constraints on the arrays of integers belonging to 
HI (0,3),(0, 1) I. This problem can be resolved in the context ofthis formalism only by insuring that whenever m12 = mll we also 
have m ll = m" = mn; this condition, translated in terms of the indices, implies that if(i2,i~) = (0,3) we must have (i,,iD = (0,2). 

In the general case, although the coefficients are much 
more complicated, we arrive at essentially the same problem. 
Whenever the set of indices [ik,i" I allows an array in which 
mjk = mj + l,k' we must also have that mj _ l,k _ 1 - 1; mj,k _ 1 

or mj + l,k _ 1 + 1 = mjk = mj + l,k in order to preserve the 
continuity of the coefficients a~ and b j

k at the boundary val­
ues of the arrays belonging to H {ik,i" I, This condition can 
easily be translated into condition (11) on the set of indices, 

For n = 3 one can directly verify that ifthe set of indices 
I ik,i" I satisfies condition (11) the operators Ei; defined on 
H {ik,i" I do provide a representation of the algebra gl(3,C). 
For n arbitrary, however, we have been able to give a proof of 
the sufficiency of condition (11) only in certain special cases. 
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III. DISCRETE SERIES OF UNITARY 
REPRESENTATIONS OF u(p,q) 

As noted earlier, Gel'fand and Graev have shown that 
the restrictions of certain of these series of irreducible repre­
sentations of gI(n,C) to its real form u(p,q) yield discrete 
unitary irreducible representations with the Gel'fand bases 
corresponding to the chain of subalgebras u(p,q) 
:J u(p,q - I):J ... :J u(P,O). In this section we show that it is 
possible to obtain additional unitary irreducible representa­
tions of u(p,q) corresponding to this same chain of subalge­
bras as well as other chains of subalgebras. 

In terms of the Gel'fand basis of the space H I (i k,i,,) I, 
we have E S' = Eji, and moreover, E jt = E:; = Ejj, where T 
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and + denote transposition and Hermitian conjugation, re­
spectively. We now wish to investigate under what condi­
tions we have E p:p _ I = ± Ep _ I.p' By formula (4) we have 
Ep,p_ls(m) = <_ls(m~_I) + ... + a~= :s(m~= :), 
where the coefficient ail' _ I is either real or purely imaginary, 
depending on the set of indices ! (i k,ik) J. (Note this is inde­
pendent of the particular array.) Thus, if ~ _ I is real for 
} = 1,2, ... ,,u - 1 we have Ep:p _ I = Ep _ I.p and if ~ _ I is 
purely imaginary for} = 1,2, ... ,,u - 1 we have 
E p:p _ 1= - Ep_ I,p' By simply counting the number of 
negative factors in the expression for ~ _ I we can determine 
whether a;:, _ I is real or purely imaginary. This determina­
tion is then displayed in the following scheme: 

}<Jp _ I ip _ I <} < i~ _ I 

I>ip _ 2 real imaginary 

ii' - 2 <}<J;, _ 2 imaginary real 

i~ _ 1<1 
real 

imaginary 

i;, _ 2 <} real imaginary real 

Using this scheme we can conclude that 

(1) If (i" _ 2,ip _ 2) = (l,l ') and (ip _ I,i~ _ I) 
= (l,l' + I), then E P:"_ I = E,l _ I,p' 

(2) If (a) (il' _ 2,ip _ 2) = (0,1) and (ip _ I,l~ _ I) = (/,,u), 
or (b) (ip _ 2,ip __ 2) = (/,,u - 1) and (ip _ I,i~ _ I) = (0,1 + 1), 
or (c) (ip _ 2,ip _ 2) = (O,,u - 1) and (ip _ I,i~ _ I) = (1,1 + 1), 
then E p:p _ I = - Ep _ I,p' 

In all other cases one finds that in general, the coeffi­
cients of Ep.p _ IS(m) contain both real and purely imagi­
nary terms and hence E p:p _ I=F ± Ep _ I,p' If, however, we 
place particular restrictions on the values of the defining 
constants mln, .. ,mnn of the representation it is still possible 
to have E p:p _ I = ± Ep _ I,p' Later we describe this situa­
tion for n = 3 and 4. 

Consider now any sequence E = I EhE2,. .. ,EnJ where 
El = 1 and E, = ± 1 for i = 2,3, ... ,n. [This sequence can be 
understood to be the signature of the u(p,q) invariant form.] 
We shall say that a set of indices! (ik,i/J J such that 

E ,~,' _ I = E
" 

_ I EpEl' _ I,p for,u = 2,3, ... ,n is compatible with 
the sequence I El, ... ,En J. If E, = + I for all i = 1,2, ... ,n there 
is exactly one compatible set of indices. namely ik = ° and i~ 
= k + I for k = 1,2, .... n - 1. If v < n then there are v + 1 

distinct sets of indices compatible with the sequence 
!Eh ... ,En! whereEl = ... = Ev= + I andEv + I = ... = En 
= - 1, These are precisely the sets of indices (9) considered 

by Gel'fand and Graev. where one takes p = v, Finally for 
each other sequence there are two compatible sets of indices. 
Note that the sets of indices compatible with any sequence 
satisfy condition (11), 

Choose some p < n and restrict attention now to those 
sequences which contain either p or q = n - p terms equal to 
+ 1, To any such sequence we associate a set of generators of 

a representation of the algebra u(p,q) as follow: 

jiE/1I,I,u = 1.2, ... ,n! 
u[ i(E/l"l _ I - Ell l,p).E/l,/l I + Ep - 1./1 
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I for all ,u with EI'_ IEI' = - 1 J, 

For any set of indices! ik,ik J compatible with the given se­
quence each of these generators is a skew-Hermitian opera­
tor on the space H ! (ik,ik) J. Therefore, assuming the suffi­
ciency of condition (11), these operators provide a discrete 
irreducible unitary representation of the algebra u(p,q) on 
the spaceH! (ik,ik) J. Ifwe setpj (resp. q) equal to the num­
berof + 's(resp. - l's) in the truncated sequence !El, .. ,EjJ, 
then the Gel'fand basis of this representation space corre­
sponds to the chain of subalgebras 
u(p,q) :Ju(Pn _ I ,qn _ I ):J ... :Ju(1). 

ble representations ofu(p,q) the unitary condition depends 
solely on the set of indices I (i k.i~)! and is valid for all possi­
ble choices of the defining integral parameters mln> .. ·>mnn, 
i,e., for all irreducible representations of the series. We now 
observe that some other sets of indices also yield unitary 
representations, but only for certain values of the parameters 
mln> .. ·>mnn' For the cases of n = 3 and n = 4 we have tab­
ulated these additional series of unitary representations by 
specifying for each such set of indices the restrictions on the 
values of m In> .. ·>mnn and the sequence to which it is 
compatible, 

To illustrate the results of this section let us again con­
sider the case of n = 3. In this case there are four possible 
sequences (1,1,1), (1,1, - 1), (1, - 1,1) and (1, - 1, - 1), 
each of which will be treated separately, 

The sequence (1,1,1) gives rise to the real subalgebra 
u(3) of gl(3,C) and the only compatible set of indices is 
[(0,2),(0,3) J, Not surprisingly. this set of indices provides us 
with the unique finite dimensional unitary irreducible repre­
sentation of u(3), 

The sequence (1,1, - 1) gives rise to the real sub algebra 
u(2.1) of gl(3,C) and there are three compatible sets of indi­
ces, namely [(0,2),(0,1) J, [(0,2),(1,2) J, and [(0,2),(2,3)!, 
The associated representations of these sets of indices are 
precisely the three discrete unitary irreducible representa­
tions of u(2, 1) described by Gel'fand and Graev, In the de­
composition of each of these representations with respect to 
the subalgebra u(2,0) generated by 
I iEll,iEn,i(El2 + E2l),EI2 - E2ll we observe that the second 
row components (m l2 ,m,,) label the infinite number of finite 
dimensional irreducible unitary u(2) subrepresentations. 
Thus the Gel'fand basis formalism corresponds to the chain 
of subalgebras u(2, 1):J u(2), 

The sequence (1, - 1,1) also gives rise to the real subal­
gebra u(2, 1) of gl(3,C), and there are two compatible sets of 
indices 1(0,1 ),(1,3)! and 1(1,2),(0,2)!, The Gel'fand bases 
for the two associated representations corresponds in this 
case to the chain of subalgebras u(2, 1):J u( 1, 1). In fact, if we 
decompose these representations into their irreducible com-

F. Lemire and J. Patera 824 



                                                                                                                                    

ponents with respect to the subalgebra u(1, 1) generated by 
{iE ll ,iE22,i(E12 - E21),EI2 + E2IJ, we find that the compo­
nents (ml2,m22) of the second row label the infinite dimen­
sional unitary irreducible u( 1,1) subrepresentations. 

Finally the sequence (1, - 1, - 1) again gives rise to the 
real subalgebra u(2, 1) and there are two compatible sets of 
indices {(O, 1),(0,2)l and {(I, 1),(l,3)}. As in the previous 
case the Gel'fand labeling corresponds to the chain of subal­
gebra u(2, 1)::> u(1, 1). 

A summary of these results for the case n = 3 is dis­
played in Table 1. a similar analysis of the case n = 4 has also 
been carried out with the results given in Tables II(a), II(b), 
and I1(c). 

IV. EXAMPLES 
In this section we illustrate the results ofSecs. II and III 

by considering the following specific examples where for 
simplicity we assume that m13 = m23 = m33 = 0. 

A. Space in which operators do not provide a 
representation of gl(3,C) 

The space H { (0, 1 ),(0,3) 1 has a basis consisting of 

z 
Using the formulas (3)-(5) we have 

(E22 - E]J)S (0 
z z 

whereas 

[E23 ,E32 ]5" (0 
z 

Thus on this space [E23 ,E32]*E22 - Ell' i.e., these operators 
do not yield a representation of gl(3,C). 

B. Representation of gl(3,C) whose restriction 
to the real forms u(3) or u(2,1) are not unitary 

The space HI (1,2),(1,2) 1 has a basis consiting of 

TABLE IIA. GeI'fand representations ofgl(4,C) and their restrictions. Assume(i"i~)::: (O,l), i.e., m ll - i;.,m", 

(0.3) (0,2) 
(i"i;) rn,,>m,:)mZI m 11>m ll>m 11 

(i,.i;) rn2,>m:1:)<m" m"-I>m,, 

(0,4) 
m l.)m1 ,>mZ4 Nota Not a 
m:.;;tm",>m,. representation represen tation 

m .. >m".)mH 

(0,3) 
ml .. >ml,)rnH Not a Unitary on 
m:.>rn:\)m" representation su(3,1):Jsu(2.1) 
mu-l,)tn" :Jsu(l.\) 

(0.2) 
m,.>ml,>m}~ Nota Nota 
m,.- l>ml,>m H - I representation representation 
m •• - l;;'m" 

(0,1) 
m~4 - 1 .;;:.m1,;:..m" - 1 Nota Nota 
m'4 - l>m:,>m" - t representatIOn representation 
mu-1;"m" 

(1.4) 
m,,;>m,, + I Not a Not a 
mI4>ml,~m~4 representation representation 
m'4;;tm,,;;,.mU 

(l.3) 
m l ,.)m ,4 + I Nota Never 
m l4 >m;,>m '4 representation Unitary 
m.~ -- (';Pm" 

( 1.2) 
m,\>mI 4 + 1 Nota Nota 
m .. - L >m p >m44 - t representatlon representation 
tnu - l>m\1 

(2,4) 
mI1#ml.+ 1 Not a Unitary on 
mil + l>mll>m!~ + I representation su(2.2):Jsu(2, I) 
m'4>ml,>m .. :Jsu(I,1) 

(2,3) 
m,,>m,.+ I Nota Never 
m lo + l>m2\#mH + i representation unitary 
m4(-i>ml1 

(3,4) 
m ll >m I4 + I Nota Nota 
m l4 + t >mZl>m to + 1 representation representation 
mlO + l;;..mll;;..m'4 + t 
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(0.1) 
m 1, - l>m l1 >m" - I 
m"-I>m,, 

Not a 
representation 

Not a 
representation 

Nota 
representatIOn 

Nota 
representation 

Not a 
representation 

Not a 
representation 

Nota 
representation 

Nota 
representation 

Nota 
representation 

Nota 
representation 

(1,3) 

ml~>ml' + I 
m1,>m!:>m" 

Nota 
representation 

Not a 
representation 

Unitary on 
su(2,2) :::Jsu(l, I) 
:Jsu(I,I) 

Nota 
representation 

Unitary on 
su(3, I) :Jsu(2, I) 
su(l,I) 

Never 
unitary 

Never 
unitary 

Nota 
representation 

Nota 
representation 

Not a 
representation 

(1.2) (2,3) 

ml~>ml\ + I mll>m" + I 
m,,- I)m" ml, + I >m~l>mll + I 

Nota Not a 
representation representation 

Not a Nota 
representation representation 

Nota Nota 
representation representation 

Nota Nota 
representation representation 

Not a Not a 
representatIon representation 

Never Not a 
unitary representation 

Not a Not a 
representation representatIon 

No(a Nota 
representation representation 

Not a Not a 
representation representation 

Nota Not a 
representation representation 
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TABLE liB. Gel'fand representations ofgl(4,C) and their restrictions. Assume (i,.i;) = (0,2), i.e., mlZ>m11>mn . 

(0,3) (0,2) (0,1) (1,3) (1,2) (2,3) 
(il,i~) mll>mlZ>m21 mj,",)mll)m Z' m 2l - l>m11)m j , - 1 m1Z)m jl + I m11>m 1l + I m11)m l\+ I 

(i,,i;) m11>mZ,>m11 m1,-I>m 11 mn-l)mn 

(0,4) Unitary on 
m I4 j:m l ,)m14 su(4)::Jsu(3) Not a Not a 
mN)mll)mI4 :Jsu(2) representation representation 
m\4)m'l>mH 

(0,3) Ifm'4 = m H = m 14 If m l4 = m H = m 14 
m j4 ,;;.m1,>m 14 unitary on unitary on Not a 
m14>mll>mI4 su(3, I)::J su(3) su(2,2)::Jsu(2, I) representation 
mu - l>ml1 :Jsu(2) :Jsu(2) 

(0,2) Ifm ,4 =mZ4 
m ,4 )m l,)mZ4 unitary on Not a Unitary on 
m,. - l>m1,>m44 - 1 su(3,1):Jsu(3) representation su(2,2) :Jsu(2, I) 
m44-1~m\1 :Jsu(2) :Jsu(2) 

(0,1) 
m,4 - l>m j l>m\4 - I Unitary on Nota Not a 
m,. - 1 >m11 )ma - I su(3,I)::Jsu(3) representation representation 
m 44 -1>m" :Jsu(2) 

(1,4) IfmH = m'4 = mH 
mj1;;>m l.+ 1 unitary on Not a unitary on 
m1.>m,,)m'4 su(3,I)::Jsu(3) representation su(3, I):J su(2, I) 
m\4,;;.m'lj:m 40 :Jsu(2) :Jsu(2) 

( 1,3) Ifm,~ = m,. 

m l ,>m 14 + 1 unitary on Never Never 

m14>mZ\~m\4 su(3,I)::Jsu(3) unitary unitary 
mH -l;""m" :Jsu(2) 

(1,2) 
m l,>m I4 + 1 Unitary on Not a Never 
m,~ - l>mJ\>mu - I su(3,I)::Jsu(3) representation unitary 

m 44 -l>m" :Jsu(2) 

(2,4) Ifm\4 = mH 
m l ,,;;.m I4 + 1 unitary on Never Not a 
m t .. + 1>ml,;.m~4 + I su(3, I )::Jsu(3) unitary representation 
ml.?m,.>m4; :Jsu(2) 

(2,3) 
ml\j:m,~ + I Unitary on Never Not a 

m 14 + 1>m1\;;.m~4 + 1 su(3,1):Jsu(3) unitary representation 
m~4 - l~m\ :J,u(2) 

(3,4) 

ml,~ml' + I Unitary on Not a Not a 

mi' + I ~m~\,>m:~ + I su(3,1):Jsu(3) representation representation 

m~, + 1 dm";,,m'4 + 1 :Jsu(2) 

z 
x;> 1;y,;;; - 1 and z;>x + I}. 

By direct calculation one can verify that the operators de­
fined by formulas (3)-(5) provide an irreducible representa­
tion of gl(3,C) on this space. However we also observe that 

and 

\s(x 

826 

z z 

= _ ( x(x + l)(x + 2)(z - x-I) 

(x - y + l)(x - Y + 2) 

)1/2 

= \s(X + 1 
z 

Y)I E32ls(X 
z 

y)) 

z 
y + 1) IE 21 Is (x 

z 
y)) 

_ i( (1 - y)( - y)( - y - 1)(z - y) )112 
(x - Y + 1)(x - y) 

- \s(x z y + 1)I E32ls(X z Y)). 
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I 

m 21 )mn>ml) mn-l>mZl m l , + l;..mn >mZl + \ 

Nota Not a Not a 
representation representation representation 

Not a Not a Unitary on 
representatIOn representation su(3.1) :Jsu(2, I) 

:Jsu(2) 

Never Not a Not a 
unitary representation representation 

Not a Not a Not a 
representatIOn representatIOn representation 

Ifml4 = m'4 = m 44 
unitary on Not a Not a 
su(2,2)::Jsu(2, I) representation representation 
:Jsu(2) 

Never Unitary on Never 

unitary su(2,2):J su(2, I) unitary 
:Jsu(2) 

Never Not a Not a 
unitary representation representation 

Not a Not a UnItary on 
representation representation su(2,2) :Jsu(2, I) 

:Jsu(2) 

Not a Not a Never 
representation representation unitary 

Not a Not a Not a 
representation representation representation 

(all factors under the radical signs have been made nonnega-
tive). Thus E 31 =1= ± E l2 , and consequently the restriction of 
this representation to either u(3) or u(2, 1) does not consist 
solely of skew-Hermitian matrices, i,e., these restrictions are 
not unitary. 

C. Representation of gl(3,C) whose restriction 
to u(2,1) is unitary but not equivalent to any of 
those given by Gel'fand and Graev 

The space H ! (0,1 ),( 1 ,3) 1 has a basis consisting of 

z 
0) I x;> 1 and z,;;; - I}. 

By direct calculation one can see that the linear operators 
defined by formulas (3)-(5) provide an irreducible represen­
tation of gl(3,C) and moreover that the restriction of this 
representation to u(2, 1) is unitary. This representation is 
however not equivalent to any of the unitary representations 
of u(2, 1) listed by Gel'fand and Graev. This follows immedi-
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TABLE lie Gel'fand repre~entatlOns of gl(4.C) and their re~lrictions As\ume (lI,i;) = (1,2), i.e., m" ;,;,.m'l + 1 

(0.3) (0.2) (0,1) ( 1.3) (1.2) (2,3) 

(1,.1:) mjl>m,~,;;.m!, m)t>m,~;,tml' mil - t>mu,llm" - 1 mll;;m"+ 1 m l1 )m l ,+ 1 m'l>ml' + 1 

(t ..i~) m~,~m~,pm" Tn" -l~ml: mtl-I>mn 

(0,4) 

mH~m"J'm~~ Not a Nota Nota 
m",)m;,?m,. representation representation representation 
m,.>m,.>m .. 

(0.3) 
m,.>m,\>m!. Not a Unitary on Not a 
m:,pml,;;:m,. representation su(3.I):J su(2, I) representatlOn 
m H - l.;.m" Jsu(I.I) 

(0.2) 
m,.;,;.m,.)m;4 Not a Not a Not a 
m,~ - \ J'm 1,jm .. - 1 representation representation representation 
m H - l;tm,. 

(0.1) 
m). - 1 >m,,>m,* - I Not a Nota Not a 
m,. -- I ,)m~.~m •• - 1 representatIOn representation representation 
m., - l,)m" 

(1,4 ) 
,",,).m,.+ 1 Nota Not a Not a 
m;4,)m:,')m q representation representation representation 
m,.)m",;.m •• 

( 1.3) 

ml,~m,. + 1 Not a Never Not a 
m:.)m:,;;'Tn,. representation Unitary representation 
m .. - I).m" 

(1.2) 
m,.,)m,,+ I Not a Not a Not a 
m,~ - I ;;tm:.-;m •• - I representation repI"esentatlon representation 
m •• - l)m" 

(2.4) 
m,,;.m,, + 1 Not a Unitary On Nota 
m l < + 1 )m:,)m, .. + I representatlOn su(3.1 p $u(2.1) representation 
m,.)m",;;.m H :)$u(I.I) 

(2.3) 
ml\)m,. + t Not a Never Nota 
m,. + 1 )m~,;,;.m~< + I representatIon unitary representation 
m.4 - I)m" 

(3.4) 
m l ,)m\4+ 1 Not a Not a Nota 
ml< + l>m l ,#m I4 + 1 representatIOn representation representation 
m).+ I>m,,>m\.+ 1 

at ely on comparing the weight space decompositions of these 
representations. 

D. Unitary representation from a series which is 
in general nonunitary 

In general, the representations of gl(3,C) associated 
with the set of indices (0,2),(0,2) I do not restrict to unitary 
representations of u(3) or u(2.1), however if we take 
ml3 = m 23 = m33 = 0, thenthespaceH {(0,2),(0,2») hasa 

m:,;;tmu#m" m,,-l>mu m" + 1 #mU#mll + 1 

Not a Not a Not a 
representation representation representation 

Not a Not a Not a 
representation representation representation 

Unitary on Not a Nota 
$u(2,2) J$u(2, I) representation representation 
:)su( I, I) 

Nota Nota Nota 
representation representation representation 

Unitary on Not a Not a 
5u(3.I)::J $u(2, I) representation representation 
J$u(l.1) 

Never Never Not a 
unitary unitary representation 

Never Not a Not. 
umtary representation representation 

Not a Not a Not a 
representatIOn representation representation 

Not. Nota Nota 
representation representation representation 

Nota Nota Nota 
representation representation representation 

basis consisting of 

{s(O Z Y)I Y<-l;Z<Y-l} 

and the matrix element a~ and b ~ are identically zero. There­
fore, by writing out the linear operators on this space one can 
directly verify that the generators of the representation are 
skew-Hermitian when restricted to u(2, 1) and hence the re­
presentation is unitary. Moreover, the Gel'fand basis is asso­
ciated with the chain of subalgebras u(2, l)::J u(2) and by 
considering the weight space decompOSition, this represen­
tation is not equivalent to any of those specified in Ref. 2. 

v. REPRESENTATIONS OF NONSEMISIMPLE SUBALGEBRAS OF gl(n,C) 

The explicitly defined Gel'fand representations of gl(n,C) offer possible avenues to study the representations of other 
subalgebras of gl(n,C) in a detailed manner. As an example consider the group G ofinhomogeneous transformations consisting 
of all 3 X 3 complex matrices 

g=[~ ~]. 
where aEGL(2,C) and ZEC2. The elements of G can be viewed as operating on the two dimensional affine space 
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I (x,y,l) I X,YEC I where(x,y,l)g = «x,y)a + z,l). The LiealgebraL ofG, considered asa subalgebraofgl(3,C) has a basis given 
by I e,j I i = 1,2,3; j = 1,21· Consider an arbitrary, finite dimensionalrepresentation(p,V) of L. When viewed as a representa­
tion of the subalgebra gl(2,C), the space V decomposes into a finite direct sum of irreducible representations, say 
V = WI ffi .•. ffi Wn. Define two operators N = p(e12) and M = p«ell - e22 + l)eJI + eJ2e21 ) on the space Vand note the following 
properties: 

(1) By an extreme vector of Vwe mean any vector vEVsuch thatp(e I2)v = O. Since lP(e I2),N] = lP(e I2),M] = 0, we find that 
Nand M map extreme vectors to extreme vectors. 

(2) Denote by <S) the gl(2,C) subrepresentation of V generated by a set S~ V. Then for any nonzero extreme vector VE Vwe 
have 

Dim<Nv) = Dim<v) + 1 or Nv = 0, 

and 

Dim(Mv) = Dim<v) - 1 or Mv = O. 

(3) Combining remarks 1 and 2 with the fact that [N,M] = 0 we find that Nand M are commuting nilpotent linear 
operators on V. This in turn implies that for any fixed nonzero extreme vector VE V the set of all nonzero vectors of the form 
N "M "V is linearly independent. ! The operators Nand M are clearly simple modifications of the Nagel-Moshinsky operators 
[cf.(4)ll 

Consider now Va = < I N "M "VI I VI is an extreme vector of WI and Ii, v are nonnegative integers I). It is clear that WI ~ Va 
and Va is an L subrepresentation of V. We shall now explicitly construct a representation of L equivalent to Va using the Gel'fand 

( representations of gl(3,C). 

Let d + 1 denote the dimension of the space WI and let k be the smallest nonnegative integer such that Nkvl*,O and 
N k + I VI = O. Denote by (p I, U) the restriction to L of the unique finite dimensional irreducible representation of gl(3,C) labeled 
by the sequence ml3 = k + d, m23 = k and mJJ = O. Let U' equal to the L subrepresentation of U generated by 

k+d-v k-Ii ! (k +d 
sCm) m = 

k 

k+d-v 

We claim that Va and U I U' are equivalent L representations. In fact, by the properties of Nand Mlisted above we find that 
as a gl(2,C) representation 

Va= 
jJ.l' nonnegatice integer 

s,l. N"M'v,*O 

where (NI-'MVv l ) is a (d + 1 + Ii - v)-dimensional irreducible gl(2,C) subrepresentation. The corresponding decomposition 
of U IU' as a gl(2,C) representation yields 

k 

k-Ii 

k+d-v 

where 

/!-(k+d 
\~ k+d-v 

k 

k+d-v 
is a (d + 1 + Ii - v)-dimensional irreducible gl(2,C) subrepresentation. Thus Vo~ U IU' as gl(2,C) representations. 

To complete the verification of the equivalence of Va and U I U' as L representation it suffices to observe that the map ¢, 
given by setting 

k 

k+d-v 
k+d-v 

where the coefficients KI-'v are constants defined by the equation 

(

k+d 
pI(eJ2)l-'pl«e\l - e22 + 1)e31 + eJ2e21)YS k + d 

k+d 

k 

k 
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k 

k+d-v k-fl )+U" 
k+d-v 

can be extended in a natural fashion to an L representation equivalence between Vo and V I V'. 

It is easily seen that theL representation V IV' and hence Vo is indecomposable and one can explicitly write out the matrix 
elements of the representations. Thus we have a very explicit presentation for a wide class of finite dimensional representations 
of L. 

This technique has a wide range of possible applications which would appear to be worthy of further investigation. 
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The scaling limit of the <1>2 field in the anharmonic 
oscillatora) 

Dan Marchesinb) 
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We prove that the rescaled and renormalized q 2 process for Hg = [p 2 + gq" +(1- g)q ']/2 tends to the 
Gaussian process for the Harmonic oscillator as g tends to infinity. 

I. INTRODUCTION 

The double-well potential 

V(q) = g[q' - (1 - l/g)/2 

is studied in the scaling limit g--.. 00. The associated stochas­
tic process, q(t), has an infinitesimal generator 

Hi( = +[ - ;q', + V(q)], 

and in this limit, the process decomposes into a tensor prod­
uct of a Bernouilli process and a Gaussian process. The Ber­
nouiIIi process labels tunneling ("ins tan tons") between the 
potential wells, while the Gaussian process labels fluctu­
ations within a well ("spin waves"). It was shown in Ref. 1 
that q(t), appropriately scaled, tends to the Bernouilli pro­
cess, i.e., a spin-1 Ising model in the real line. A similar result 
was obtained by Ref. 2 for the limit of a q4 lattice field theory. 

In order to find the Gaussian process, we use test func­
tions which vanish on the Ising part of the measure. Thus we 
are led to consider functions of q which vanish at the minima 
of the potential, namely q' - E (q') or q[q2 - E (q')]. These 
random variables converge as g--.. 00 to the standard Gaus­
sian process associated with the harmonic oscillator. 

We define for the former the random process at time 

Qr/t) = e 11l'Qg = e - IH'(1g) '12 [q' - E (q')]. 

We prove in Sec. II-IV that for all t;;~O and N 

lim E [Qr/t,)Qg(t,) ... Qi(t,)] 
g ~:::c 

= E [q(t,)q(t,) .. ·q(tn)]' 

where q(t) = e- lnq and Ho = 1( - d '(dq' + q2). 

A similar result can be proved along the same lines for 

Qit) = e - IH'g3/42-'/4q [q2 - E (q2)]. 

Thus we see that the complement of the Ising part of the 
measure consists of two disjoint Gaussian processes corre­
sponding to harmonic oscillators. It should be noted that 
these processes are exponentially smaller (in the sense of en­
ergy levels) than the main Bernouilli part. 

alSupported in part by the National Science Foundation under grant 
PHY76-17191, by the National Research Council of Brazil (CNPq), and 
by NASA-Goddard Space Flight Center grant No. NSG 5034. 

"\New York University and Pontificia Universidade Catolica do Rio de 
Janeiro. 

The phenomena of a measure decoupling into an Ising 
and a Gaussian part seems to be quite general. A harder 
result of this type was proved by Glimm-Jaffe-Spencer for 
some two-dimensional q4 quantum field theory models.) In 
that case the result was proved in low temperature (g---+ 00 ) 

for the field q itself-and the Ising part of the measure is a 
correction on the main Gaussian part. There are indications 
that at the critical temperature (i.e., for gc such that the gap 
between the two lowest eigenvalues of Hg vanishes) the field 
q' has a Gaussian behavior. In our one-dimensional case the 
critical temperature and the zero temperature are indentical 
(gc = (0), and the Gaussian part becomes a correction on the 
main Ising process. 

Similar results hold for the n-dimensional spherical os­
cillator HI( = H -.1 + gr" + (I - g)r']: We omit the state­
ments and the proofs of the corresponding theorems since 
they are obvious generalizations of our results and methods. 
(We remark only that in the proofs we use the one-dimen­
sional momentum operators instead of the radial momen­
tum operator.) 

II. THE BEHAVIOR OF THE RENORMALIZED 
AND SCALED q2 PROCESS 

Consider the Hamiltonian operator defined on Y(lR), 

1[P' + gq4 + (1 _ g)q2], 

adding a constant 

HI( = 1 !p' + g[q' - (g - 1)/2g]' I· 
(The self-adjointness and other properties of Hg are studied 
in Ref. 1.) 

The potential of this Hamiltonian has two equal mini­

ma at (± l/Y2)(g - 1)lg~( ± l/Y2) for largeg. The 
behavior of the eigenvalues and eigenvectors as g--.. 00 is 
studied in Ref. 1. 

We rescale it through the change of variables x = ay 
where a = [2(g - 1)]-114. 

Then the eigenvalue problem for nEY(lR), 

~[ _ ~ + g(X2 _ g - 1 )2]n (x) = En (x), 
2 dx' 2g 

XElR, 

is transformed into 

_ --+ V y' -- n(ay) 1 [ d' ( 1 )2] 
2 dy' 4v 

= [2(g - 1)]'/2En (ay), 
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where 

v = g/[2(g - 1)]312, v-+O as g~ 00. 

Let us establish the notation 

H,. = ![P' + v(q' - 1I4v)'] onY(R). 

We will denote its eigenvalues by E?, <E!, <E ~ ... and corre­
sponding eigenstates by fl ~,fl ;"fl ~, .... 

Notice that close to its minima (given by 

y i- = ± l/2\1/~) the potential behaves like (y~ I/2V~) 

Thus in the translated variables y = y - I/2V~ the eigen­
value problem H,. IJI (y) = EIJI (y) becomes asymptotically 

!(P2 + y2)1JI = EIJI. 

Since the eigenvalues of this harmonic oscillator are 
given by n + !, n = 0,1,2 ... the results of I become in this 
scaling 

limE~ = limE~!+ 1 = lim,1Jv = j +!, j = 0,1,2, ... , (II.la) 
v-a v-----o v-----Jo() 

lim Ilfl~! - IJIj;e11 2 = limllfl ~ + 1 - IJIltll = 0, (I1.lb) 
v-..o v-o 

where 1JI~~e and 1JI<',0 are given in (111.27). The eigenfunctions 
of HO_!(P2 + q2), the harmonic oscillator, satisfying 
H"a~ = ElfJb, j = 0,1,2'00' (Eb j + !), will be denoted 
by fl g,fl 6, .. ·. 

Our problem stems essentially from the desire to under­
stant the behavior of 

q;en,v q' - <n ?tI'n ~>. 

Now, it is proved in Ref. I that, for our Hv, 

lim(4v)<fl ~ q2fl ~> = 1. 
v_o 

So we see that q~en,,:~q' - (4vY'. Notice that at the "bot­
tom" of the potential wells (say, at the rightmost one) 

q~ 1I2V~ + .dq, 

2 , 1 ( 1)( I) qren,v=q - 4v = q - 2Yv q + 2Yv 

Since the two "wells" become disjoint as v-o it becomes obvi­
ous that (after a rescaling) q~en,l' behaves like a q operator for 
the harmonic oscillator. This is actually the contents of 
Theorems 1-3 which follow. We recall that in the original 
scaling the weak operator limit of q;en,vas v-o is zero. 
Loosely speaking, this is due to the fact that q;en,v is zero 
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close to the region of highest probability density, 

q= ± I/2V~. 
Through a Legendre transformation, we introduce 

Q,. = vlllq~en", and its conjugate momentum Pl" where 
[Hl',Qv] = - iP". 

Theorem I: 

lim<fl ~kQ 'Y1 ~/) = <fl ~qnfl b>. for k,l,n = 0,1,2,. ... 
1! .... 0 

Theorem 2: For 5;>0, i = 1,2,oo.,m - I, m = 1,2,3,. .. , 

lim<fl ~Q~ - s,H'Q,1! - s,Il, ... Q,I!- s" ,H'Qfl~) 
\'-0 

Theorem 3: For 5;>0 real numbers,j,EN, i = O,oo.,m - 1, 
mEN', 

1· (}I' iJi' d"'-/fl 0Q - s,H, Im--.. ·~ I! 
" .0 at,. as'.' as''' v, 1 2 In 

X Q,I! - "H''''Qve -\" ,H'Qfl ~> 

iJi' iJi' ii'" . = -. - . .. ~fl gqe -"H"qe - s,H"oo.qfl g). 
a~' as'i as';. 

For the sake of completeness, we return to the original 
parameter g. Then q~en,g q2 - <n ~q'n ~), 
limg_~OC <fl ~q'fl ~> = !. a=a(g) = [2(g - 1)]-1/4 has the 
property limg __ ",,a = O. By m~ans of a simple rescaling the 
theorems above become, for Hg a(g)'Hg. 

Corollary I: 

lim <n ;k[(!g)II'q;en,g]fl;) = <fl ~qmfl b> 
g ...... O? 

for k,l,m = 0,1,2,. .. , 

Corollary 2: For 5;>0, i = 1,2,. .. , m - 1 

lim <fl ~(!g)ll2q;en,.!' - S,H«!g)1/2 
g-oc 

xq2 .•. e - s," ,H«lg)ll2q2 no) 
ren,g 2 ren,g-A' g 

= <fl &Ie - S,H"qe - s,H""'e - s'" '/{"qfl g>. 

Corollary 3 is analogous to Corollary 2 above. 

Up to now we were working within the subspace of an 
even function on R, or equivalently on [0,00) with Neumann 
boundary conditions (reflective barrier) at 0. If we work in 
the space of odd functions on R, or equivalently on [0,00) 
with Dirichlet boundary conditions at 0, all the results above 
have similar counterparts, obtained by replacing 

v l12q;en.v by !qq;en,v' 

Finally, we can add a weak "external field" to Hv, i.e., 
consider 

.A. 

H" = Hv + c(v)x. 

If c(v) = o(v), all the results above still hold. An explicit 
computation using parabolic cylinder functions 1 shows that 
if c(v) = 0 (1) the results are not valid any more 
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III. PROOF OF THEOREM 1 

Lemma 1: Let 

H" = !WL + v(q' - l/4V)'], 

Q,. = Vl12(q2 - <n ?r/n ?»), 
P" = V1l2(Pq + qp). 

(JILl) 

(III.2) 

(111.3) 

Then for all nEN there exist polynomials in H v' Av,n(HJ, 
and Bv,n(Hv ), with nonnegative coefficients which are 
bounded as v tends to zero, such that 

(i) IIHvQ~vll<IIAv,n(HV>vlI, 

(ii)I'Q~vll<IIBv,n(HV>vll, 

where vEY(H) may depend on v. 

(IlIA) 

(111.5) 

Proof The proof is done by induction on n. When n = 0 
there is nothing to be proved, We assume that the result is 
true up to n - 1. In order to prove that it is true for n, we 
need the two commutator equalities 

[H",Qv] = - iPl" (111.6) 

[P",Qv] = - i4vl/2Q" - i4v<{} ~ q2{} ?,). (111.7) 

We use (111.6) and (111.7) to establish the following 
equality: 

HvQ ~ = 2(n - l)n(v1l2Q: - 1 + v<{} ?II1[l e)Q: - 2) 

(III. 8) 

In fact, 

n-l 

HvQ~ = I Q~[Hv,Qv]Q:- k-l + Q:nv 
k~O 

n-l 

-i IQ~vQ:-k-l+Q:nv' (111.9) 
k=O 

Now, 

Q~vQ~ -k-l 

k - 1 
= - I Q~-I-l[pv,Qv]Q~-k-I+I+pvQ:-1 

1=0 

= 4ki(V1/'Q: - 1 + v<{} ?112[l ?'>Q~ - 2) + PvQ: - I. 

(111.10) 

Substituting (111.10) in (111.9) we establish (IlLS). 

Let us proceed with the induction for (ii) first; 

IIQ ~vW = <Q: - IV,Q ~Q ~ - IV). (lII.ll) 

Using (II I. 2) and (a + b )2<2(02 + b Z), we obtain 

Q~ = V[q2 - L -<n~(q2 - L )n~)r 

(111.12) 

The last term is estimated using the Schwarz inequality, and 
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so 

(III. 13) 

Since limv_oE?' = ~ it is easy to use (IILI3) and part (i) of 

the inducti.on hypothesis in (IlL 11) to obtain (IlLS) for n. 

To prove (i) we use (III.8) and obtain 

IIH"Q:~v!I<2(n - J)n(vII2I1Q:~ - Ivll 
+ I<{} ?vq2{} ~)IIIQ:~ - 2vll) + IIQ ~A 

+ nIIPvQ:: - lvll· 

(111.14) 

Since the Schwarz inequality yields 

<n ~yq2{} ~> = <{} ?y(q2 - 1!4v){} ~> + i<Vl/2(2E?)'12 + ! 
(I1I,I5) 

and limv_,oE~ =!, we can use (I1I.4) of the induction hy­
pothesis to bound each of the first three terms of the right­
hand side of (I1I.l4) in tefms of I1Cv.m(H",)vi! with 
m = n - I,n - 2,n + 1. We estimate the last term of 
(III.14) as follows, 

P~, = v(2qp - i)(2pq + i) = V(4qp2q - I). (III. 16) 

It is easily verified that 

2qp2q = qp2q + (qp2q)* = (q2p2 _ i2qp) + (P2q2 + i2pq). 
(III. 17) 

This gives us 

now 

P~, = 2V(P2q2 + q2p') + 3v. (III. IS) 

<v{k + v(q2 - LY]q2 + q2k + V(q2 - 4~ YJJ 

=2V[Hv(q2- L)+(q2- L)Hv] +2V(:~' + ::) 

= 2V1l2 t H vV1!2( q' - 4~) + Vll2( q2 - L)H v] + H v' 
(III. 19) 

Since for self-adjoint operators Hand D = VIIZ(q2 - 1!4v) 
theinequality(H - D)';;e.OimpliesHD + DH<H' + D 2, we 
have 

«4vV2 + 1)(H~ + 1). (111.20) 
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Substituting (III.2D) in (III. 18), we obtain 

IIP"Q;',- 'vii' 
,;;;8(v + v l12 + I)(IIQ~, - 'vii' + IIHvQ~, - 'vii')· 

(111.21) 

Each term of the right-hand side of (111.2 I) can be estimated 
by IIC,.(H,,)vll' using the induction hypotheses (i) and (ii). 
Using the equivalence of norms in lRm it is easy to combine all 
the estimates in (111.14) in a single inequality of the form 

IIH,.Q ~,vll,;;; IIA,jH,,)vll, (III.22) 

where Av.n is a polynomial with nonnegative coefficients 
which are bounded as v tends to zero. The proof of the 
lemma is complete. 

Lemma 2: For all m,/EN, 

<fl ~/, [v(q' - 1I4v)'] mfl ~/> 

is bounded as v tends to zero 

Proof 

Vl/'(q' - 1I4v) = Qv + <fl ~,VII2(q' - 1I4v)fl ~>, 
(111.23) 

(111.24) 

The result follows from Schwarz's inequality and Lemma 1,­
part (ii). 

Lemma 3: The generalized Laguerre functions satisfy 

Remark: The generalized Laguerre functions that we 
use are a complete orthonormal set of eigenfunctions of the 
eigenvalue equation 

![P' + !(x - 1I4vx)']¢(x) = A¢(X). (111.25) 

The eigenvalues are A: = n +! +!a - (16vt l
, nEN, 

where 

a = !(I + 1I16v')II2. (111.26) 

The corresponding eigenvectors are 

¢:.e(x) = (- It2- 114 [r(n + I)/r(a + n + 1)]11' 

(III.27) 

and 

¢:.O(x) = (J (x)¢:·e(x) - (J ( - x)¢:·e( - x), 

where (J (x) is the Heaviside function and L ~ are generalized 
Laguerre polynomials. Notice that lim~ : = n + 1. For a 
more complete discussion see Ref. 1. 
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Proof of Lemma 3: Due to parity consideration it suf­
fices to prove that V k,/,mEN, 

lim2 (,YO ¢~,(x)Q ';(x)¢;.(x)dx 
".0 Jo 

(111.28) 

where we used the fact that ¢~.e(x) = ¢~.O(x) for x> D to drop 
the superscripts e and 0 (even and odd). The proof is divided 
in three parts. 

Part 1: We claim that V k,l,mEN, 

lim2 ¢~(x) _(x' - 2a)' ¢~(x)dx i oc [1 ]m12 
,0.0 0 8a 

f 
+ oc 

=_ oc fl ~(x)xmfl6(x)dx, (111.29) 

where a-a(v) is given by (III.26). 

In fact, for I 2ID' ¢~(x)[ (l/8a)(x' - 2a)'] mI2¢;.(x)dx, 

using (111.27) and performing the change of variables 
x'/2 = y, we obtain 

I=(-I)/+k!k!l!/[r(a+k+ 1)r(a+l+ 1)]JI/' 

X lOOyae-YL~(v)L,(v)[ 2~ (v-arr12dY. (III. 3D) 

Essentially, the proof uses the fact that 
yae - Y ~exp [ - (v - a)' /2a] as a tends to infinity. We 

change variables again: (v - a)/V'~ = x. 

I=(-I)/+k!k!I!/[r(a+k+ l)r(a+l+ 1)]JII2 

(111.31) 

We estimate the exponent 

f/a) - V~x + a In(1 + x/V~). Since for D,;;;z < I, 
In(1 - z),;;; - z - z'/2, we havefa(x);> - V~x + a(x/ 

V~ -x'/2a) = -x'/2 for - V~ <x,;;;D. 
For x;>D and a;>a', 

,;;; - rx t(1 + t )-' dt =fa(x) 
Jo Va' 

It is also clear that lima_ooef,(X) = e - x'12, VXE( - V~, 00) 
and 

X - (x)e - v-;;;: + a In(1 + x/Y';-) 
(- Ya.co) 
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{ 
e - x'/2 

,,;: - -
'" e- Ya'x+a'ln(1+xIYa'l, 

x';;;O, 

x>O,a>a'. 
(111.32) 

Now Eq. (5.5.4) of Ref. 5 states that 

lima-n/2L~('V~x+a)= [(-ltln!]Heix). 
a~oo 

(111.33) 

This implies that all the coefficients of the polynomial in x, 

a - n/2L ~('V~x + a), tend to the corresponding coefficients 
0[( - lrln!]Hen(x). In particular, they are bounded func­
tions of a in any interval aE(ao, 00). Fix ao, and take a > ao. 
The remarks above imply that we can find an integrable 
g(x»O such that the absolute value of the integrand is esti­
mated by this g(x). Using the Lebesgue dominated conver­
gence theorem, 

lim! = lim (ak+II[k!l!r(a+k+ 1)r(a+l+ 1)]JII2 
Q- .. oo (1---00 

(111.34) 

Changing variables (x/'V"2 = y) and using the definition of 
n ~(x), we obtain 

0----+00 

J
+OO 

X _ 00 n ~(x)xmn ~(x)dx. (111.35) 

An application of Stirling's formula shows that the lim­
it in (111.35) is 1, so (111.29) is proved. 

Part 2: We claim that 

lim«¢~vll2q2¢~,e> - <n ~v1/2q2n ~» = O. (111.36) 
v---O 

In fact, 

(111.37) 

Since6 lim II ¢~,1 - n ~II = 0 and the second expectation in 
v---O 
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(I1I.37) is bounded by (E~)1I2, which tends to 1/'V"2 as v 
tends to zero, (111.36) will be established as soon as we prove 
that the first expectation in (111.37) is bounded as v tends to 
zero. 

Using the inequality (x + yy.;;;2(x2 + y2), 

( ¢~.ev( q2 - 4
1
v Y ¢~,e) 

= (8av)( ¢~.e L [q2 - 2a + (2a - 4
1
v) r¢~,e) 

.;;;2(8av) [ (¢~,e L (q2 - 2ay¢~,e) + (2a - LY]. 
(111.38) 

Using (111.27) we see that lim,,~o8av = 1 and 
lim,,_>o(2a - 1!4V)2 = O. Finally (I1I.29) for k = 1= 0 and 
m = 1 yields the boundedness of (111.38), which establishes 
(I1I.36). 

The equality below can be proved by means of essential­
ly the same arguments used for (111.36): 

lim«¢o,evI/2q2¢~,e> - 2av1l2) = O. (111.39) 
v--o 

Finally, we combine (111.39) and (111.36) to obtain 

lim(2av l12 - vll,<n ~2n e» = O. (111.40) 
v~o 

Part 3: 

<¢~,eQ ,:¢~e> = <¢~,e[ V1l2(q2 _ 2a) 

(111.41) 

We expand (111.41) in powers of m. From (111.40) and 
limv~O<v/8a)112 = 1 we get 

lim< ¢~,eQ ,:¢~e> 
v~o 

= lim<¢~,e[vll2(q2 _ 2a)]m¢~e> 
1.' __ 0 

= lim<¢~,e[(8atll2(q2 _ 2a)]m¢~e>. (111.42) 
v~o 

The proof of the lemma is completed using (111.29) in 
(III.42). 

Theorem 1: 

lim<n ~kQ ':f1 ~I> = <n ~qnn ~>, V k,l,nEN. 
v~o 

Proof 

I <n ~kQ ':f1 ~l> _ < ¢~,eQ ~¢~e> I 
.;;; I«n ~k _ ¢~,e),Q ':f1 ~I>I + 1<¢~,e,Q ~(n ~I _ ¢~e»1 

.;;;lln~k _ ¢~,ell IIQ':f1~111 + IIQ~¢~,ell Iln~'- ¢~ell· 

It is proved in Ref. 1 that lin ~k - ¢~,ell and lin ~l _ ¢~ell 
tend to zero as v tends to zero. The term IlQ nn ~lll stays 
bounded by virtue of Lemma 1 and the fact that 
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lim" .oE;l = I + 4 (also proved in Ref. 1. Lemma 3 guaran­
tees the boundedness of I\Q 7.¢~"ell as v tends to zero. 

Theorem I follows from the above estimate and from 
another application of Lemma 3. 

IV. PROOF OF THEOREMS 2 AND 3 

Lemma 4: Let P",n be the orthogonal projection on 
I fl ~~fl ~, ... ,fl ~ - 1 J 1. (These vectors were defined in Sec. II as 
the eigenvectors of Hv with corresponding eigenvalues 
E~<.E ~<.E ~ .... ) Then the following inequalities hold: 

(i) 

-rH -rE" ° e ·P,'.,,<.e " 'tJ nEN, t>, (IV.I) 

(ii) 

H:~e' rH'<.(mlt)me-m, 'ifmEN, t>O. (IV.2) 

Proof Using the spectral theorem, (IV. 1) is obvious, 
and (IV.2) follows from the inequalities H" >0 and 
SUPx;Arme - rX<.(mlt )me - m. 

Lemma 5: Let kEN and ti > 0, i = l, ... ,k, and 
mI'mZ, .... m k EN+. Let 

=1\ -1,Hvp#Qm, -I, ,H" ek - eve 

X P#Q Ill. ' ...... /,H"p#Q m'fl 0Il \' e l' v' (IV.3) 

where each p*f stands for either P",n or P~,n=I - P",n' 

(i) There exist c = c(t" ... ,tk ,mI, ... ,mk) such that ek<.c. 

Oi) If the leftmost p# is p".n 
(i.e., e - I,H. p # e - r,H,p" n)' then for any given E> 0, there 

exist /) = /) (t" ... ,tk,m" ... ,mk,E) and 
N = N (tI, ... ,tk,mI,. .. ,mk,E) such that for any v satisfying 
0< v<./) and any n>N we have ek <.E. 

Proof We prove (i) by induction on k. For k = 0 there is 
nothing to be proved. Let us assume that (i) is valid for k - 1, 

ek<'lie - t,H"1I IiP#1i 
X IIQ ~'e - (I, ,lHvp#Q ':' ' ... e - t,H'p#Q :;"fl ~II. 

Using H v >0 and (ii) of Lemma 1, we have 

ek<.IIB",m,(H,)e-(t, ,lH,.I2e -(t, ,)H,.I2 

XP#Q~' 1 ... e-"HvP#Q:;"fl~ll. 

We now use the triangle inequality and Lemma 4, part (ii), to 
obtain 

ek<.dklle-(l, I)H,12p #Q';;' 1 ... e-r,H'p#Q:"fl~ll· 

Finally, we use the induction hypothesis, and part (i) is 
proved. 

We prove (ii) now, using Lemma 4, part (i), 

e
k 

= ile-t,Hvl2pv,ne-t,H,.I2pI!Q';;'e-t, I
H" 
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SinceE:;'<.E; -! J, 'ifmEN, and Iim,,~oE~n 
= lim",.oE 2" + I = n + ~, and application of 0) yields (ii). 

Theorem 2: For Sj >0, i = l,2, ... ,m, mEN, 

lim(fl ~Q"e - S,/f'Ql'e - S,H''''Q,,e ""H'Qfl ~> 
1, ___ 0 

Proof Consider the correlation function (Si>O, 
i= 1,,,.,1), 

S - (fl "Q _-"H"Q - s,H, - -'IH"Q n V'o., 
- 0 "e I·e .. ·e v'~ 0/' 

If all Si are zero, i = 1, ... ,/, then the theorem is just a particu­
lar case of Theorem 1. Thus we may assume that at least 
some Si is positive, and we can rewrite S as follows, for ti > 0, 
i = I, ... ,k, 

S = (fl DQ m, - [,H"Q m'e - [,H .... Q m'll D> 
v Vel' v l" (IVA) 

We make the substitution e - t,H" = e -- t;H'(PV,H + P ~"n) (see 
Lemma 4) for n to be specified later, and expand S into a sum 
of several terms. There will be one term where all the e - I,ll, 

are multiplied by P ~"n < i.e., 

S'=(flOQm'e-r,H,p' Q""e-r,H,p' ... Q""fl o) (IV.S) 
l' v 1',n l.' v,n v v' 

and a sum of terms of the form 

Sit = (fl ~pliQ :;"e - [,H'pIiQ ':!'e - r,H'p# ... Q ~'fl 2), (lV.6) 

where P# are Pv,n and p~.n and at least one P# stands for a 
Pv,n' Using Schwarz's inequality and Lemma 5, (i) and (ii), it 
is easy to show that given E> 0 there exist 8> 0 and NEN 
such that for all n>N and 0 < v<./), we have 18#1 <.E for all 
such terms 8#. 

As to (IV.S) we write the full eigenfunction expansion, 

[in - \)/2) 

S' = 2: (fl ~Q :"fl ~i'>exp( - tIE ~i') 
il,il,· ..• i/, 

X ( fl2i'Q m,fl 2i,) exp( _ t E 2i') ... (fl 2;'Q m'fl 0> 
v v v 'v \! 'l' v' 

(IV.7) 

Using Theorem 1 and limv~oE ~i = E~, we obtain 

limS'= 
v_o 

[(n - 1112) L (n gqm'n 6) exp( - tiE 6) 
i, ,J l •... ,I ~ 

Thus, given £ > O. choose N so large that the right-hand side 
of (IV.8) differs from <fl gqrn'e - ',Hoqrn'e - t,Ho .. ·q""'fl 2) by 
less than E/3 in absolute value. Then choose N, {j so small 
that for ° < v < /) the sum ofthe terms (IV.6) is less than E/3. 
Finally, reduce {j even more so that S' differs from (IV.8) by 
less than £/3 in absolute value, The theorem is proved. 

Corollary 4: Let Un be the Hermite functions, eigenvec-
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tors of !(P2 + q2). For nEN, let 

U:~'{'(x)= ~2[Un(X- 2~-J+Un(X+ 2~~)l 

U:~'O(x)= ~2[UI{X- 2~~)-Un(X+ 2~~)l 
Then 

limll!1 ~,Il _ u:~·ell = limll!1 ~,n + I _. U~:oll = 0, 
l' .0 l' -... 0 

Proof We claim that 

limll¢<~,e - U:~'('112 = limll¢<:'o - U7,·oW = 0, 
l' ~O )' ·-+0 

(See Lemma 3.) 

To verify this claim we expand the norm and compute 
each of the scalar products as in the proof of Lemma 3 for 
m = O. Now we use the Theorem 4.1 of Ref. 1, namely 

limllfl ~,Il _ ¢;~,cll = limllfl ~,n + 1_ ¢7,.oll = 0, 
l' .. 0 ,,-0 

836 J, Math, Phys .. VoL 20, No.5, May 1979 

and the proof is complete. This corolIary is essentialIy con­
tained in Ref. 1. 
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A complete generalization of the Kerr-Newman solution to the nonstationary case is given. The 
possibility of associating the energy-momentum tensor with the electromagnetic field is discussed. 

I. INTRODUCTION 

In the past, generalizations of differents static or sta­
tionary metrics to the nonstationary situation 1

-
l have been 

considered, especially, in relation to certain astrophysical 
problems, namely, when the energy density of the radiation 
emitted by the source cannot be neglected (e.g., supernovae, 
quasistellar radio sources.)4-' 

The procedure for obtaining such generalizations is 
very simple. The parameters of the metric are replaced by 
arbitrary functions of the timelike coordinate, obtaining in 
this way a time dependent metric which is a solution of the 
Einstein equations with an energy-momentum tensor de­
scribing, in principle, the material content outside the star. 

In this paper we present a nonstationary generalization 
of the Kerr-Newman6 metric, allowing the three parameters 
a, tn, and e to be arbitrary functions of the timelike coordi- I 

II. THE SOLUTION 

nate. The resulting energy-momentum tensor is then ana­
lyzed in different cases. In the most general situation (a,m,e 
variables) the energy-momentum tensor has a nonzero 
trace, which could suggest the possible existence of an scalar 
field. It can be proved very easily that this is not the case. 

In the third section we consider the case a = const, m 
and e variables. It is shown that no term of the energy-mo­
mentum tensor can be identified with the electromagnetic 
field, except when spacelike currents are accepted. In the 
more restricted case a,e = const, m variable, there is the 
electromagnetic contribution of the Kerr-Newman source, 
but the remaining terms are not of an electromagnetic na­
ture. For the case a = 0, m and e variables, we recover the 
Bonnor-Vaidya solution for null currents.' 

A brief discussion of the results is given in the 
conclusion. 

The Newman-Penrose formalism is used throughout the paper. For details we refer the reader to the original paper,s 
hereafter referred to as NP. 

In the null coordinate system X O u, x1=r, x'-e, Xl cp, the metric we are considering is 

{3 [ 2mr - e' ] 2a sin'e . ds' = ga{3 dx"dx = 1 - du' + 2 du dr + (2mr - e') du dcp - 2a sm'e dr dcp r + a' cos'e r + a' cos'e 

(1) 

where, a, e, and m are arbitrary functions of the timelike coordinate u. 

The corresponding null tetrad Z ~ can be chosen to be9 

zg II" = ot Zj nl" = ~ (nc% - Y2 ot + a8Jt ), Z'2_ml" = 1 (ia sinec% + D'2 + i cote8{), (2) 
V 2(r + ia cose) 

whereas the covariant components are given by 

I - >:0 . 'ed 1 ( Y ,,0 ~>:l . 'e Y d) 
I" - u l ' - a sIn UI'" nil = - - UI" + ~U!l - a sIn -up" 

~ 2 2 

in the above 

n _r + a', ~ =r + a' cos'e, Y r + a' + e' - 2mr. 

The spin coefficients are 

m = 
J1 

K = (J' = 0, p = - (r - ia coset', 
ia sine _ iii sine _ 

... /- pp + ... /- p, 
v 2 2v 2 

7= -

a)Partially supported by CONICIT. 

1 (ia sine{j~ - ~{j; - in sine{j~); 
V 2(r + ia cose) 

(3) 

iii _. e ia sine, cote -
a = 4V"2Psm + v"2 P + 2V"2P, 
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f3 -_ _ cotO - a sinO - ( i £I ) --=p - --=p - - a cosup , 
2Y2 2Y2 2 

r _ (r - m) _ ia 
r = Zp2p + 2 pp - ZpljrIlr cosO, 

E=O, ia sinO 2-( r , ,V' - '0) ieee - mr)a sinO ,-
V= --_-pp -+a -a LpPCOS + pp, 

Y2 2 Y2 

f1 = r p'p + aapp, 
2 

1 • 1 -, • '0 ia sinO ia sinO 2 
/L = - aap pr Sill , 1T = --_-p + --_-p . 

2Y2 Y2 

(4) 

To calculate the tetrad components of the trace free Ricci tensor, the tetrad components of the Weyl tensor and the Ricci 
scalar, we use Eqs. (4.2a) to (4.2r) in NP. 

A straightforward but lengthy calculation gives 

¢Ioo = 0, 

a sinO . 
¢lID = --_-(3ar cosO - Ir)p'jY, 

2Y2 

¢I,D = da sinOp' + a' sin'Op'(! _ a' cos'Opf5) + aa sinOp'(1 _ 2a'rpji' cos'O + ppr' + ia cosO (j5 - 2P»), 
4 2 2 

da'sin'O cos'O a' sin'8np-
-----p'ji' + r. [1 + p'ji'(r' + a4 cos40 - 14r'a' cos'O)] 

4 32 

+ aplji'ar sin'O (l3r' + Sa' cos'O), 
8 

ia sinO ( . m} ida sinOn 
¢II, = - ---- 2ee + -=- 'ji' + p(l(1 + 2a' cos'Opf5) 

2Y2 p 4Y2 

., sinO cosO l-4( . 4 10 '..,4 0 . ,..2 lO + a ap p - ra cos + If cos - ra, cos 
2Y2 

a sinOp'p4 
- 2ar' sin'O) + [ lOa' coslO - ir' - 2ia4m cos4e + a4r(3i coso. + 2i cos40) - 2a'(2mr - e') cosle 

4Y2 

+ a1r'( 10 coso. - 2 sin'O coso.) + 2ir'(e' - 2mr) + 3ia'r cos'o (2mr - e') + a'r'(Si - lSi sin'O) 

+ 4ar' coso. (2mr - e') ], 

(e' + ee - mr)a' sin'e .. .. [ sin'O (r -)]. tP22 = 2 p'(l + (ee - mr)rp'(l + aap'(l -2- a' + Z - a'rcos'epp - n + a'p'(l 

(5) 

(6) 

(7) 

(8) 

(9) 

x ( - ~2r sin'O cos'epp - ~2 sin'e cos'Opp + ~, sin'O + 2a4r sin'O cos4ep'ji' - n + 2a'n cos'Opp + a' + r sin'e 
4 2 2 2 

_ a'r' sin40p'ji' ) + a aPi4 {r'[ ~ - ~ cos'O - 4 sin'O( m - e:) + ~ (2mr - e')(l + 5 cos'O) J 

+ a'rl 
[ - ~ sin'O + 4 - 4 sin'O cos'e ( m - e:) - 10 cos'e + f sin'e cos'O ] 

a'r } + T(2mr - e')(5 cos'e + 3 cos4e) - 2a4r cos'O , 

tPo = 0, (11) 
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tPl = ~ sinOp2iY(2ia2 cos20 - ar cosO), 
2\1'2 

.1. 3( 2~ 2A iia. 20 - a sin
2
0 -

'f/2 = P m + e p) - - 4 sm 'PP - --8-PP 

+ ~p(2i cosO - 8arpp - 3a sin20p + 2ia2 sin20 COSOp2 - 4ap + 2ar sin20pp + a sin20p), 
4 

.( . ee) a sin{} 2-(1 2) .. sin{}piYn (. 2 0. 2) a
2 

sin{} -( W Ll:::2 8· 2{}n 3:::2 tP3 = - I m - - --_-p P "2 + rp + a I - ar cos 'P + _ pp - cosrJP + I cos rp p 
r \1'2 4\1'2 8\1'2 

839 

+ app_ ( _ 2ia sin{) Y iY + 8ifl sin{}p2 + 16an sin{} COS{}p3 
8\1'2 2 

+ 4ar sin{} COS{}p2p + 12anr sin{} COS{}p3p - 2iflr cos{} cot{}pp - i sin{}(r - m)p + 4a cot{}p 

- 6i Y sin{}p2 - 3i sin{}(r - m)p - lOaY sin{} COS{}p2p - 6a(r - m) sin{} cos{}pp, 
2 

+ ( ia sin{) ( 4p _ p) _ 3ira sin{} (}Pp) + cot{}£,2 + aa sin{} cos{} pp _ + ia Sin{}p) 
\1'2 2 \1'2 2\1'2 2"v'2' 
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x !a ~ -lm--_-pp , 
( 

" sin()p'p E.- "ra sin() '-) 

V2 V2 

s - Y + a' - a'Y cos'()pp, 
2 

For the scalar A = - R /24, we get 

(15) 

A = - ii a sin' ()pp (1 + a' cos'()pj5) + a'pp sin'() ( - 20' cos'()pp - ~ + p'j5' (r' + 13a4 cos4 () - 2a'r' COS'()) 
12 3 8 32 32 

+ ar p'j5'a( 4 - ~r' sin'()pp - ~, sin'() cos'()pj5), 
3 8 8 

(16) 

From the Einstein equations if follows that the energy-momentum tensor, when it is written in terms of the scalars 
defined above, is given by the expression 

~'" = 2qy22f,1 f" + 2qyoon'l n,. + 2qy,om ,1 m" + i(iJ,omll m" + 4qyll [/{J1. nv ) + m{J1. mV)] 

Using (5)-(10) and (16), Eq, (17) becomes 

T 2{ 
e' + ee - mr)a' sin'(),~ (. ')'~ .. '~[ sin'() (, Y 'Y '() -) n] ",:02 

Ill' = 2 P p. + ee - mr rp p. + aap p. -2- a + 2 - a cos pp - + a p p 

x ( - ~'Y sin'() cos'()pp + ~, sin'() - 20' sin'() cos'()pp + 2a4Y sin'() cos4()p'j5' - n + 2a'n cos'()pp + a' 
4 2 2 

- a'r' sin'()p'j5' + Y Sin'()) + aap4p4 [r5(~ - ~ COS'()) - 4 sin'()r'(mr - ee) + ~(2mr - e')(1 + 5 cos'() 
2 2 2 2 2 

+ a'r1(4 - ~ sin'() - 10 cos'() - 4 sin'() cos'() (m - ee) + 2. sin'() cos'() + ~(2mr - e')(5 cos'() 
2 r 2 2 

{ [ 
.. a sin'() , ( sin'() sin'() cos'() _) " + 3 cos4

() - 2a4r coS'()]}t1l Iv + 4 Re a --4-P' + a' -g-P' - a' 2 p 3p + aa sm'()pl 

x (1 + ppr' - 2a'r cos'()pj5' + iaC;S() (j5 - 2p»)] mil my} 

+ 4 -pp - ii p'j5' + ,-, [1 + p'j5'(r' + a4 cos4
() - 14r'a' cos'() ) ] { 

e' a3 sin'() cos'() a sin'On'P-

2 4 32 

- e - --_- ee + -=- P !a --_- pp a cos upp, a g R 
{[ 

ia sin() (2' m)o':02 + .. ' a sin()n :02(1 + 2' 'n;:;'\ + " sin() cos() 

2V2 p' 4V2 2V2 

+ ra4(3i cos() + 2i cos4
() - 2a1(2mr - e') cos1

() + a 1r'(10 cos() - 2 sin'() cos() 
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Ill. EINSTEIN-MAXWELL FIELDS 
In this sintion we shall assume that a = const, in which 

case we have, from (5)-(17): 

K = E = CT = A = 0, 1T = ia sinOp2/\I'2 

(J = - cotOp!2V2, p = - (r - ia cosOtl, 

7 = - ia sinOpp/V2, a = 1T - ii, (19) 

v = ieee - mr)a sinOp2,D1V2, r = (r ~ m) pp + fl, 

fl = Yp2p/2, 

rPoo = rPIO = rP20 = 0, 

+ iV2a sinO (2ee + m/p)p2PIIl mv' (21) 

In order to identify any term in (21) with an electromag­
netic field it is necessary that it can be written as 

MTIlV = - FIlAF/ + HFapFa/3)gllv, (22) 

where the Maxwell tensor F a /3 should satisfy the Maxwell 
equations 

(23) 

In the tetrad notation, the equations (22) and (23) read 
respectively: 

MTIlV 
2 2 - -- -

= 2 [ I ¢21 III (+ I rPo I nil nv + ¢OrP2ml' mv + rPOrP2mll mv] 

841 

DrPl - BrPo = (1T - 2a)r/Jo + 2prPl - KrP2 + 21TJo, 

8¢l - ArPo = (p - 2r)¢o + 27rPl - CTrP2 + 21TJ2, 
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(24) 

(25) 

DrP2 - BrPl = - ArPo + 21TrPl + (p - 2E)rP2 + 21TJ3, 

8rP2 - ArPl = - vrPo + 2flrPl + (7 - 2(J)rP2 + 21TJh 

where 

rPl !F",vUllnV + ;nllm'), 

(18) 

(26) 

andJm rZam [note that the 1T appearing in the last terms of 
(25) is the usual constant and not the spin coefficient]. 

It is easy to see that only two terms in (21) can be writ­
ten down as (22), namely, the term 

[(e2 + ee - mr)a2 sin20 + (2ee - mr)r)P2PlJ,. (27) 

and the term 

2e2p2p>(l(;.1 n,.) + m(;.l m,.». 
For (27) we have 

rPo = rPl = 0 

(28) 

f/12 = [(e2 + ee - mr)a2 sin20 + (ee - mr)2r] 1/2pp exp(it!J). 

(29) 

Yet, it is impossible to satisfy the Maxwell equations 
with (29) if e = liz = O. 

Considering next the term given by (28) we put 

rPo = rP2 = 0, rPl = Ve2/2pp exp(ir/J) (30) 

(where r/J is an arbitrary real function). 

We shall see that Maxwell equations are satisfied only if 
e = 0 or eryi=O and spacelike currents are admitted. 

In fact, assuming e = 0 in which case J m = 0, the Max­
well equations become: 

DrPl = 2PrPl' 8rPl = 27rPh 
(31) 

- Bf/1l = 21TrPh - ArPl = 2flrPh 

and a straightforward calculation shows that if we choose 
r/J = - 2 tan-l(r/a cosO) in (30), Eq. (31) are automatically 
satisfied. 

Now, the Maxwell scalars, with the r/J chosen as above, 
become 

¢o = </h = 0, rPl = Ve2/2/(r - ia cosO) (32) 

and the Maxwell tensor is given by 

Fllv = 2(2e
2

)l!2 [(r _ a2 cos20 )(80 8~] 
(r + a2 cos20 y [11 
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· '0"-' "I ~ a Sin u/,,u,./ 

(33) 

This is an expected result, since (33) describes the elec­
tromagnetic field outside a usual (stationary) Kerr-New­
man source. 

Let us now consider the case e*O. The Maxwell equa­
tions to be satisfied are: 

(34) 

~ br/>, = 2mp, + 2rrJ1 , ~ iJ.r/>, = 2ptP, + 2rrJ" 

where, as before 

but now e = e(u). Instead of(34) we shall consider the equiv­
alent system: 

~[(e2)'12 exp(it/!)] 
au 

= rrV2 (YJo ~ :pJ,) ~ 4irra sinO Re(J,/p). 

~[(e2)112 exp(it/!)] ar 

21r ~2 Jo ~ 2ia cosOpp[ (e')'12 exp(it/!)]. 
pp 

~[(e2)l!2 exp(it/!)] 
ao 

= 4i~ Im(Jj p) _ 2iar sinOpp[ (e Z)li2 exp(it/!)]. 
pp 

~ [(e 2)'12 exp(it/!») 

(35) 

= 4irrfl sinO Re(Jjp) ~ rrV2a sin20 (YJo - ;pJ} 

From the sinond equation of (35) we get 

rr 
Jo = ° or t/! = (2n + 1)-. 

2 

The sinond possibility is excluded by the third equation in 
(35), and thus 

- 2a cosOpp. (36) 

Again, from the third equation in (34) and (36) it follows that 

Im(Jjp) = 0, (37) 

at/! = _ 2are sinO. 
ao (38) 

Feeding back (37) and (38) in the last equation of(34) we get: 

842 

sint/! at/J = 
acp 
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(39) 

at/! 4rrfl sinO JJ 
cost/!-= ----acp (e 2)112 p 

(40) 

It follows from (39) and (49) that if JJ = 0, then J l = 0. 
Since the current is not zero, we should have J,*O and thus 

j"ju = 21"'1 ~ 2/J3 /
2 

= ~ 2/J, /2 <0. (41) 

Let us now consider the special case a = 0, m, e vari­
able. The system (34) is transformed into: 

_[(e2)ll2 exp(i¢)] = rrV 2 YJo ~ ~JI , a -( 2) 
au pp 

~[(e')ll2 exp(it/J)] = 2rrV2Jo/pp, ar 

a . 4irr 
-[(e2r exp(z¢)] = ~ Im(Jjp), o pp 

~[(e')l/' exp(it/!)] = 4irrfl sine Re(Jjp), 
cp 

wherep ~ 1/r, Y r' + e' ~ 2mr, and fl r'. 

From the second equation we get 

J,,=o, 
rr 

or 1/; = (2n + 1)-. 
2 

(42) 

Taking t/! = (2n + l)rr12 one gets, from the last three 
equations of (42), 

J" =J) = 0, 

and so 

(43) 

the election Jo = ° gives the same result by virtue of the two 
last equations of (42). 

Thus, the physical system described by (30) consists of a 
flux of charged particles traveling with the speed oflight. 

IV. CONCLUSIONS 

We have extended the Kerr-Newman metric assuming 
that the three parameters of the solution are arbitrary func­
tions of the timelike coordinate (u). 

In this case the energy-momentum has a nonzero trace 
but cannot be associated with a scalar field. Since the trace of 
the energy-momentum tensor depends only on Ii and ii, in 
the case m, e constant, a variables, changes in the angular 
momentum of the source occurs, not by emission of radi­
ation, but by the interaction with the "physical" entity, de­
scribed by (21), which we could not identify. 

In the case a = const, e, m variable, identification of 
different terms in the energy-momentum tensor as Maxwell 
fields yields negative results, except in the subcase e = const, 
in which case the usual electromagnetic contribution of the 
Kerr-Newman source is recovered. 

In the case e variable, solutions of the Maxwell equa­
tions can be obtained only if the spacelike currents are ac­
cepted (charged tachyons). This result agrees with the point 
of view that the charge in the Kerr-Newman metric lO.ll is 
hidden by the horizon, so for the charges to get out from the 
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singularity to a region outside the horizon, the correspond­
ing current vector should be spacelike. 

In the more restricted case, e, m variable, a = 0, the 
situation already described in the literature7 is recovered. 

I t should be stressed that, since the propagation of elec­
tromagnetic radiation in a curved space-time is always ac­
companied by a backscattering radiation, 12-14 metrics of radi­
ating sources should allow tail terms in the Maxwell scalars. 
This is not the case in our metric nor in the Vaidya's or in the 
Carmeli-Kaye's metric. 

In fact, when Carmeli and Kaye state that in the case 
a = const, m variable, e = 0, one of the terms of the energy­
momentum tensor asymptotically may be interpreted in 
terms of the Maxwell field; this should be taken to mean that 
this part is a Maxwell term up to tail terms. 

In other words, our feeling is that to just take the pa­
rameter entering the metric as functions of the timelike co-
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ordinate, does not generalize the solutions enough as to de­
scribe radiation process. 
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The semiclassical expansion of the anharmonic-oscillator 
propagator8

) 
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Center for Naval Analyses of the University of Rochester. 1401 Wilson Blvd., Arlington, Virginia 22209 
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This paper shows how to calculate the terms of a semiclassical (WKB) expansion of the quantum­
mechanical propagator corresponding to the quartic anharmonic-oscillator potential, V = m w'q '/2 
+ Aq 4/4. This nonperturbative treatment expresses each term in the series as a path integral, which is 

then evaluated in the framework of a formalism, introduced by C. DeWitt-Morette, which does not entail 
the usual time-slicing operation followed by a limiting procedure. The Gaussian measure used absorbs all 
the quadratic terms in the expansion of the action functional about a classical path. The covariance of this 
Gaussian measure is Feynman's Green function for the small-disturbance operator of the system. This 
function can be obtained by varying the constants of integration in the classical solution, and therefore the 
coefficients of the expansion depend only on this classical solution. If the latter is chosen to be the one 
which tends to its harmonic counterpart when A----;(), then it is seen that the propagator also tends to its 
harmonic counterpart when A---tO. 

I. INTRODUCTION 

The one-dimensional quartic anharmonic oscillator is a 
particle of mass m in a potential given by 

V(q) = mUJ'q' 
2 

/tq4 
+-

4 
(1) 

It is an important model in physics as a prototype nonlinear 
field theory and has generated a great deal of activity in re­
cent years for several reasons. First, it is a simple example of 
a perturbation which causes the associated quantum-me­
chanical quantities to be non analytic in the coupling con­
stant /t. Therefore, the usual perturbation series in powers of 
the coupling constant are divergent, although it has been 
shown l that the Pade approximants of the Rayleigh-Schro­
dinger series for the energy levels converge to the correct 
eigenvalues of the Hamiltonian, which has a positive-defi­
nite spectrum for /t > O. The anharmonic oscillator is also the 
simplest nonlinear interaction which still yields plane-wave 
periodic solutions in the associated /tep4 field theory, and 
even admits of a restricted superposition principle.' 

While the energy spectrum has been studied rather ex­
tensively, \l,4 the propagator K <qb,tb Iqa,ta), or probability 
amplitude that a particle at qo at time ta will be at qb at time tb , 

has not. The purpose of this paper is to show how to calculate 
the terms of a semiclassical (WKB) expansion of this propa­
gator (in powers of fz). This treatment, of necessity nonper­
turbative since it does not hinge on any expansion in powers 
of I{, expresses each term in the series as a path integral. The 
latter is then evaluated in the framework of a formalism 
where the usual approach of time-slicing followed by a limit­
ing procedure is replaced by a more tractable definition, in­
troduced by C. DeWitt-Morette,' which greatly simplifies 
calculations. This approach enabled us to systematically 
generate all the terms in the semiclassical expansion, which 
represents some progress over previous studies of approxi-

'''This paper is based in part on the author's Ph.D. dissertation, "An Investi­
gation of the Feynman Path Integral Formulation of Quantum Mechan­
ics". The University of Texas at Austin, 1975. 

mating the anharmonic oscillator propagator by path-inte­
gral techniques (Lam,6 Sarkar,7 Mathews and Seshadri8

). 

First, the classical system is studied: The classical paths 
joining two fixed end points are calculated and the limit of 
zero coupling constant is discussed. Then, the classical ac­
tion and other elements of the WKB expansion (Jacobi com­
mutator, Van Vleck-Morette function, Feynman's Green 
function) are derived explicitly, and their connection with 
the small-disturbance equation investigated. Finally, the 
path integrals constituting the terms of the WKB expansion 
are exhibited and reduced to definite integrals over known 
functions, first for an arbitrary potential, then for the anhar­
monic oscillator. 

II. THE CLASSICAL SYSTEM 
The potential 

The potential, given in (1), is sketched below for I{ > 0 
and /t < 0 (see Fig. 1). 

The potential well is always present for /t < 0, so there 
will always be harmonic motion in some neighborhood of 
the origin. As II{ I decreases, the well gets deeper and deeper, 
the maxima go higher and higher, and the points where the 
potential crosses the horizontal axis are rejected farther and 
farther. The drastic change in the shape of Vas I{ changes 
sign is the cause for the nonanalyticity in /t. For /t > 0, there 
will always be a stable ground state, whereas for I{ < 0, the 
ground state is unstable, as there is a finite probability for the 
particle to "leak out" of the well. The failure of perturbation 
theory is due to the fact that at large distances the q4 term will 
always dominate the q2 term, regardless of how small I{ is. 

Dynamical equation 

The dynamical equation for the classical path qJt) is 

.. , /t 1 
qc(t) + UJ·qJt) + - q;.(t) = O. 

m 
(2) 

It can be solved in terms of the (biperiodic) elliptic functions. 
Our source for the latter is Byrd and Friedman's handbook. 9 
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FIG. I. The anharmonic oscillator potential V(q) = mw'q'/2 + .-iq'/4 
[y = x'/2 ± x'/4;y= V(q)l.-i Ilm'(JJ', x=ql.-i 1112/wm'/'J. 

We choose the following form for the solution of (2): 

qc(t)=qmcn[fl(t-to),k], (3) 

where 

A (q )2 
fl 2=W

2 + Aq;", k 2= 2 ;; . 
This corresponds to the case where the particle is released at 
qm at time t = to with no initial velocity. (For simplicity, we 
take the mass m equal to 1; it can always be restored by 
replacing A by Aim.) The form (3) assumes A > 0. If A < 0, 
the form qJt) = qm sn[fl (t - to),k ], with 
fl 2 w2 + Aq;,,/2 and k 2 - Aq;,,/2fl 2, must be used. We 
assume A > ° here for definiteness. Note that the modulus k 

lies always between 0 and VV2( = 0.707 ... ). Ifwe take the 
modulus k and the phase to to be our constants of integration, 
we get 

[ 
2k 2W

2 J 1/2 [ wet - to) k J 
q c(t ) = A (1 _ 2k 2) cn (I _ 2k 2)112 ' • 

(4) 

Classical paths 

The classical paths of interest for the calculation of the 
propagator are those for which the initial and final positions 
are specified: 

qc(ta) = qa' qc(tb) = qb' 

Substituting these conditions in (4) yields the relationship 
between the set (k,to) and the set (qa,qb): 

w(ta - to) {q} ± cn- I 
_0 ,k + 4nK (k ), 

(1 - 2k 2)112 qm 
(5a) 

w(tb - to) 
(Sb) 

where nand n' are integers, 
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(6) 

and K (k ) is the quarter period of the cn function. Subtracting 
(Sa) from (5b) yields the final transcendental equations giv­
ing k in terms of q a and q b: 

± wT =cp+(k2)+4NK(k), (7) 
(1 - 2k 2)'12 -

where any combination of signs is permitted, T=tb - ta, N 
is an integer, and 

cp ± (k 2) = cn-I(qalqm) ± cn-I(qblqm)' 

Equation (7) must be solved graphically for k [to is then 
determined, for example, by Eq. (Sa)]. Since cn-1u is defined 
only for UE[ - 1,1], we must have Iqal <qm and 19b I <qm' 
Thus, in addition to the upper bound ! onk 2, we have a lower 
bound: 

where 

k 2 = __ ,1__ _ 1 
- , a= 

mlO- 2(,1 +w2a 2
) max(lqal,lqh I) 

Note that cn-I is always positive. It monotonically decreases 
from cn-I( - 1) = 2K (k) to cn-I(l) = 0, with an inflexion 
point at (O,K (k ». When O<k 2<!, KJk) monotonically in-

creases from K (0)=1.58 to K (l/V 2)=1.85. 

A sample graphical solution of(7) is shown in Fig. 2, for 
w = T = qa = qb = 1. The cases ,1= 0.001, 0.5, and I are 
shown. The curve wT 1(1 - 2k 2)112 intersects cp+(k 2) once, 
twice, or not at all. Each intersection gives the modulus k for 
a possible classical path such that q(ta) = qo and q(tb) = qb' 
As N increases beyond a certain point No, each of the curves 
cp+(k 2) + 4NK (k) (one for each N) intersects wT I 
(I - 2k 2)112 twice for each N> No. Therefore, there is always 
a countably infinite number of paths, with a cluster point at 
k 2 = !. Another set, independent of A, is obtained from the 
intersection of the curve wT 1(1 - 2k 2)1/2 with the curves 
4NK (k ). The higher the k, the higher the amplitUde of the 
corresponding path [as revealed by Eq. (4)]. 

Behavior as ,1--+0: We shall be particularly concerned 
with the behavior of our expressions as A approaches O. 
What happens to the classical solution as A-O? For initial 
boundary conditions, it appears, according to (3), that we 
retrieve harmonic motion: indeed, as ,1-0, k-O, fl-w, and 
cn_cos. However, for other boundary conditions, it ap-

pears, according to (4), that we have a INA singularity as 
,1-0: Indeed, for arbitrary values of the constants of integra­
tion (say k 2 = 0.3 and to = 2 s), (4) indicates that 

qc(t)~ l/V7 as A-D. Is harmonic motion irretrievable 
then as a limiting case? 

The answer is no. The reason is that only physical 
boundary conditions (such as position and velocity at certain 
times) are acceptable. 10 k 2 = 0.3 is not a physical boundary 
condition. When the latter are inserted, k will depend on A in 
such a manner as to make at least one classical path qit) 
reduce to harmonic motion when A.-D. 

In the Case of endpoint boundary conditions, (4) shows 
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FIG. 2. Classical paths for the anharmonic oscillator. Each intersection 
(black dots) gives a value of k which corresponds to a classical solution of 
the dynamical equation for fixed-end-point boundary conditions. 

that the only way that qc(t) can retain its constant, preas­
signed values at ta and tbis if k 2 goes toOas fast asA. The ratio 
k 2/ A is then an arbitrary constant A, which may be depen­
dent on cu, and (4) becomes qe(t) = A coscu(t - to), which is 
harmonic motion_ Figure 2 shows that as A approaches 0 
there is always one solution k 2 which also approaches O. This 
solution, which we call qcO(t), is the lowest-amplitude (or 
lowest-energy) path, and coincides, when A = 0, with the 
(generally) unique harmonic-oscillator path between the 
two fixed endpoints. The other paths correspond to values of 
k which do not go to 0 with A, and hence their amplitudes 
increase without bound asA-O. Their graph becomes, in the 
limit, a set of parallel lines perpendicular to the t axis, one of 
which goes through ta and another through tb' 

Our semiclassical expansion of the propagator will be 
about this regular path qcO(t). Since all the coefficients will 
depend, directly or indirectly, on qcO alone, the anharmonic 
propagator will tend toward the harmonic propagator as the 
coupling constant tends to O. 

Classical action 

The classical action (or action functional evaluated at a 
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classical path) for the anharmonic oscillator is needed for the 
WKB approximation. It is given by 

Using the integrals 312.02 (p. 193),361.02 (p. 212), 312.04(p. 
193) of Ref. 9 and the formula 

E (u') - E (u) = E (u' - u) - k 2 snu.snu'·sn(u' - u), (8) 

[derived from formulas 116.01 (p.l3) and 123.01 (p.23) of 
Ref. 9] we obtain the answer: 

s= c 
-2cu] E( cuT ) 

3A (1 - 2k 2)112 (1 - 2k 2)112 

~~2 { cuT + ------ sn(ua) sn(u b ) sn (1 _ 2k 2)1/2 3A (1 - 2k 2)112 

Xcn(u ) dn(u )] ) + cu
4
(1 - k 2)(2 - 3k 2)T (9) 

b b 3A (1 _ 2k 2)2 ' 

where Ua1b=CU(tulb - to)/(1 - 2k2)112. 

Behavior when A_O: Let us look at the behavior of Sc as 
A-O along the path qcO' where k 2-+0 asA-O such that k 2/ A 
is a constant. Using the factthatE (u) = u + 0 (k 2), we easily 
see that Sc is regular at A = 0, and reduces to the classical 
action for the harmonic oscillator. 

III. THE QUANTUM SYSTEM 

The small-disturbance equation 

Just as the classical system is dominated by the dynami­
cal (or Euler-Lagrange) equation, the quantum system is 
dominated by the small-disturbance (or Jacobi) equation. 
The latter is the equation satisfied by a small variation in the 
classical path, obtained, for example, by a small change in a 
constant of integration, such as the total energy or an end 
point. The small-disturbance equation is studied in more de­
tail in Appendix A and in Refs. 11 and 5(c). For the anhar­
monic oscillator, it is 

[ - !!..:... - cu2 
- 3Aq~(t) 11'(t) = O. 

dt 2 r (10) 

Solutions of the small-disturbance equation 

Solutions of the sm;lll-disturbance equation can always 
be generated by differentiating the classical solution with 
respect to a constant of integration. This simple procedure 
was known to Jacobj,12 but it seems to be sometimes forgot­
ten today, as one still finds attempts at solving the equation 
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directly; for example, Sarkar7 has undertaken this very diffi­
cult task for the anharmonic oscillator [Eq. (10)]. 

The functions we will need for the path-integral treat­
ment ofthe propagator are the Jacobi commutator J (t,t '), the 
Van Vleck-Morette (VVM) function M (ta,tb), and the 
F eynman Green function G (t ,t '). Their expressions are gi ven 
below, followed by their definition and derivation. 

Jacobi commutator: 

(1 - 2k 2)312 
J (t,t') = snu snu' dnu dnu' 

w 

[ 
- 1 ( cnu' _ cnu ) + u' - u 

X 1 _ 2k2 snu'dnu' snu dnu 1 - 2k2 

E(u'-u) k 2 (snU'cnu' - +-
k'2 k'2 dnu' 

+ snu snu' sn(u' - U») J, 

snu cnu 

dnu 

(11) 

where 

_ w(t - to) 
u--":"'--~ 

- (1 - 2k 2)[12 ' 

VVMfunction: 

M(ta,tb) = [J(ta,tb)r'; (12) 

Feynman's Green function: 

, J(t',ta)J(tb,t)Y(t - t') +J(t,ta)J(tb,t')Y(t' - t) 
G(t,t ) = . 

J (ta,tb) 

(13) 

Definitions and derivations 

The Jacobi commutator: This functionJ (t,t') of two var­
iables can be defined as follows: The unique, retarded Green 
function of the small-disturbance operator, satisfying 

( - ~ - w 2 
- 3Aq~(t )JG (t,t') = 8(t - t '), (14) 

dt 2 

isG-(t,t') = J(t,t ')Y(t - t '), where Y(x)=l for x > OandO 
otherwise. J (t,t /) is antisymmetric and satisfies the small­
disturbance equation in both t and t /. It is called the commu­
tator because, as shown in Appendix A, it can be written as a 
Poisson bracket of position at different times with respect to 
initial (or final) position and momentum; when the system is 
quantized, this expression becomes the commutator. For ex­
ample, for initial boundary conditions, we have 

For any two convenient constants of integration a, and a2 we 
can write the commutator as (see proof in Appendix A): 
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X [ aqc(tb) apc(tb) _ apc(tb) aqC<tb) ] - 1 

aa, aa2 aa, aa2 

(16) 

(or a similar expression with tb replaced by ta)' wherePc(t) is 
the classical momentum [equal to qc(t) for the anharmonic 
oscillator]. We will use this formula with qC<t) given by (4) 
and a, = k, a, = to. The velocity is given by 

. - kw' H aqc(t) 
qC<t) = - snu·dnu = - ---, 

1 - 2k' A ato 

where u is defined in (II). The formulas for differentiating 
the elliptic functions with respect to the modulus k are found 
in Ref. 9 (710.51-3, p. 283). Since the argument of the elliptic 
functions also depends on k, the chain rule must be used to 
evaluate aqc(t )Iak and aqc(t,,)/ak. We obtain 

aqc(t) =W(~)1/2 cnu _( 2k'w' )1/2 
ak A (l - 2k ')3/2 A (l - 2k 2) 

Xsnu·dnu· + -- [ - E(u) { 
2kw(t - to) 1 
(1 - 2k ')3/2 kk /, 

+ k /2U + k' snu·cnuldnu 1 }. 

The denominator in (16) is calculated to be: 

aqb aqc(tb) 
----
ak ato 

These formulas, along with (8), lead us to the stated expres­
sion (11)for J (t,t '). We see that forqc = qcO' i.e., whenk' goes 
to 0 with A, we have E (u)->u, dnu->l, snu-sinu, cnu 
-cosu, u-w(t - to), andJ (t,t /)->w-' sinw(t' - t), which is 
the harmonic-oscillator commutator function. 

The VVMfunction: The WKB approximation to the 
propagator is given by the well-known formula 

KWKB = (M 121Tifz) 'I, exp(iS/fz), (17) 

where 

M - (18) 

is the Van Vleck-Marette function. The second expression 
for M, which will be used in the evaluation, uses the fact that 
as/aqh + PcCtb) = qc(tb).'J Therefore, to get Min terms of k 
and to, we must use the chain rule: 

M = _ aqc(tb ) ~ _ aqc(tb) ato . 

ak aqa ato aqa 
(19) 

In order to calculate M, we must express ak I aq a and atol aq a 
in terms of aqalak, aqjato, etc. Since we must have 
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~), 
where 

k = aqa 
,- ak' 

aqb _ atO _ atO 
k4 -, U J=-, U4=-, 

ata aqa aqb 

we can easily solve for the u's in terms of the k 's, to get 

k, 
U,= --g' 

where 9) =k,k4 - k,kJ' Substituting this result in (19), and 
comparing with (16), we see that we get the value of M stated 
in (12), namely M = [J(tu,t,,)r'. 

Feynman's Green/unction: Feynman's Green function 
G (t,t '), satisfying (14), is the unique Green function of the 
small-disturbance operator which vanishes at both end­
points. It is important for our treatment because it is the 
covariance of the Gaussian measure used to express the 
propagator as a path integral. As was stated before (and 
proved in Appendix A), G -(t,t ') J (t,t ')Y(t - t '), withJ as 
in (16), satisfies (14). The function 

J(t t )J(t t ') 
G(t,t ')-J(t,t ')Y(t _ t ') + 'a h' 

J (t",t/,) 

is also a Green function, since the addition to G -(t,t ') is a 
homogeneous solution (of the small-disturbance equation) 
in t and t '. Further, G (ta,t ') = G (t b,t ') = O. Therefore, 
G (t,t ') is Feynman's Green function. To put it in the form 
given in (13) requires use of the identity 

, _ J(t',tJJ(t",t) -J(t,ta)J(t",t') 
J (t,t ) = , 

J (ta,t h ) 

easily proved by using (16). 

IV. WKB EXPANSION OF THE PROPAGATOR BY 
PATH INTEGRALS 
Arbitrary potential 

The framework for a WKB expansion of the propagator 
by phase-space path integrals without limiting procedure 
was set in an earlier paperl4 and will be only briefly summa­
rized here. For a simple Hamiltonian of the form 
p'12m + V (q,t) considered here, the phase-space path inte­
gral becomes a configuration-space path integral, since the 
momentum-dependent terms are rolled into the measure and 
only position-dependent terms remain to be path-integrated. 
The first step is to expand the classical action functional 
about the classical path q/t): 

S[q] S [qc + xl = Sc +! i[X2(t) - V"(t)x'(t)ldt 

- I J.. ( V (")(t )x"(t )dt, 
" 3 n! Jr 

where 
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v(n\t) [anV(q,t)laqnl q = qc' 

T [ta,th l, and xE'iff 0, which is the space of paths such that 
x(ta) = x(tb ) = O. The classical actionSc becomes part of the 
WKB approximation, K WKB , and the quadratic terms are 
rolled into the Gaussian measure, leaving the sum term for 
path integration. The result is 

K = KWKB L .. dwo(x) 

(20) 

where the measure wo is defined by its Fourier transform: 

,'7wo(u)-exp [ - ifz ( ( G(t,t')df1(t)df1(t')], 
2 )1)T 

G (t,t ') being Feynman's Green function defined earlier andf1 
being a bounded measure on the time-interval T. KWKB is 
given by (17). The exponential in (20) can be expanded to 
yield 

K=KwKB[1 + I +(-=i Y I ... f 
j ~ \ J. fz) n, - 3 n, = 3 

(21) 

To evaluate the path integral, we need the moments formula 
(see, e.g., Ref. 15) 

J x(t,)x(t,)· .. x(tn)dwo(x) 

( 

0 if n is odd, 

= (ifz)"'~'G (t",tJG (t",tJ 

· .. G (f,.,,, /") if n = 2m is even, 

(22) 

where ~' denotes the sum over all different combinations of 
different indices ij , with [i,.i2, ... ,i" J [ 1,2, ... ,n J. There are 
(2m - 1)!!-(2m - 1)(2m - 3} .. S·3·1 terms in all for 
n = 2m.'6 

Thus, we see that fz comes in the expansion with power 
!(n, + ... + n

J
) - j, which is always a positive integer, since 

each n, is at least 3. This proves that (21) is indeed an expan­
sion in powers of fz, and we can write 

K = K wKB(1 + 11K, + fz'K, + ... ), (23) 

where the K/s are ordinary finite-dimensional integrals over 
the time interval T. Polynomial potentials are best suited for 
this scheme, since the expansion of the action terminates at 
some finite n. However, it is important to note that regard­
less of the potential each term in the WKB expansion (coeffi­
cient of fzk) is always a terminating series. For example, in­
spection of (21) shows that the first (post-WKB) term is, for 
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arbitrary potential, 

+ ~ ( - i )2 r dt ds V(3)(t)V'3)(S) 
2 fz JT' 3! 3! 

(24) 

and the moments formula gives 

Kl = ~ r V'4'(t)Gl(t,t)dt + _1_' r V(J)(t)V(J)(s) 
8 JT 24 JT' 

X [3G (t,t)G (t,s)G (s,s) + 2G 3(t,S) ldtds. (25) 

Let us study the structure of the coefficientsK;. In gener­
al, thej = 1 term in (19) is 

( ~ i ) n ~ 3 ~~ v(n)(t) 1 ,xn(t )dwo(x) 

= f (ifz)m - 1 r v(2m)(t)G m(t,t )dt. 
m =2 m!2m JT 

(26) 

For arbitrary potentials, this is an infinite series in fz with no 
constant term. Similarly, we find that: 

(a) In the series for j = 2, the n1 = nl = 3 term is the 
term proportional to fz, and the three terms n1 = nl = 4; 
n 1 = 3, nl = 5; and n1 = 5, nl = 3 are the ones proportional 
to fzl. All the subsequentj series start out with fzk for k>2. 

(b) In the series for j = 3, the three terms n 1 = nl = 3, 
n1 = 4; n1 = 4, nl = n1 = 3; and n1 = n3 = 3, nl = 4 are the 
only ones proportional to fzl, and the n1 = nl = n3 = 4 term 
is the only one proportional to fzl. 

(c) In the series forj = 4, the term n1 = nl = n3 = n4 
= 3 is the only one proportional to fz2. 

(d) The series for j = 5 starts out with the fz3 term. 

Thus, we can write the term proportional to fzl in the 
expansion. It is: 

fzlKl = _fzl r V'6'(t)Gl(t,t)dt- _1_ r ~ dtl 
48 J7 2fzl JT' 4! 4! 

+ _1_' r ~ dtl dtJ V(J'(t )V(J)(t )V'4)(t) 
6{z1 JT' 3! 3! 4! III 
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(27) 

and the moments formula (22) gives the value of the path 
integrals in termsofFeynman's Green function and theclassi­
cal path. 

Application to the anharmonic potential 

The anharmonic oscillator potential, given by (1), is 
V(q) = mwlql/2 + Aq4/4. The first-order correction to the 
WKB approximation is then given by (25) 

- 3Ai i Kl = -- G l(t,t )dt 
4 T 

x [3G (t,t)G (t,s)G (s,s) + 2G l(t,S) 1, (28) 

where G (t,t ') is given explicitly by (13) with J given by (11) 
and qc(t) by (4). The resulting integrals over the elliptic func­
tions are all well-known and of the type tabulated in Ref, 9. 
Higher-order corrections can be generated at will, although 
they generally involve a large number of integrals. The WKB 
approximation is given by (17), with the classical action S c 

given by (9) and the VVM function M given by (12), with J in 
(11). Therefore, every function entering the semiclassical ex­
pansion of the anharmonic oscillator propagator has been 
explicitly calculated, and the definite integrals giving the co­
efficients of the expansion have been explicitly exhibited. It 
is pointed out, again, that this treatment is nonperturbative, 
since the functions involved in the terms of the expansion 
[for example, qc and Gin (28)], depend implicitly on A. This 
example illustrates the power of path integration without 
limiting procedure. 
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APPENDIX A: THE SMALL-DISTURBANCE 
EQUATION 

This appendix will derive and generalize some results 
used in the text on the equation of small disturbances. The 
latter, resulting from the second variation of the action func­
tional, is satisfied by the variation in a classical path resulting 
from a small change in the boundary conditions. For exam­
ple, let S [q] = S fP (u)] be an action functional. Each path 
q /J (u) is characterized by a parameter u: q(t) = /J (u)(t) 

f3(u,t). If the set !tJ(u)] is a set of classical paths !qJu)] 
labeled by a parameter u (say a constant of integration), then 
S 'fP (u)] = 0 by definition of tJ (u). Ifwe differentiate with 
respect to u, we get 

S"[tJ(u)] atJ(u) =0. 
au 

(AI) 

This is the small-disturbance equation with its explicit solu­
tion in terms ofthe classical path: S "fP (u)] (second function­
al derivative of the action evaluated at the classical path) 
yields the small-disturbance operator; atJ (u)l au is its explic­
it solution, called a Jacobi field along the classical pathtJ (u). 
Thus, the derivative of a classical solution with respect to a 
constant of integration is a solution ofthe small-disturbance 
equation. Note that if S is derived from a Lagrangian which 
does not contain the time explicitly, and we take the time 
derivative of the differential equations resulting from 
S 'fP (u)] = 0, we find that the classical velocitya/J (u)(t )Iatis 
also a solution of (AI). 

This method of "variation through geodesics" was 
studied extensively by Milnor.!7 The approach was general­
ized by DeWitt-Morette 5(c) for arbitrary action functionals, 
and independently by the author!! for Lagrangian actions. 
This method of generating solutions of (A I) was known to 
Jacobi.!2 

Lagrangian action 

Let us consider the Lagrangian action in n dimensions 
as a specific example: 

S [q]_ f' L (q(t ),q(t ),t )dt. 

One can show by straightforward differentiation with re­
spect to u that the linear mapping S 'fij (u)] maps x into 

f
t

', [ aL d ( aL )] S'fP(u)]x = -i - - -'i _ (t)xi(t)dt 
I., aq dt aq q~(J(u) 

(A2) 
if x(tb ) = x(tJ = 0 and there are no discontinuities in the 
momentum aL lai/. (Sum over repeated indices is implied). 
Differentiating once more with respect to u yields 

S"[tJ(u)] atJ(u) x 
au 

= ([(Ait ) + Bit) ~ + Cit) ~) 
)T at at' 

(A3) 
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where 

(A4a) 

(A4b) 

(A4c) 

Note that the above matrices satisfy the relations 

C = C, (B - (;) ~ = - (B - (;), 

B + if = 2(;, A - A = iJ - C = !(J3 - ii), 
We assume that C (t), the Jacobian of the transformation 
from the q's to the p's, never vanishes, so that a canonical 
formalism exists. 

IftJ (u) is a family of classical paths qc' then both sides of 
(A2) and (A3) are zero for all x(t): 

[ aL _ !!.- ( aL )] = 0 (AS) 
aq' dt aqi Fq, ' 

[A;P) + Bilt)!!.- + C,lt) ~ ] p(t) = O. (A6) 
dt dt q ~ q, 

The first equation is the familiar Euler-Lagrange equa­
tion, yielding the classical solutions q/t,u), where u is any of 
the 2n constants of integration, or any other suitable param­
eter (e,g" ta or t,,). 

The second equation is the small-disturbance equation, 
and the bracketed second-order linear differential operator 
is the (Hermitian) small-disturbance operator. The equation 
is solved by aqc(t,u)lau. 

Attempts at solving (A6) by "frontal assault" are some­
times found in the literature (see, e.g., Ref. 7), and usually 
yield only approximate solutions, if any at all. 

A convenient set of solutions is obtained by using end­
point boundary conditions: 

qc'(ta) = qa', q/(tb) = qb i. 

Thus, for any fixed! i,i'] = ! 1,2, ... ,n], the two sets 

. aq!(t). aq!(t) 
I'(o(t) --. , t(n(t) --., 

aqa' aqb' 

are sets of solutions of(A6) satisfying the obvious boundary 
conditions: 

1'(I)(ta) = !Yi' t(,)(ta) = 0, 

f'(i)(tb) = 0, t(ll(tb) = !Yi' 

We can use these solutions as building blocks for other 
solutions, which can usually be written as linear combina­
tions of them. 

Two other sets of solutions can be obtained by differen­
tiating qJt) with respect to ta or tb: 

aq J(t ) aq J(t ) 
hJ(t) _c_, kJ(t) __ c_. 

ata ath 

They satisfy the boundary conditions: 
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hj(ta) = - q!(ta), kj(ta) = 0, 

hj(tb) = 0, kj(tb) = - q!(tb)' 

Proof The second and third are obvious since the oper­
ations, say, "a/ata" and "evaluate at tb" commute. The first 
and fourth are more subtle. The first is derived as follows: 

. . . Itl' aq!(t) 
h 1(ta) = - [h 1(tb) - h 1(ta)] = - -- dt, 

t" ata 

The fourth relation is derived in a similar manner. 

Theorem: Let x(t ) andy(t ) be two solutions of the small 
disturbance equation (A6) in one dimension. Their Wrons­
kian depends on t only through C (t ): 

W (t)=x(t )y(t) - x(t )j(t) = aC (ta)C"(t), (A 7) 

where a is a constant, and it is assumed that C (t) never van­
ishes. If a*O, x and yare linearly independent. 

Proof 

W = xy - jix = - C"(Ax + Bx)y + C-'(Ay + Bj)x 

= - BC-'(xy - jx) = - BC-'W 

=>W(t)=aexp[ - LB(S)C"(S)dS). 

However, we can see from (A4) that B = C in one dimen­
sion, and the result follows. 

Green functions 

We now study the Green functions Gjk(t,t ') of the 
small-disturbance operator, which satisfy 

[A;/t) + B,/t) ~ + Cit) ~ ]Gjk(t,t ') 
at at' 

= 0; kO(t - t '), (AS) 

where A, B, and C are given by (A4) for q = qc. We restrict 
ourselves to one dimension. 

Theorem: The advanced and retarded Green functions 
are unique and are given by 

G-(t,t ') = G'(t ',t) = J(t,t ')Y(t - t ') 

where J (t,t ') is the Jacobi commutator: 

, [aqc(t) Jqc(t ') Jqc(t ') Jqit) ] 
J(t,t)= ---- - ----

aa, aa, aa, aa2 

X [ aqc(th ) apJtb) _ apc(th ) aqc(tb) ] - " 

aa, aa, aa, aa, 

(A9) 

(A 10) 

a, and a, being the two constants of integration. tb in the 
denominator can be replaced by ta' 
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Proof We look for the most general Green function of 
the form G -(t,t ') = J(t,t ')Y(t - t '). Upon differentiation 
and use of the fact that xo' (x) = - 8(x), we have 

aG - = /,,(t,t ') Y (t - t ') + f(t,t ')8(t - t '), 
at 

a
2
G - =/,,,(t,t ')Y(t - t ') + 2/,(t,t ')8(t - t ') 

at' . 

-f( ') o(t - t ') t,t , 
t - t' 

[ 
J ~ ] D,G -_ A (t) + B (t ) - + C (t ) - G -
at at' 

= yet - t ')DJ(t,t ') + 8(t - t ') 

X [B (t) + 2C (t) ~ _ C (t) y(t,t '), 
at t - t' 

where/,,(t,t ') denotes the derivative with respect to the first 
argument, evaluated at (t,t '). 

Thus, G- is a Green function if DJ(t,t ') = 0, i.e., if 
J(t,t ') is a homogeneous solution in t, and if the coefficient of 
the delta function at t = t ' is 1. If we expand about t = t " 

J(t,t ') = f(t,t) + (t - t ')/,,(t,t) + !(t - t ')1. ,,(t,t ) + ... , 
the second condition gives the boundary conditions onf 

(a) J(t,t) = 0, since C (t )*,0, 

(b) /,,(t,t) = C-l(t). 

Iff(t,t ') is a solution in t, then we can write 

J(t,t ') = /3 (t ')x(t) + y(t ')y(t), 

where x and yare two linearly independent solutions. If we 
insert the boundary conditions and remember (A 7), which 
indicates that xy - xj = aC (tJC -'(t), we have 

J(t t ') = x(t )y(t ') - x(t ')y(t) 
, C (ta)[y(ta)x(ta) _ j(ta)x(ta)] (A II) 

Let us choose x(t) = aqc(t )/aa, andy(t) = aq/t )Iaa,. By 
definitionofC (t ),C (ta) -a'L laq~(ta) = - apc(ta)laqc(ta)' 
so - C (ta)aqcCta)laa, = apc(ta)laa,. Inserting this in (All) 
we see thatJ(t,t ') is given by J (t,t ') in (A 10). Note that our 
J (t,t ') is what Bryce DeWitt" calls G (he defines G by 
G' - G -, but since his Green functions are the negative of 
ours, G = J). 

The greatest simplification in J (t,t ') as expressed in 
(A 10) occurs when the constants of integration are initial (or 
final) position and momentum, for example, 
a, = qcCta) = qa' a, = Pc(ta) = Pa' The denominator is then 
equal to I, and 

, aqc(t) aqc(t ') aqc(t ') aqc(t) 
J(t,t)= ----- ----

aqa aPa aqa aPa 
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This Poisson bracket becomes the commutator 
[Q(t ),Q(t ')]lili when the system is quantized, whence the 
name of the function. 

Feynman's Green function, which vanishes at ta and tb, 
can be built from G - and G + as follows: 

G (t,t ') = G -(t,t ') + J (t,ta)J (tb,t ')/ J (ta,tb) 

(AI2) 

Indeed, it is readily apparent that the additions to G - and G + 

are homogeneous solutions, and that G vanishes when tort' 
is ta or tb' Another form for G is shown in the main text 
(Equation 13). 

Particle in a potential 

Let us concentrate on the case of a particle in a potential 
in one dimension, with Lagrangian L = mc//2 - V(q). The 
dynamical equation is 

ij,(t) + m-1V'[qc<t)] = O. 

The small-disturbance equation is 

{ - ~ -m-1V"[qc(t)]}f(t) =0. 
dt 2 

(A13) 

(A14) 

Consider two linearly independent solutions of (A14), 
D and 15, satisfying 

D(th )= 1, 15(tb ) =0, 
(A1S) 

D(th)=O, 15(tb) = -l. 
Their Wronskian W = DD - n15 is constant and equal to 
- 1. D and 15 depend on tb, ta' qb' and qa through qc(t). The 

antisymmetric Jacobi commutator along the classical path 
qcCt) can be shown to be 

J (t,t ') = 15 (t)D (t ') - D (t)15 (t '). 

It is obviously a solution of (A 14) in both t and t '. 

Classical path in terms of Jacobi fields 

qJt) = A f D (s)ds + B f 15 (s)ds + qa' (A16) 

where 

q" - qa - V'(q,,) i 15 (u)du 
A - , B =V'(q,,). 1 D(s)ds 

Proof qc(t), being a derivative of the classical path, is a 
solution of the small-disturbance equation, and hence a lin­
ear combination of D and D: q c(t ) = AD (t) + B15 (t). Inte­
grating from ta to t yields 

qc(t) = A f D (s)ds + B f D (s)ds + qcCtu)' 
t" " 

However, qc(t) is now the solution of a third-order differen­
tial equation. Therefore, we need a third boundary condi-
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tion, other than qcCta) = qa and qc(tb) = qb' It is provided by 
the dynamical equation (AI3) evaluated, say, at tb' This 
gives A and B. Note that 

iJcCta) = AD (ta) + B15 (ta)' 

iJc(tb) = A. 

Criterion for nonexistence of a classical path 

(A17) 

(A18) 

What must the relationship between ta' tb, qa' and qb be 
in order for a classical path qc(t) such that qcCta) = qa and 
qc(tb) = qb not to exist? The answer is given in terms of Ja­
cobi fields. q c will not exist if 

iD (s)ds = 0, or 15 (ta) = M-I = 0, (A19a) 

and 

(A19b) 

This is easily proved by looking at (A16) which givesqJt) in 
terms of the Jacobi fields. qc(t) is infinite if the denominator 
of A is zero (first condition) and the numerator of A is nonze­
ro (second condition). That the two forms of the first condi­
tion are equivalent can be seen by differentiating (A 17) with 
respect to qb' On the right-hand side, we get 
Jqc(tJ/Jqb = M = 1115 (tJ, and on the left-hand side we get 
a fraction with denominator [S TD (s)dsp. Thus, whenever 
15 (ta) vanishes, S TD (s)ds must also vanish. 

For a general discussion of these conditions in the con­
text of caustics and catastrophe theory, see Ref. 19. 

Zero Jacobifield: The only Jacobi field vanishing at 
both ta and tb isf(t) = 0, unless 

15 (ta> = M -I = 0 (A20a) 

and 

(A20b) 

in which casef(t) = a15 (t), where a is an arbitrary constant. 

Proof It is obtained by writingf(t) = a15 (t ) + bD (t ) an 
inserting the boundary conditions. However, if 15 (ta) = 0, 
we may not have a classical path, in which case a Jacobi field 
is meaningless. Therefore the second condition is necessary 
to insure that one or more classical paths exist. 

Example: the harmonic oscil/ator 

We illustrate this with the harmonic oscillator 
(V (q) = ~w2q2). The classical path, for arbitrary endpoints, is 
given by 

= A cos(wt + cp ), 

where T = t" - ta and 

A = (sinwT)-1 [q~ + q~ - 2qaq" coswT] 112, 
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TABLE AI. Classical paths for the harmonic oscillator (n = ... , - 1,0,1,2, ... ) 

Harmonic 
Oscillator qa=Fqb qa = qb = qo=F0 qa = qb = ° 

Unique qc(t) 

exists 

wT=Fnrr and is given qc(t) = qo 
cosw[t - (ta + tb)/2] 

qc(t) = 0 
cos(wT /2) 

by (A2Oc) 

Noncountably 
infinite number 

wT= 2nrr qc(t) never qc(t) = qo 
cosw[t - (ta + tb)/2] 

of classical 
cos(nrr) 

exists 

wT= (2n + I)rr q,{t) never qc(t) never 
exists exists 

(jJ = arccos ( 
qa sinwtb - qb sinwta ) 

[q; + q~ - 2qgb coswT] 112 • 

It may fail to exist when sin(wT) = ° (the amplitude 
becomes infinite), except when qa = qb = 0, in which case 
there is an infinite number of qc's. 

The various cases are summarized in Table AI. 

The Jacobi fields in this case are 

- 1 . 
D(t) = COSW(tb - t), D(t) = -sinw(tb - t). 

w 

We can quickly verify all our criteria. We have 

(a) r D (s)ds = jj (ta) = ~ sinwT, JT cu 

(b) i -I D (s)ds = - (1 - coswT). 
T w 2 

If cuT = n1r, we have no classical path, unless 

qb - qa - V'(qb)cu- 2(1 - coswT) = 0, 

i.e., if qa = qb and cuT = 2n1r (yielding one path), or if 
qa = qb = 0, which implies that V'(qb) = ° (yielding an infi­
nite number of paths). 

The commutator function 

The dynamical equation (A 13) can be solved by qua­
dratures: If we substitute qit) = u, we obtain the energy 
E =!mu2 + V(qc) = con st. as a first integral. A second inte­
gration gives 

x i~' [E _ ~(X)]112 = 0, 

which yields t (qc) rather than qit). In order to differentiate 
the classical path with respect to the constants of integration 
(here, the energy E and the initial position qa), we will need 
the implicit function theorem. The latter states essentially 
that 
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paths given by 

qc(t) = A sinw(tb - t) 

(A arbitrary) 

This gives 

aqc = [ E - V(qc) ] 112, 

aqa E - V(qa) 
(A2Ia) 

~~ =![E- V(qc)]ll2f' [E- V(x)]- J12dx, 
qo 

(A21b) 

aqc =iIc(t) = {~[E- V(qc)]} 112, 
at m 

(A2Ic) 

(A2Id) 

(A2Ie) 

aiIc(tb) = (~ aqc ) = 0. 
aqa aqa at t= I" 

(A21t) 

Substituting these in (A 10), we obtain the commutator (here 
Pc = miIc' al = qa' a 2 = E): 

{ 
[E- V(qc(t»][E- V(qc(t'»] }112 

J(t,t') = 
2m 

X rq.(I') dx (A22) 
Jq,(t) [E - V(x»)l12 

If the constants of integration are initial position and 
momentum qa andpa' thenJ(t,t') is still given by (A22) with 
E replaced by p;/2m + V (q a)' This is not a trivial statement 
[compare with (A26)], as we show below. 

Proof In terms of qa andpa' the solution is 
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i
q 

[ p2 ] ~ 112 
X q" 2~ + V(qa) - V(X) dx = O. (A23) 

i
q

, [p2 ] ~ 312} 
X q" dx 2~ + V(qa) - V(X) , 

Jqc JF /JPa 

JPa JF /Jqc 

i
q, [ p2 ] ~ 3/2 

X _a + V(qa) - V(X) dx. 
q" 2m 

(A24) 

Substituting the above in expression (15) for J, some 
terms cancel out and we get the result. The nontriviality of 
this result is illustrated by the fact that Jq/Jqa in (A24) is 
not obtained from Jq/Jqa in (A2Ia) by simply replacing E 

by p~/2m + V(qa)' 

We can give the commutator in terms of the endpoints 
qa and qb' For this we have 

( 
m )1/2 iq

" tb-ta - "2 [E- V(x)]- I12 dx, 
q" 

that is, E in the first equation is really a function of q a and q b' 

given implicitly by the second equation. It is no longer an 
independent constant of integration, but q b is. Thus, we have 

Jqc JF /Jqa 

Jqa JF /Jqc 

= { (m/2)1/2[E - V(qa)]-112 + ~(m/2y/2(JE /Jqa) 

x f [E - V(X)]- J12dX} {[(m/2)1/2[E - V(qJ]-II2]) ~ I, 
q, 

where JE /Jqa is obtained by using the implicit function 
theorem on G: 
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Finally, 

Jqc = [E- V(qc) ]112. S::'[E- V(X)]-312 dx 

Jqa E - V(qa) Sq"[E - V(X)]-312 dx 
q" 

Similarly, we find 

Jqc =[ E-V(qc) ]1/2 
Jqb E - V(qb) 

X l~' [E- V(X)]-312 dx· {l~" [E- V(X)]-3I2 dX} I. 

As for the Van Vleck~Morette function 
M = - maqitb)laqa' we use 

qc(tb) = { ~ [E(qa,qb) - V(qb)]} 112. 

This gives 

M= 
JQc(tb) 

-m--
Jqa 

i.e., 

X If' [E - V(X)]-3/2 dX} ~ I. 
q" 

Finally, the commutator in terms of the endpoints is 
given by (AlO) with al = qa and a 2 = qb: 

J (t,t ') 

{ 
rq, rq(t') 

X L dx[E - V(X)]-312 L dy[E - V(y)]-JI2 
q,(I) q" 

- rq

" dx[E - V(X)]-l/2 
Jq,(t ') 

rq,(t) } 
X L dy[E- V(y)]-J/2, 

q" 
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The reduction of dynamical systems is discussed in terms of projecting vector fields with respect to 
foliations of the manifold on which the dynamics take place. Examples of established reduction procedures 
are presented and are shown to be special cases of the general procedure described in this paper. Instances 
of other types of analysis of dynamical systems related to our projection procedure are briefly discussed. 

1. Several papers l
-

J have recently been devoted to the 
problem of reducing a dynamical system to two or more 
systems of lower dimension. In these papers various proce­
dures are used, usually based on constants of the motion 
(functions) or on vector fields which generate symmetries of 
the dynamics. In addition, requirements of one kind or an­
other are placed on the objects (functions, vector fields) used 
to achieve the reduction. These conditions may be that the 
functions form a function group' or that the vector fields 
commute, close to form a Lie algebra, are Hamiltonian, or 
have some other property. When functions and vector fields 
are used together to achieve the reduction, the requirements 
may also be on the relations between them. 

In this paper we present a general setting in which all of 
the reduction procedures known to us appear as special 
cases. It is based on the idea of afoliation of the manifold on 
which the dynamics is taking place, and involves invariant 
geometric objects other than functions and fields, namely 
distributions and p forms. As will be seen, the dynamical 
vector field is not required in general to be even locally Ha­
miltonian, although the usual kind of reduction of Hamil­
tonian dynamics3 can also be understood in the terms we 
present here. 

The plan of this paper is roughly the following. We first 
discuss projectability of a vector field (the dynamics) with 
respect to a foliation. The problem then is to find foliations 
with respect to which the dynamics is projectable, and essen­
tially two methods for finding them are presented. Some ex­
amples of established procedures are discussed, including 
the use of an invariant application (from the original mani­
fold to another) rather than invariant functions. Finally, 
some remarks are made about other procedures used in dyn­
amics which may be viewed in terms offoliations and projec­
tions, followed by a brief discussion of the opposite proce­
dure. The terms in which these matters are discussed are 

a)Permanent address: Physics Department, Northeastern University, Bos­
ton, Mass. 02115. 

those of global differential geometry on manifolds. 

2. A dynamical systems, a dynamics, is a vector field.j 
on a manifold M of finite dimension n. The problem of me­
chanics is to integrate the dynamics, i.e., to obtain the inte­
gral curves of.j. Such integral curves for a dynamical system 
can sometimes be obtained by integrating related dynamical 
systems on manifolds whose dimensions are lower than n. 
The object of this paper is to discuss ways of finding such 
dynamical systems of lower dimension, that is of reducing 
the original dynamics. 

In the simplest possible case of such reduction, the inte­
gral curves of ,1 can be found from the integral curves of two 
independent dynamical systems ,11 on MJ and ,12 on M 2, but 
usually this is not possible. What is often possible is to obtain 
the integral curves of ,1 from one dynamical system ,11 on MI 
and from a second system which is neither independent of ,1, 

nor exactly a dynamical system. We call the first case, of two 
independent systems, a direct reduction (or direct splitting), 
and the second case a semidirect reduction. A common ex­
ample of a semidirect reduction is the usual one used in the 
Kepler problem in the plane (in two degrees offreedom), for 
which the "effective one-dimensional Hamiltonian" yields 
an independent dynamical system in r,p,. ,and in which the 
remaining equation de Idt = I (mr2t' is a first-orderdifferen­
tial equation for the azimuth angle. This differential equa­
tion depends on the solution of the effective one-dimensional 
problem and is therefore not independent; moreover, it does 
not yield a vector field in the usual sense. In this paper we 
discuss semidirect splittings, direct ones appearing as a spe­
cial case. 

In all cases the reduction of the dynamical system will 
be achieved through a foliation.' That is, a foliation F of M 
will be found such that ,1 can be projected onto the quotient 
space M, = M IF, and then the projected vector field is what 
we have called ,11 above. What we have called ,12 is then the 
rest of the motion, which we shall say is on the leaves of F. 
Since ,1 is not projectable with respect to just every foliation 
of M, the problem of reducing the dynamics is essentially one 
of finding a suitable F. 
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Remark: In most cases that are of interest to us, these 
foliations turn out to be fibrations. That is, the leaves are all 
diffeomorphic to each other and the foliation can be written 
as a direct product of the leaf and U for a neighborhood U of 
each point in the quotient space. 

Let 1T : M_M / F = M, be the projection with respect to 
the foliation F. We shall assume in all cases that we deal with 
that this foliation is ex , though in some applications it turns 
out not to be. A vector field XEI(M) is said to be projectable 
iff for eachfE.7(M,) there exists anf'E.7(M,) such that 

L"Jf01T) =/'01T. (1) 

What this means is that the Lie derivative with respect to X 
of any functionfo1T which is constant on leaves is itself a 
functionf'0 1T which is constant on leaves. Roughly speaking, 
those components of X which point out of the leaves are the 
same everywhere on each leaf. When X is projectable with 
respect to the foliation F, one can define a new vector field 
iEI(M,) by using the fact that the assignment ofj---..f' is a 
derivation: it is linear, and for j,gE.7 (M,) one obtains 

LJ(jgo1T) = L~.(j01T.go7T) = L,(j'o1T)go1T + f01TLJ(g07T) 

= f' 01T.go7T + f 01T.g'o1T = (j'g + fg')01T. 

This means that there exists a unique vector field iE.7(M,) 
such thatf' = LJ. We write i = irX = T1T·X. 

Suppose that .1 is projectable with respect to a foliation 
F. Then the integral curves of .1 are projected onto the inte­
gral curves of J = ir.1. Formally this may be seen as follows. 
Let c : IR - M be an integral curve of .1, and consider its 
projection 1TC : R -+ M, 1T(M). Then 

J = (7Tc(t») = (T1T'.1 )(1TC(t») = T7T (.1e(t») 

= Tr.(Tc(t,I») = T(1Tc)(t,I). 

[Recall that c is an integral curve of Xiff X (e(t») = (Tc)(t, I).] 
Thus by integrating the reduced dynamics one obtains infor­
mation about the initial dynamics. What remains to be deter­
mined is the motion along the leaves, but we shall not discuss 
that here in any detaiL 

The problem now is to find a foliation with respect to 
which .1 is projectable. Foliations are usually obtained in one 
of two ways: from functions and from involutive distribu­
tions. Consider first functions. 

3. Let! = 1ft, ... !" I : M -+ IR" be of class e r 
, and con­

sider the sets V" = F'(aL-I mEM f- f(m) = a j, where 
a = ia" ... ,a" IEtion R".ofAf, andM = u"V". This occurs, for 
instance, if the values of/are all regular, which is not always 
true (there are often even topological obstructions to such 
regularit y6). A theorem by Sard states that the set R f of regu­
lar values offis dense inf(M), and in most applications one 
can proceed by removing isolated points or submanifolds 
from M and considering them separately. At any rate, let us 
assume thatfyields a foliation as described above. The pro­
jection IT : M I-> M, : m I-> f(m) with respect to this foliation 
maps each V" onto a. 
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LetgE.7 (M,), and form the functiongof g01TE.'7 (M); 
we want to apply L x to this function in order to study the 
projectability of a field XEI(M) with respect to the foliation 
given by f We have 

L x (go7T) = Lx(g°!) = d (g0f)(X) = dg(TfX). 

What is important now is that TfX is linear in the Lxfj. 
Indeed, in calculating TfX one forms the vector field in 
.t(M,) whose components are the dfj(X) = Lxfj. In fact in 
local form, when we may write d (go!) = ~ [J(g°f)lJfj]dfj, 
the calculation becomes 

Lx (g°f) = d (gof)(X) = I J~y) dJj(X) 
./ 

= " J(g°f) L r. 
~ JJ; XJ./ 

(2) 

Now assume thatfis a constant of the motion for .1, so that 
LJJ; = OVj. Then according to (2), L.j (g01T) = 0, which sat­
isfies the condition of Eq. (I), and .1 is therefore projectable 
with respect to the foliation. In fact .1 is projected onto the 
null vector field in .t(M,), for the functiong' that it assigns to 
g isjust the null function. This is becausefis a constant of the 
motion, and .1 is therefore tangent to the leaves Va = F'(a) 
and can be thought of as a collection of vector fields, each on 
its own Va' This is a direct, rather than a semidirect splitting, 
moreover one in which .1, or J is the null field. Only the 
motion on the leaves remains. 

A common example of such splitting through functions 
is the use of the energy function. Consider, for instance, the 
Kepler problem after it has already been reduced to the 
equivalent problem in one degree offreedom. For simplicity, 
take the angular momentum I> 0 fixed, and consider only 
the radial part of the problem in phase space, which in this 
case is T*llr.lfthe energy functionf= !(P; + PNVm 
- k / r is used to foliate the two-dimensional phase space, the 
Va are compact closed curves for a < 0, and are noncompact 
(infinite) curves for a;>O.' The foliation is not a fibration. The 
quotient manifold is the semiline from the minimum energy 
a = - ~mk '/P toa = 00, and onf(M) the dynamics issta­
tionary: Li is the null vector field and its integral curves are 
fixed points. 

4. We now turn to foliations associated with distribu­
tions. A foliation on M defines a set of submanifolds, one of 
which passes through each point mEM and consequently de­
fines at each such point a subspace of T", M, namely the 
tangent space of the submanifold. To go from a distribution 
to a submanifold is to attempt the converse of this: given a set 
of vectors at each mEM, is it possible to integrate these to 
obtain a foliation? More specifically, let a subspace E", of 
T", M be given at every mEM, each subspace of the same 
dimension k < n. The set '/ of these E", is called a distribu­
tion if the transition from point to point in M is smooth: 
about each mEM there is a neighborhood U", in which there 
exists a set of X,E.:t( U",), iEI I, ... ,k I, such that the X,(m') span 
E"" for m'EU",. The necessary and sufficient condition that 
(/ can be integrated to yield a foliation is that it be involutive, 
that is that X, YE,'/ => [X, Y]E (j at each point mEM. For the 
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proof of this consequence of Frobenius's theorem and for 
further details about distributions, see Ref. 8. In our applica­
tions distribution will usually be given by a set of vector 
fields in .t:(M), and then X, YEfl => ifX + g y)E ~I , 

j;gE.) (M), and involutivity becomes a global condition. 
What we shall use is that an involutive distribution in this 
sense defines a foliation. 

Remark: A function/: M---..]Rk can yield a foliation F, 
as we have seen, and this foliation defines a distribution £jJ, 
necessarily involutive. But it is not always true that the folia­
tion F j one then obtains from (./ is the same as F. For exam­
ple F may have disconnected leaves, while F, only connect­
ed ones; each connected component ofa leaf of Fcan itself be 
a leaf of F /. Actually this cautionary remark depends on the 
definition of a foliation. Ifleaves of a foliation must always 
be connected by definition, V" = FI(a) will not always be a 
single leaf. 

For foliations defined in terms of distributions, the test 
contained in Eq. (I) for projectability of a vector field is 
simplified. If YE.~', then Y is tangent to the leaves of the 
foliation. If gE./ (M) is constant on leaves, then L y g = 0 
VYE.~· and conversely. Moreover, every such function can 
be written as a function over the quotient space MI = 1T(M) 
in the form g = /01T,jE.7 (MI ), and every function of this 
form is constant on the leaves; that is L y(j01T) = OV YE.~:. 
Thus the test for projectability becomes: X is projectable 
with respect to the foliation induced by ~. ilffor jE.)c-(M) 

Ly/= OVYE~1=>LyL)(I= OVYEY. (3) 

A distribution j; will be called invariant under the dy­
namics Ll ilf[Ll, Y]E.~: V YE.~i, that is, if L.;lYE.0':' V YE.0' .. If 
/.l is invariant under Ll, then Ll is projectable with respect to 
the foliation induced by .~ . Indeed, let/E./ (M) be such that 
L y/ = OV YEY . Then (3) is satisfied, for 

L)L,J= fLlL..l - Lj'l l/=- Ll..lli/= O. 

since [Y.Ll ]E II . I t is thus seen that an invariant distribution 
will provide a splitting of .:1. 

Remark: If Ll itselfis in an involutive distribution /1. 

then II is automatically invariant. Moreover. L)/= 0 V 
YE'; implies that L ~ = O. and Ll is trivially projectable ac­
cording to (3) with i'Ll = O. As in the case of foliations de­
fined by functions, Ll is projected onto the null vector field 
and all the motion is on the leaves. 

5. The next question, then, is how to find invariant dis­
tributions. Finding them is hardly ever as simple or intuitive 
as finding constants of the motion, but it can be made some­
what easier by the use of differential forms. Let aE/} !'(M) be 
a p form; we will be interested now in p forms with nonnull 
kernels. The kernel of a, kem -.-1 X E.:t(M) f-- i\ a = 0 I. is a 
distribution (I "and it can be shown that (I" is involutive iff 
a II da = O. In particular, if da = 0, i.e., if a is closed, (/" is 
involutive. If a is, moreover. conj(!rmally invarianl under J. 
that is. if 

Lp =/a. jE/(M) (4) 

(when/= 0, a is said to be il/uorionl ul/der Ll ), then 'I" is 
invariant under Ll. Indeed, YE(I" implies [Ll,Y]Efl ,,' for 
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il,j.Yla= [L.;liy-iyL.;l)a= -iy(ja) = -fiya=O. 

Thus a conformally invariant closed P form provides an in­
volutive distribution and hence a foliation with respect to 
which Ll is projectable, and thereby reduces the dynamics. 

This procedure may seem very contrived, but it is a 
general one and most, if not all, of the standard procedures 
used to reduce dynamical systems are in fact special cases. 
We discuss some of these. 

Let Ll be a Hamiltonian vector field on a symplectic 
manifold (M,(u). Assume that it has already been reduced 
with the aid of a constant of the motion/: 1'.1 ~ ]Rk as de­
scribed above. Then each Va = F'(a) can be said to contain a 
part of the dynamics Ll, as has been mentioned already. Let 
us call each such part Ll'l; this is a vector field on Va' A closed 
invariant 2-form can also be defined on each Va as follows. 
Since every XaEX( Va> can be obtained by restriction from at 
least one Xd'(M) which is tangent to Va' the equation 

bia(X",Y.)(m) = bi(X,y)(m), mE V" 

defines the 2-form OJa on Va which is closed because OJ is 
closed and invariant under Ll" because OJ is invariant under 
Ll. It is generally not regular, however (Va may even be of 
odd dimension), so that kerlUa need not be empty. Thus 1'., 
can be foliated and the dynamics Ll" reduced by the proce­
dure we have just described, but withM replaced by Va and a 
by (V"' It can be shown that the quotient space inherits a 
symplectic structure from (Va (from OJ) and that the projected 
vector field .1" is Hamiltonian with respect to this structure. ' 

This is the usual procedure used, for example, in reduc­
ing the three-dimensional Kepler problem (the phase space 
has six dimensions) in a two-step process. First the angular 
momentum vector is used to foliate the phase space with 
submanifolds V" of dimension three, and then the 2-form (Va 

obtained from (v is used to foliate each Va' In the resulting 
semidirect splitting, .1a is the vector field of the equivalent 
radial problem which was discussed above (and which we 
split further by using the energy function). Note that it is, as 
is well known, Hamiltonian. The rest of the motion, as was 
also mentioned before, is on the leaves, the motion of the 
azimuth angle. 

As another example, consider the dynamical vector 
field on jR' given by 

where.0 andg, are functions only of the variables q" PI' while 
(, and g, are functions of all four variables. This system is 
presented already in a semidirect split form, and the proce­
dure for integrating it is apparent: solve first for the variables 
ql, PI and insert the solution into the equations one obtains 
for the other variables q"p,. A clear understanding of what is 
happening is obtained in our terms when one notes that 
a = dq, II dp, is conformally invariant under Ll: 

L,ja = (a/, + ~gl )a. 
aq, api 

(4') 
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The kernel of a is the distribution 

9 (l = {({! ~ + tP ~ ;({!,t/JEc7(R4
)}. 

aq, ap, 

All vector fields in.9' a are parallel to the planes whose equa­
tions are ql = const,PI = const: these planes provide the foli­
ation. The quotient of R4 with respect to this foliation is the 
plane of all values of ql and PI' and on this quotient manifold 
(isomorphic to what one might call the q\> PI plane, namely 
q2 = O,p, = 0) the dynamicsJ is independent. Note that the 
foliation in this case is associated with no constants of the 
motion. The functions ql and PI, for example, are not con­
stants of the motion. 

Remark: According to Eq. (4) L1 is Hamiltonian with 
respect to the symplectic form dql 1\ dpi = a iff a is invar­
iant, for then L.p = diJ.a = 0, and a function hEJ(R') ex­
ists such that (~p = dh, or such that}; = ah lap\> 
gl = - ah laql' 

A recent paper' uses a technique which mixes these gen­
eral procedures. Letf: M --4 lR \ be a constant of the motion, 
and let S be a set of globally linearly independent vector 
fields I SI'''''S, 1 which are symmetries for.:1, that is such 
that [Sj ,.:1 ] = O. With certain assumptions, among which are 
that S define an involutive distribution 9' s and that the 
L s/' = T'J E .7 (M) can be written as functions of thef, ' it 
is shown that a reduction of the dynamics is obtained. In our 
terms this can be seen as follows. Let 9 lbe the distribution 
given by the foliation induced by the constant of the motion 
f That is, 5'l= [X E l(M) f-Lxf = 0]. Then it can be 
shown that f.y; s (1£/ r 9 is an invariant distribution, neces­
sarily involutive, arid it can be used to reduce the dynamics. 

6. Having generalized from foliations associated with 
functions (constants of the motion) to more general folia­
tions associated with distributions and through them with P 
forms, one may try proceeding also in another way to folia­
tions associated with C oc applications of the form ¢J : M--+N, 
where N is a differential manifold of dimension k < n. In 
almost exact analogy with the case offunctions, we say that a 
vector field XEl(M) is projectable with respect to the folia­
tion associated with ¢J iff for every fE,7 (N) there exists an 
j'E7(N) such that 

LxdJ.f=dJ.j'. (5) 

If, moreover, dJ is onto (or, one could say, if dJ (M) is a differ­
ential manifold, which could then be defined as N). there 
exists a unique vector field X Et(N) such that Lx f = j'. 
Now, L\. dJ.f can be calculated as in the case of constants of 
the motion, and again in exact analogy one obtains 

Lx dJ.f = df(TdJ·X). (6) 

As in the case of functions, a foliation with respect to 
which..1 is projectable can be found if dJ is a constant of the 
motion, that is, if dJ (c(t») is a fixed point in N, where c(t) is an 
integral curve of ..1. In that case 

T¢> . ..1 <c(t» = T¢> (Te(t, 1» = T(¢>c)(t, 1) = 0, 

since ¢J (e(t » is fixed in N and hence has zero derivative. Since 
(we assume) an integral curve passes through each point 
mEM, it follows that T¢J . ..1 (m) = O. Then according to (6) 
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Ld¢J.f = OVfE, 7 (N), and..1 is trivially projectable by Eq. 
(5); L1 is the null vector field, as in the analogous case in 
which N is replaced by RI-, and the motion is entirely on the 
leaves. 

A very simple example of this situation is the case of the 
vector field 

a a 
.:1 =x- +y-

ax ay 

On /vi == W -- 10 i, with the application dJ : M--S I. To de­
scribe dJ we use the angle e around the circle S I: 

dJ : (x,y) ,~o = arctan(ylx). 

(Of course. this requires more than one chart.) Then if 
Xd:'(M) has components ~ ... rl, it is easily shown that 

I'dJ : (X.y;S.1/) • 0, ~ , . ( 
-''y + x11 ) 

x + y-

The components of..1 are; = x. 11 = y. so that at each point 
(x,y) this vector field is mapped into the null vector field by 
I'dJ, and thus dJ is a constant of the motion. The leaves of the 
foliation. in this case orbits of the dynamics, are obtained by 
fixing 0, or from y/x = const. They are the straight lines 
passing through the origin. 

7. In conclusion we mention several procedures used in 
analyzing dynamical systems, procedures which, from the 
geometrical point of view, are closely related to projecting 
vector fields with respect to foliations. 

In action-angle variables, the Hamiltonian is written as 
a function only of the action variables J i , constants of the 
motion. The function J = I JI,. .. ,J, 1 : M--4R' defines a folia­
tion with respect to which the dynamics is projected onto the 
null vector field, as is always the case with constants of the 
motion. The leaves of this foliation, at least locally, are tori, 
and on them the motion is extremely simple Wi = vlJ). As 
this procedure is generally applied, moreover, k = n/2, so 
that the leaves and the quotient manifold have the same di­
mension. For the simple harmonic oscillator the Vi are inde­
pendent of the J i : the splitting is then direct. 

Certain types of perturbation methods can also be un­
derstood in the light of this reduction procedure. Suppose, 
for instance, that our manifold M is foliated by a certain 
distribution y: which is invariant with respect to the vector 
field.:1. Suppose, moreover, that.:1 can be written in the form 
.:1 =.:1 0 + f.1.:1', where.:1 oE!/ , so that .:1 0 projects down to the 
null vector field on the quotient manifold, and that fy) is 
therefore invariant under .:1'. It then follows that 17'..1 = 17'..1 " 
and the global dynamics can be thought of as a motion that 
takes place on the leaves, while the leaves are carried into 
each other by.:1 '. If f.1 is a very small parameter, this motion 
of the leaves may be very slow as compared to the motion on 
them, and thus in a sense one can study each motion sepa­
rately, almost as though they were decoupled. In fact this is 
true also if f.1 is very large, so that the motion takes place 
mostly on the quotient manifold, remaining relatively sta­
tionary on the leaves. 

Somewhat more specifically, let y} be invariant under 
..1, and let us suppose that..1 can be decomposed into a field 
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.:1 0E.01 and Z =.:1 - .:1 0 • where Z is "small" with respect to 

.:1 0 , We can then consider the average of Z on a leaP 

<Z> = i 'em,,) Z dJ-l. 

We shall call <Z> the mean field induced by.:1 on the quo­
tient manifold, for in a sense what we have done is to replace 
Z by a constant field which reproduces its action in an aver­
age way. When we replace.:1 by.:1 - Z + <Z> =.:10 + <Z >, 
we obtain a field whose components pointing out of the 
leaves are constant, in agreement with the remark after Eq. 
(I). Of course the projection of this field along the leaves is 
not the same as the projection of.:1 along the leaves but it is 
possible to obtain estimates of the error made.'o When M is a 
symplectic manifold, this is in fact the procedure used in 
studying adiabatic invariance. I, 

Something like the reverse of this reduction procedure 
can sometimes be used to investigate difficult dynamical sys­
tems. Suppose that a reasonably complicated dynamical sys­
tem.:1 is given on a manifold M, and suppose that a larger 
manifold M ' can be constructed so that M appears as a quo­
tient with respect to some foliation in M'. To simplify the 
considerations, let us assume that foliation to be a fibration, 
so that (M " 1T,M) is a fiber bundle in which 1T is the projection 
1T : M '~M. It maybe possible to choose motion on the fibers 
in such a way that it becomes easy to integrate the total 
dynamics on M', consisting of the motion on the fibers plus 
the dynamics on the base. Then the initial dynamics on the 
base can be integrated by projecting with 1T. A simple exam­
ple of this procedure, cooked up for this demonstration, is 
the following. Let Mbe the contangent bundle of the semi­
axis, T *R+, with the natural symplectic structure 
(u = dq 1\ dp, qER'. Consider the dynamical field whose Ha­
miltonian is 

(7) 

where I is a constant. Now extend M in two steps. First at 
each point of T *R' we define the fiber S' (the circle), and on 
the fiber consider the motion whose equation is 

de 
- ==-, 
dt q2 

where e is the usual (local) angle coordinate on the circle. We 
have now extended Mto SiX T*R' = S IXR'XJR 
= (R) - (0 l) X JR, in which (q,e) give the local polar chart 

on R2 - (0 1 ' and the remaining variable p gives a chart on R. 
What we have so far is related in an obvious way to 
M' = T*(R2 

- !OJ):weextendourmanifoldtoM'byform­
ing the contangent bundle over S " and then the natural sym­
plectic forma!' = UJ + UJs, whereUJsis the natural symplectic 
form of T * S " can be written in our local chart as 

UJ = dq f)dp + de I\dpo· 

Now consider the isotropic harmonic oscillator on 
R2 - ! 01, whose Hamiltonian can be written in a Cartesian 
chart in the form 

(8) 
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The dynamical system .:1' obtained from H ' can be reduced 
by the procedure which uses the angular momentum in the 
way we have described for the Kepler problem. The resulting 
Hamiltonian dynamics projected onto T *R' is obtained from 
the Hamiltonian ofEq. (7). But.:1' is an extremely easy prob­
lem to deal with. In fact, as in the example of Eq. (4) it is 
already split, in this case directly. 

What we are describing here is a sort of unfolding of the 
initial dynamics by imbedding it in a larger one which is 
easier to integrate, and then projecting the solution back to 
the initial manifold. In the example we have given, the larger 
dynamical system is easier to integrate because after being 
constructed it can be projected in a different way, onto differ­
ent submanifolds than the original one. It is conceivable that 
the larger system is easy to integrate for other reasons. We go 
no further into this procedure. A systematic description and 
a more detailed treatment will be found in Ref. 12. 
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We prove that 1jI,.I' the partial-wave projection of the irregular Coulomb wavefunction 1jI" is a solution of 
an inhomogeneous Schrodinger equation. New expressions for 1jI,.1 and 1jI, are obtained in terms of the 
Coulomb Green functions Go and Gr. respectively. We discuss irregular solutions. the analogs of 1jI,. for 
Coulomb-like and short-range potentials. We find that in general these functions do not approach 
asymptotically the scattering amplitude times an outgoing spherical wave. in contrast to the pure Coulomb 
function 1jI,. 

1. INTRODUCTION 
The physical three-dimensional Coulomb scattering 

wavefunction w' +) is customarily split up into an "incoming 
part" tPi and a "scattered part" tP,. Each one of these three 
functions is a solution of the Schrodinger equation, tP'+) is 
regular, tPi and V's are irregular. In Ref. 1 we have derived 
closed expressions for tPj + l,tPu, and tPs,l' the partial wave 
(p.w.) projections of tP/+', tPi' and ¢s' respectively. We proved 
that ¢i.I and tPs,l are no solutions of the p.w. projected Schro­
dinger equation. 

The function tPs asymptotically approaches the Cou­
lomb scattering amplitude times a Coulomb-modified out­
going spherical wave [cf. Eq. (5.1)]. The question arises 
whether there also exists for other potentials a function 
which 

(i) is an irregular solution of the three-dimensional 
Schrodinger equation, and 

(ii) asymptotically approaches the scattering amplitude 
times an outgoing spherical wave (possibly modified). 

In this paper we shall discuss a large class of irregular 
solutions of the three-dimensional Schrodinger equation 
with a local potential. Their asymptotic behavior is easily 
obtained when the potential is spherically symmetric. In this 
case we are able to show that the condition (ii) is not satisfied 
in general. It seems that the pure Coulomb potential is a 
remarkable exception in this respect. 

In Sec. 2 we shall prove that ¢s,/ is a solution of an 
"inhomogeneous Schrodinger equation," see Eq. (2.3). With 
the help of this result we deduce in Sec. 3 a new expression 
for ¢s,l' in terms of the Coulomb Green function Gc•b Eq. 
(3. 1). In the second part of Sec. 3 we investigate the behavior 
of tPs,l(r) for r~, starting from different equivalent expres­
sions. When I = 0 this function diverges like lnr, but for I> 0 
it has a finite limit for r---+O CEq. (3.17)]. 

Summation of the p.w. series with ¢s./leads in a natural 
way to an expression for tPik,r) in terms of the three-dimen­
sional Coulomb-Green function Go Eq. (4.1). We define in 
Eq. (4.2) a class of irregular solutions tPw(k,r) of the three­
dimensional Schrodinger equation for a not necessarily 
spherically symmetric potential in analogy to tPs' and study 

these functions in Sec. 4. We also discuss here the connection 
with a line charge distribution on the positive z axis. 

The most interesting feature of the Coulomb irregular 
solution ¢s is, as we said before, that it asymptotically ap­
proaches a Coulomb-modified outgoing spherical wave 
times the Coulomb scattering amplitude. In Sec. 5 we discuss 
the question whether such an irregular solution with a simi­
lar asymptotic behavior can be found for other potentials. 
We successively consider the Coulomb, Coulomb-like, and 
short-range potentials, first with the "Coulomb-choice" for 
w, i.e., w(r) proportional to eikr

, and afterwards for other 
functions w. We have not been able to find an irregular solu­
tion tPw with the desired property of giving the scattering 
amplitude, so it seems to be fortuitous that ¢s yields asymp­
totically the scattering amplitude. Therefore, although the 
regular physical wavefunction tP'+'(k,r) for any local poten­
tial can be expressed as the sum of two irregular solutions, 
tP' +' = ¢i + ¢s' this splitting seems to be useful only in the 
pure Coulomb case. 

We shall work throughout in the coordinate representa­
tion and restrict ourselves to local potentials. As usual we 
take fz = 2m = 1, E = (k + iE)2 with E W, and we suppress 
the energy dependence of G, Go, and T. We will often use the 
subscript C to denote Coulomb quantities. 

The p. w. "outgoing" physical scattering state is denot­
ed by Ikl + >, cf. Eq. (I 1.13) of Taylor.' Its connection with 
Newton's tP~ +) and CPt follows from 

<rlkl + > = (2hr)l!'(kr)-li'tP) + )(k,r) (1.1) 

and [Eq. (12.145) of Ref. 3] 

¢i + l(k,r) = k' + lcp/k,r)f,~ l(k )/(21 + I)!!, (1.2) 

whereJ,(k) is the Jost function. Furthermore we will use the 
symbols Ikl t> and Ikl ~ > to denote the Jost solutions of the 
p.w. Schrodinger equation, see Ref. 1. We have 

<rlkl r> = (2hr)If2(kr)''/,(k,r), (1.3) 

2ilkl +) = e2ib'lkl t) - Ik/~>, (1.4) 

and 

<rlkl + ) = ( - )'<rlkl- )* = ( - )'<kl- Ir). (1.5) 

The Coulomb Jost solution is denoted by <r!klt >0 and for 
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v '0 we have' 

<rlkl i)o = (2hr)'l1i'h) I l(kr). 0.6) 

We shall suppress I when 1= O. In particular, 

<rlk Ot)o = <rlk i)o = (2/rr)'l2eikr /(kr). 

The subscript 0 to a bra or ket signifies V = 0, whereas for a 
function, e.g., in/~.o, it means I = O. The behavior of 
<rlkl + ) and <rlkl t) at r = 0 follows from 

lim(1T/2)'12(2ikr) I<rlkl + )(21 + l)!ll! 
r .0 

(1.7) 

and 

lime 1T/2)'I2( - 2ikr)lkr<rl kl t)1 V(2/)! 
r .0 

=/I.-k), (1.8) 

respectively. These equations are valid for Coulomb-like as 
well as for (nonsingular) short-range potentials. 

For a local central potential VI.-r) is independent of I. 
Therefore, we shall occasionally suppress the subscript 1 
here. 

2. COULOMB FUNCTIONS SATISFYING AN 
INHOMOGENEOUS SCHROOINGER EQUATION 

In this section we shall prove that XI (see Ref. I) is a 
solution of the following inhomogeneous differential equa­
tion of the Schrodinger type, 

(k 1 - Hc,I)XI(kr) = - <rl Vc Ik i)cI~,o, 

that is, written in a more explicit form, 

(k2+J..~r_I(l+I) _ 2kY )XI(kr) 
r dr' r' r 

= _ 2ky (~)1!2 eikr 
e

1Tyl2 
. 

r 1T kr T(1-iy) 

(2.la) 

(2.1 b) 

Here V C is the Coulomb potential and/~.o is the complex 
conjugate of the Coulomb Jost function for 1 = 0 (e.g., Ref. 
3), 

/c,I=/C,l(k)=e1TY!2T(/+ I)/T(l+ I +iy). 

The function X, has been defined in Ref. I by 

x/(kr) = e2iO"(rlkl i)c - 2it/Js.k), (2.2) 

where <rl kl t >c is the Jost solution for the p. w. Schrodinger 
equation with the Coulomb potential. It follows that if Eq. 
(2.1) is valid, we also have 

(k 2 - HC,I)t/Js,l(r) = <rl Vc Ik t)cI~,oI(2i). (2.3) 

As we said in the Introduction, t/Js,/is the p,w. projection oft/Js 
[see Eq. (4) of Ref. l), 

t/JsCk,r) = - (21T)'(JI2'e1TYI2(T (I + iy)/T( - iy» 

xeikrU(l + iy,l,ik·r - ikr). (2.4) 

closed expression for XI [see Eq. (A.I7) of Ref. I], 

y,(kr) = (2!1T)'l2 exp(1Ty/2) exp(ikr) 
r(1 - iy) kr 

X ,F,( -1,1 + 1,1;1 - iy;_.I_), 
2lkr 

(2.5) 

and introduce the new variables z = (2ikrt' and fl = - iy. 
After some manipulations the equation to be proved reduces 
to 

- zlF" (z) + z(1 - 2z)F'(z) + fJL + I (l + I )z]F (z) = fl. 
(2.6) 

Here 

F(Z)-,F,( -1,/ + I,I;fl + I;z) 
, 

= Lz"(-/),,(l+ 1),,/{Ji+ 1)" 
n - 0 

is a polynomial, so the proof of Eq. (2.6) is obtained in a 
straightforward way. 

3. A NEW EXPRESSION FOR tPs,l 
In this section we shall prove the equation 

G C,l V c,ll k t )cI~.o = 2it/Js", (3.1) 

where 

2it/Js,l = e
2iu

'Ikl t)c - Xl' (3.2) 

The left·hand side of(3.1) gives a new expression for t/Js,l' 
Further we shall investigate the behavior of t/J",(k,r) for 
r-O, see Eq. (3.17). 

Note, however, that 

Gc"V c" I k t)o 

is even not defined. This can be easily deduced from our 
discussion below [the integral S: in Eq. (3.8) would be diver­
gent in this case], but it also follows from the equality 
GC,{VC.l = GO,lTC,l and the well-known fact that the half­
shell Coulomb T matrix, that is T C,I I kl), is not defined. 

For the proof of Eq. (3.1) we use 

<rIGulr') = ( - )1+ l11Tk <r < Ikl + > <r _.Ikl i), (3.3) 

where r < is the smaller one and r> the larger one of the pair 
r,r'. Such a representation of the Green function holds for 
any local central potential, as is well known. 

A natural and direct way to prove Eq. (3.1) would con­
sist of inserting (3.3) and using the known explicit expres­
sions for the regular and irregular Coulomb wavefunctions, 
i.e., 

<rlkl + )c = (2!1T)1I2e - 1TYI2[T(l + I + iy)/T (21 + 2) 1 

x (2ikr)'e - ikr ,F,(I + 1 - iy;21 + 2;2ikr), 

(3.4a) 

In order to prove Eq. (2.1), we substitute the following and 
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x U(/ + I + iy,21 + 2, - 2ikr). (3.4b) 

However, it turns out that this approach is somewhat com­
plicated. We have been able to prove Eq. (3.1) in this way 
only for I = 0 and for I = I. In order to show the complica­
tions arising here, we now briefly discuss the I = ° case. By 
using 

and 

~ ,FI( - iy; 1 ;z) = - iy ,F,(1 - iy;2;z), 
dz 

d -e zU(1 + iy,l,z) = -e- ZU(1 +iy,2,z), 
dz 

IFI( - iy; 1 ;z) 

= - iy ,FI(I - iy;2;z) + (1 + ir) ,FI( - iy;2;z), 

U(1 +i1',I,z) 

= U (I + iy,2,z) - (l + iy)U (2 + iy,2,z), 

we obtain 

<rlGcVc Ik 1)0 

= e 1T),!2r(1 + iy)<rlk I>c + (2/1r)'
f2

2ieikrr (1 + ir) 

x LF,( - ir;I;2ikr)U(1 + ir,2, - 2ikr) 

+ i1' ,F,(1 - iy;2;2ikr)U (I + iy, 1, - 2ikr)]. (3.5) 

The expression between the square brackets can be reduced 
by noting that the Wronskian Wfor the functions 

!(z)_,F,( - iy;l;z) 

and 

g(z)_ezU(I + fy,l, - z) 

is equal to 

W(f,g) fg' -!k = z-'exp[z + hTsgn(Irnz)]/F(1 + ir)· 

In this way we get from Eq. (3.5), 

<r/GcVc Ik T>J"~.o = e2iao<r/k T>c 

which is just Eq. (3.1) for 1=0. 

For I> I the above procedure is rather complicated. 
Therefore, we resort to a different approach. 

In the preceding section we have proved 

(3.6) 

This equation follows from Eq. (3.1), but not vice versa. We 
shall nevertheless prove Eg. (3.1) with the help of Eg. (3.6). 
To this end we first observe that the quantity 

GC,lVC /k T>J"~,o is a solution of the same inhomogeneous 
differential equation, 

(k 2 - HC,I)Gc,IVc/k T)J"~,o = Vc/k i>J"~,o. 

Therefore, this quantity equals the sum of a particular solu-

863 J. Math. Phys., Vol. 20, No.5, May 1979 

tion of this equation and some solution of the corresponding 
homogeneous differential equation. According to Eq. (2.1), 
- X, is a particular solution. Further, we know that any 

solution of the homogeneous differential equation is a linear 
combination of /kll>c and /klL)c. Therefore, 

Gc.tVcl k r>J~.o= -X,+ C/klr>c+ C2/kl!>c- (3.7) 

We shall prove that C2 = ° and C, = i'CT, by establishing the 
behavior of the left-hand side for r~ 00 and for r~O, 
respectively. 

Substitution of (3.3) in the left-hand side of Eq. (3.7) 
yields 

<rIGc.Yclk I>J~·.o 

=(-)'+I!17k!~.o[<r/klr>c f<r'lkl+>c VC<r') 

x Vc(r')<r'lk I>Or'2dr']' 

We further use Eq. (1.4) for the Coulomb case, 

2ilkl + >c = iiO', Ikll>c - Ikl! >c 
and 

(3.8) 

<rlkl r )c- (2/1T)'f2(krt'exp(ikr - i1'ln(2kr)], r~ 00. 

(3.9) 

It follows that for r~oo the second term on the right-hand 
side of Eq. (3.8) is negligible. For the first term we find, for 
r~oo, 

_ (2/1r)J/'l~.o(krt'eikr + const r - I - iYeikr. 

Clearly this implies that we have C2 = ° in Eq. (3.7). 

In order to prove C, = iiO'" we consider the expressions 
in Eq. (3.8) for r---+O. With the help ofEqs. (1.7) and (1.8) one 
easily verifies that 

r---+O,whenl = 0, 

= 0(1), r---+O,whenl = 1,2,3, .. ·. (3.10) 

Finally we use Eq. (3.4b), where (Ref. 4, p. 288, corrected) 

U(a,c,z) = z 1- 'T(c - I)/F(a) + 0(lz1 2 - Rec), 

z_o, Rec>2, c=l=2, 

and deduce from Eq. (26) of Ref. 1 that 

Xt(kr)-=(2/1T)'/2e1TY/2(krt' 

(3.11 ) 

x ( '- 2ikr) -'F(2! + l)/F(l + 1 - iy), r---+O. 

(3.12) 

With the help of these expressions we obtain C] = i"T
,. This 

completes the proof ofEq. (3.1). 

The behavior of<r/Gc,/Vc Ik r)oatr---+O, as given by Eq. 
(3.10) is somewhat peculiar. The function t/ls,l has the same 
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behavior, according to Eq. (3.1), that ha's just been proved. It 
may be interesting to deduce this behavior of 1/1,., at r == 0 in 
an independent manner. We shall do this in two ways: (i) by 
starting from 1/I,(k,r), and (ii) by using an integral representa­
tion for 1/Is,/ which we have obtained previously. I These con­
siderations give at the same time a more precise expression 
for 1/Is., at r = O. 

First we note that Eqs. (3.2) and (3.4b) may be used for 
our purpose, but this approach is not simple for I> O. So let 
us start with 1/I,(k,r), a closed form for which has already 
been given in Eq. (2.4). By using 

U(l + jy,l,z)~ - (2C + 1/1(1 + iy) + Inz)/T(l + iy), 

z----+O, (3.13) 

where C is Euler's constant and 1/1 the digamma function, we 
get 

1/I,(k,r)~(217l(3l2)exp(ikr + 1Ty!2) 
X In(kr - k"r)/ T ( - iy), kr - k"r---.O. (3.14) 

The p.w. projection of 1/1, is given by 

1/I,.k) 21T f~ t,(X)1/I,(k,r)dx, 

with x = k"r. We now use the equalities r t,(x)ln(l - x)dx = 21n2 - 2, 1 = ° 

= - 2/[/ (I + 1)], 1 = 1,2,3, ... , 
(3.15) 

that follow easily with the help of (e.g., Ref. 4, p. 239) 

00 I (n- I + (n + lYIPn(x) 
n~l 

= - 1 + In2 - In(1 - x), - I <x < 1. (3.16) 

In this way we obtain, for r----+O, 

(1T!2)1 12e - lT J
'
/2T( - iy)1/Id(r)~lnr, 1 = ° 

~ - 1/[/ (l + 1)], 

1= 1,2,3···. (3.17) 

This expression not only agrees with Eq. (3.10) but also gives 
more information. 

Finally we will deduce the expression (3.17) from the 
following integral representation for 1/Is.l [Eq. (18) of Ref. 1], 

1/Ijr) = - (2/1T)ll2j _. 'e lTYl2 [r ( - iy) l-I 

X f" it(krt )eikr( I + I)t lY( 1 + t) - I - iYdt. (3.18) 

We use the new variable z = krt and see that we have to 
investigate the following integral for small r, 

(3.19) 

When I> 0 we may put r = 0 in the integrand because .of 

j,(z) = o (z'), z-o. In this case we obtain 
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limIk)= ("'j,(z)eizz-1dz=i'/[I(/+ 1)], 1= 1,2,3, .. ·, 
r .0 Jo 

(3.20) 

which follows by using formula 6.621.1 of Ref. S. For 1=0 
we have 

lo(r) + Inkr 

= (00 sinzeizz' I(Z + kr)-I(l + kr/z) - iJ'dz 
Jo 

which clearly has a finite limit for r----+O, so 

lo(r) = - Inkr + 0 (1), r----+O. (3.21) 

By substituting the above results in Eq. (3.18) we obtain the 
second proof of Eq. (3.17). 

4" IRREGULAR SOLUTIONS IN THE GENERAL 
CASE 

In the preceding section we have expressed 1/1,.1 in terms 
of the Coulomb Green function Gc." see Eq. (3.1). By sum­
ming the p.w. series for both sides of this equation we obtain 

1/Is(k,r) = 1'>0 <r\Gclkr')Vc(r')<r'lk i)or'2dr'f~.oI(2i). (4.1) 

In this section we shall discuss irregular solutions 1/Iw for 
a general potential V, not necessarily spherically symmetric. 
To this end we define, in close analogy to Eq. (4.1), 

(4.2) 

where G = (k 2 + .d - VYI and the function w is arbitrary to 
the extent that the above integral is well defined. For conve­
nience we assume w to be continuously differentiable. By a 
formal application of G -I it is easily seen that 1/Iw satisfies 

(k 2 +.d - V)1/Iw(k,r) = r2w(r)t5(r,k). (4.3) 

The Dirac delta function is defined by 

ff(r)t5 (r,k)df = f(k), 

where the domain of integration is the surface of the unit 
sphere. 

We will show that 1/1 w in general has a logarithmic singu-
1arity in the forward direction (k = f). By inserting 
G = Go + Go VG in (4.2) one can show that this singularity in 
general comes from Go. So we replace G by Go in Eq. (4.2) and 
use 

<rIGo\r') = - (41Tnr - r'\-Iexp(ik Ir - r'\). 

It follows that the singular part of 1/Iw is given by 

1/Iw = - (41T)-1 fx; w(r')exp(iky)/ydr' + 0 (1), x----+I, 

withy = (r + r'2 - 2rrx)112 and x = k.r as before. The sin­
gularity comes from the integrand at the point r' = r. In or-
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der to investigate its behavior in this region we introduce the 
new variable z = r'lr. Then one can show that for any posi­
tive a, 

f(l- 2xz+Z't1/,/(z)dz = =t=!f(I)ln(i -x) 

+ 0(1), xlI, a~l, (4.4) 

for a continuously differentiable functionf(z). With the help 
ofEq. (4.4) we obtain 

tP",=(41Tt'w(r)ln(l-x)+0(1), xiI. (4.5) 

This expression gives the logarithmic singularity of the irreg­
ular solution tP", for a general local potential V. 

Now we will briefly discuss the singular behavior of tPw 
at r = 0. In this case we assume x=l= I. Since 
(z'-2xz+ 1)'I2~zforz-.oo we have 

tP". = - (41Tt' roc elkrZw(rz)dz + 0(1), 
JI z 

r-.O. (4.6) 

When w is constant we use 

r (0, - ikr) = (''' elkr~Z = - Inkr + 0 (1), r---;.O, 
JI z 

where r is the incomplete gamma function, and obtain from 
Eq. (4.6), 

(4.7) 

When w is proportional to elkr [cf. Eq. (4.13)] we get exactly 
the same expression, (4.7). 

We note that Eqs. (4.5) and (4.7) can be combined, 

tPw(k,r) = (41Tt'w(r)ln(kr - k·r) + 0 (1), (4.8) 

for k.r-.I as well as for r-.O. This expression may be com­
pared with Eq. (3.14). 

If we now restrict ourselves to spherically symmetric 
potentials, tPw(k,r) is a function of k,r and k.r only. In this 
case it is possible to consider the p.w. projection of (4.2), 

tPw.l(k,r) = LX; <rIG,lr')w(r')dr'. (4.9) 

In order to deduce the behavior of tP W,' at r = 0, we use Eq. 
(3.3) which is valid for any local central potential. Then Eq. 
(4.9) may be rewritten as 

tP,d(k,r)=(-)" 1!1Tk[<r lkll) {<r'lkl+)W(r')dr' 

+ <rlkl +) f" <r'lkl i)W(r')dr']' 

By using Eqs. (1.7) and (1.8) we obtain 

tPw,,(k,r)= - (21 + It'w(O) [r - ,- 1 {r"dr' 

where ro is an unimportant constant. Therefore, 
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(4.10) 

(4.11) 

tP",,l...k,r) = w(O)lnr + 0 (1), r-.O, I = 0, 

= - w(O)I[l(l + I)] + 0(1), r-.O, 1=1,2,3,.· .. 
(4.12) 

One easily verifies that the p.w. projection of both sides of 
Eq. (4.8) yields expressions for tPw.l that are in agreement 
with Eq. (4.12). 

We note that for the Coulomb case, G = Go tPw is just 
equal to the irregular Coulomb wave tPs given by Eq. (2.4) if 
we choose the function w as 

(4.13) 

We conclude this section with a remark on the logarith­
mic singularity of tPw , given by Eq. (4.8). We see from Eq. 
(4.3) that the delta function singularity must be generated by 
the Laplace operator acting on In(kr - k.r), so 

Llln(kr - k.r)~41Tr-28(r,k). (4.14) 

It is interesting to note that one can verify that Eq. (4.14) 
holds with an equality sign. 

In order to show this, let us take k along the positive z­
axis as before. Then the right-hand side of(4.14) describes a 
uniform line charge density along the positive z-axis. In view 
of the symmetry in the problem it is natural to use cylindrical 
coordinates R,z,cp, where R ' = r' - Z2. Then we have 

21Tr-28(r,z) = ,-'8(1 - cos;) = R -'8(R )8 (z), 

where e is the unit step function. Further, 

kr - k·r = k (r - z) = k «R 2 + Z')'/2 - z). 

The electrostatic potential for a uniform charge distribution 
on the positive z axis is just proportional to the logarithmic 
term discussed above. Poisson's equation reads in this case 

Llln«R 2 + Z')1I2 - z) = 2R -'8(R )8 (z). (4.15) 

This equation shows that (4.14) holds with an equality sign. 
So we see that the inhomogeneous term in Eq. (4.3) may be 
compared with a line charge distribution along the positive z 
axis with density w(r) or w(z). 

5. ON THE CONNECTION WITH THE 
SCATTERING AMPLITUDE 

The function tP, (k,r) [see Eq. (2.4)] is called the scat­
tered part of the complete physical scattering wavefunction 
tP' + '(k,r) for the Coulomb potential because of its asymptotic 
behavior, which is given by [cf. Eq. (40) of Ref. I] 

tbJk,r) ~ fC (kor)(21T)-' \/2 ',-'exp(ikr - iyln2kr), r-. 00. 

HerefC is the Coulomb scattering amplitude, 

fC (x) = - ~ e210",C! _ !x) 1- Jy. 

(5.1) 

One may compare (5.1) with the well-known short-range 
potential formula, 

tP'+'(k,r)~(21Tt3/2(eik.r + f(e)eJkrlr), r-+oo. 

From Eq. (4.1). 

tPlk,r) = L" <rIGclkr')Vdr')<r'lk l)or'2dr'f~,r/(2i), 
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we see that this "scattered part" equals an integral involving 
the Green operator Gc-

It is interesting to investigate whether Eq. (4.1) can be 
generalized to other potentials. The problem is, how to find 
an irregular solution, such that its asymptotic behavior 
equals the scattering amplitude times a (possibly modified) 
outgoing spherical wave, just as in Eq. (5.1). 

Let us first consider again the p. w. function ¢,.I for the 
pure Coulomb potential. Below we shall consider the gener­
alization to Coulomb-like and other potentials. From Eqs. 
(3.1) and (3.8) we have, for 1'-+00, 

¢,,1(k,r)~FTTk/~.o<rlkl 1)c f c<kl- I") 

(5.2) 

We split the integral in two parts, f~( + f~, where R is so 
large that the asymptotic behavior of c<kl - II") can be 
used. With the help of Eqs. (104) and (3.9) we obtain a term 
with the asymptotic behavior - (2/rr)I/'f;~.()el"'/(2ikr). Ac­
cording to Eq. (3.2), 

t/1jk,r) = ( - XI + /I(T'<rlkl 1)c)!(2i), 

this term is - XI/(2i). The rest of 1/;", is proportional to 
<r!kl i)c' By using Eq. (3.1) we deduce 

e
2

"T, =1;'.0 lim [(2kR Y) - !rrk rR 

c<kl- Ir)Vdr) 
R "X Jo 

X <rlk T >,r2dr]. (5.3) 

It is interesting to replace <rlk 1)0 by <rlq1)0 here, where as 
before 

<rlq T)" = (2/rr)1/2e Iq'/(qr), 

with Imq > 0 and consider the limit for q-+k. When q*k the 
integral f~'" is convergent for R-+oo and may be denoted in 
this case by c<kl- I VC ,Ilq1)". We have been able to obtain 
the following closed expressions, 

c<kl-lVc,llq1)0 

= 4iYe"Y12(q + k)iY/2 Q ?(q/k) 
rrq q - k 

= _ ~_1TY/2r(1 + iy)r(1 - iy)r(l + 1) 
rrq r (l + 1 - iy) 

X [PiiY. - iY)(q/k) - (: ~ ~r pi - iY,iY)(q/k)]. 

(SA) 

Here Q;r is Legendre's function of the second kind, and pi') 
is Jacobi's polynomial. In the particular case 1 = 0 this ex­
pression agrees with Eq. (7) of Ref. 6 that we used for the 
derivation of the Coulomb off-shell Jost function in closed 
form. 

When q-k, Eq. (504) can be simplified. By inserting 

Piiy,-iYl(I)=r(/+ 1 +iy)/[r(1 +iy)r(/+ 1)], (5.5) 

we obtain 
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- ro + iY)(~ ~ ~rl (5.6) 

The second term on the right-hand side contains the factor 
(q - k) - iy and is therefore singular for q-+k. It may be 
compared with the "correction factor" U) of Ref. 6, Eq. (2). 
Note also the similarity with the so-called Coulombian as­
ymptotic state of Ref. 7, Eq. (16), where the typical factor 
1~.o(P + k )'Y(p - k) - ir occurs. 

This singular term corresponds to that part of the inte­
gral on the right-hand side of Eq. (5.3) which contains the 
(for R -+ 00 ) divergent factor (2kR yr. The other term is con­
tinuous for q-+k and this one corresponds just to the "con­
vergent part" of the integral in (5.3). 

A natural generalization of the expression 
<I'I G C,IVc,I Ik 1)0 to other central potentials is 

I/;,(k,r)-<rl GIV,lk 1)0, (5.7) 

where G, is the Green function for V" So 1/;1 corresponds to 
the Coulomb function ¢S,l of Eq. (3.1) [we have omitted the 
constant factor 1~,oI(2l) which is irrelevant here]. We first 
assume that VI is a Coulomb plus short-range potential, 
V C.I + V,,1' In order to investigate the asymptotic behavior of 
1/;" we use the expression [cf. Eq. (3.3)] 

<rIGllr,) = -!rrk<kl-lr<)<r>lkI1). 

It may be noted that <I'I kl 1) has exactly the same asymptotic 
behavior as <rlkl 1)0 which is given by Eq. (3.9). Further­
more we have [cf. Eq. (1.4)] 

2i<kl - I = exp [2i(ul + of)] <kl L 1 - <kl 1 I, (5.8) 

where of is the Coulomb-modified phase shift. We proceed 
in the same way as in the pure Coulomb case, and find that ¢, 
can again be split up in two parts, ¢I = ¢i1) + IWi, which 
have different asymptotic behavior. For the first term we get 

¢il)(r)- -(2/rr)1 /2 e'kr/(kr), 1'-+00, /=0,1,2, .... 
(5.9) 

Obviously this is the analog of the function XI' Since the 
right-hand side of(5.9) is independent of I, it follows that the 
sum of the p.w. series, 

f (4rrt'(21 + I)PI (x)¢i 1)(r), 
I~O 

is proportional to o( I - x) for 1'-+ 00 . 

For the second term we obtain 

¢)2)(r)-<rlkl i) lim [(2kR)'Y 
R~oo 

(5.10) 
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The integral f~ is divergent for R-oo. In this limit it has 
exactly the same singular behavior as for the pure Coulomb 
case, which can be verified with the helpofEq. (5.8). It is 
therefore natural to split off the pure Coulomb part. We do 
this by using the two-potential formalism; in the notation of 
Ref. 8 we have 

Vllkl + > = VC.Jlkl + >c 

(5.11a) 

or 

(5.11b) 

Here tCs,1 satisfies the equation 

tcs.J = V<,/ + V'.JGc}cs.J' 

so it is a "short-range operator." Substitution of(5.11) in 
(5.10) yields 

t/J)2)(r)~<rlkl t>[(~.o le2iu, - ~1Tkc<kl- I 

(5.12) 

where we have used Eq. (5.3). The phase shift for Vc'1 + V'.J 
is related to tc ,'! in the following well-known way, 

c<kl- Itcs./lkl + >c = i(1Tk t'e
2iu

, [exp(2iD() - 1]. 
(5.13) 

Comparison with Eq. (5.12) shows that the p.w. series 
L/(41Tt'(21 + I)PI(x)t/J)2)(r) is not proportional to the scat­
tering amplitude in general. Therefore, also 

t/J(k,r) = ! (41Tt'(21 + l)pI(k.r)t/Jk) 
I~O 

does not in general have the desired asymptotic behavior 
[recall that the p.w. series with t/J)l) is proportional to 
15(1 - x) = 15(1 - k.r), for r-oo]. 
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For a short-range potential we obtain for r_ 00 , follow­
ing the same procedure, 

Nr)~ - ~1Tk <rlkl t><kl- I Vllk t>o 

= - ~1Tk<rlkl t><kIITllk t>o. (5.14) 

In this case the phase shift 15 I is given by 

<kll Tllkl > = i(1Tk t'(e
2i6

, - 1). 

Apparently the p.w. series with the t/Jlof(5.14) will in general 
not be proportional to the scattering amplitude, for r- 00 . 

The procedure described above can be repeated for the 
function t/Jw.l of Sec. 4. That is, we replace <rlk t >0 by a rather 
arbitrary function w(r) and consider the asymptotic behav­
ior of t/Jw,!..r), see Eq. (4.9). Again we are not able to find a 
function w for any potential (except for Vd, such that 
t/Jw(k,r) for r-oo approaches the scattering amplitude times 
an outgoing spherical wave. 

So it seems that the pure Coulomb function t/J, in 
unique in having the property (5.1). This would mean that 
the useful property (5.1) of the irregular solution t/J, is mere­
ly a coincidence. Therefore, although the regular physical 
wavefuntion Ib'+)(k,r) for any potential can be expressed as 
the sum of two irregular solutions t/J'+) = t/Ji + t/J" this split­
ting seems to be useful only in the pure Coulomb case. 
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Electromagnetic quadripotential for the pure-radiation field 
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We obtain a simple expression for the electromagnetic quadripotential corresponding to the pure-radiation 
field generated by a classical charged point-particle. The solution does not satisfy the Lorentz condition, 
and has interesting properties. It propagates inside the light cone of the particle and has a discontinuity 
across the sheet of the light cone itself. This discontinuity is responsible for the correct propagation of the 
electromagnetic effects with the velocity of light. A similar result is also obtained for the velocity­
dependent field. 

I. INTRODUCTION 

The electromagnetic quadripotential generated by a 
classical charged point particle is given, up to guage trans­
formations, by the well known Lienard-Wiechert solution, 
which in covariant form reads 1

.
2 

I 

eUi 
=+ -. .- R S ~.\ ")' 

(, 
(1.1) 

where the subscripts R,A refer to retarded, advanced solu­
tions. In Eq. (1.1) we have indicated with e the charge, with 
ui the quadrivelocity, and with Ri the quadrivector, 

(1.2) 

Xl = Zi(S') being the equation of the world line of the particle. 
We have introduced also the scalar R given by 

R = Riu i (1.3) 
and we have indicated with s e) the value of the proper time 

s' which is solution to the following set of equations: 

R;R'=O, RO~O. (1.4) 

The corresponding electromagnetic field tensor Fik' can be 
split, in a covariant way, into a velocity-dependent field 

F«(V;)I~,= ± _e_(u~i-u;Rk)Is'~S 
A R3 . (I;) 

and a pure-radiation field 

F(~Ra)d,) -_ + e [R ( ) \A' - R> iak-aRuk 

In Eq. (1.6) aR is given by 

aR = (l/R )aiRi' 

a i being the quadriacceleration of the particle. 

(1.5) 

(1.6) 

(1.7) 

It is commonly believed that it is impossible to split the 
quadripotential in a similar way. In this paper we obtain, on 
the contrary, separate expressions for the quadripotential 
A (rad), which corresponds to the pure-radiation field ofEq. 
(1.6), and for A (ve!), which corresponds to the velocity-depen­
dent field ofEq. (1.5). 

II. QUADRIPOTENTIAL FOR THE PURE­
RADIATION FIELD 

The starting point is the following identity: 

1 a a 
- (a - aRu) = --. aR = -. aR, (2.1) 
R I I aR I axl 

which allows us to write Eq. (1.6) in the following way: 

(2.2) 

Equation (2.2) suggests immediately for A (rad) the following 
expression: 

A i';)dl(X) = ef + 00 ds' 1J (± R O)1J(RmR m) ~ aR' 
\A - 00 aR 

(2.3) 

By a simple calculation one can verify that the field tensor Fik' 
generated by the quadripotential (2.3), is indeed the pure­
radiation field given in Eq. (2.2). One can verify that A (rad), 

given in Eq. (2.3), does not satisfy the Lorentz condition. 

The mathematical and physical properties of the solu­
tion given in Eq. (2.3) are quite interesting and peculiar. For 
simplicity we refer to the retarded solution only. From the 
mathematical point of view we observe that the extremely 
singular {) function, which enters the Lienard-Wiechert qua­
dripotential ofEq. (1.1), is absent in Eq. (2.3). From the 
physical point of view we observe that the quadripotential, 
given in Eq. (2.3), propagates inside the future light cone of 
the particle. The discontinuous behavior of the 1J function 
across the sheet of the future light cone is responsible for the 
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physically correct propagation of the electromagnetic effects 
with the velocity of light. 

III. QUADRIPOTENTIAL FOR THE VELOCITY· 
DEPENDENT FIELD 

The velocity-dependent field can be treated in a similar 
way. Instead of Eq. (2.1) we have 

U j a a 1 
- - =--- = --. (3.1) 

R' aR i R ax j R 

In perfect analogy with Eq. (2.3) we obtain, in this case, 

The physical and mathematical properties of the solution 
given in Eq. (3.2) are similar to those discussed in the pre­
vious section. 

IV. TWO EXAMPLES 

As a first example we calculate the retarded potential of 
Eq. (3.2) for a particle at rest. We assume 

ZO = s', ZU = ° (a = 1, ... ,3), (4.1) 

which implicates u j = (1,0,0,0). Equation (3.2) gives, for the 
retarded solution, 

A ~~e\6 = - e f _+ 0000 dzO {} (Xo - zO - r)(xO - zOt' 

J
+OO 

- e _ oc dzO {} (R 0 - r)(R °t' 

f
+OO 

= - e _ r dR O(R 0)-' = - elr, 

A (vel) - A (vel) - A (vel) - ° 
(R)l - (R)2 - (R)3 - , 

which is just the Coulomb potential. 

(4.2) 

(4.3) 

As a second example we calculate, using Eq. (2.3), the 
retarded potential for the pure-radiation field generated by a 
harmonically oscillating particle. We assume 

zO = ~s', Zl = sinwzo, z, = Z3 = 0, 

and, for simplicity, we assume also 

Ibwl<:1 (4.4) 

(nonrelativistic velocity). Equation (4.3) together with the 
condition (4.4) gives 

UO~ 1, u l ~bwcoswzO U' = u3 = 0, 

and 

aO ~o, a l ~ - bwsinwzO, a' = a3 = 0. 

Assuming also 

r>b 

we obtain 

R ° = XO - zO, Ra~xa(a = 1, ... ,3). 

869 J. Math. Phys., Vol. 20, No.5, May 1979 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

A simple calculation gives 

R~xo - zO 

and 

aR = bw'[x/(xO -zO)]sinwzO. 

With these assumptions, Eq. (2.3) gives 

A (rad) - A (rad) - ° 
(R)2 - (R)3 - , 

and 

f' 1 
- ebw' dR ° - sinw(xO - R 0). 

+ 00 R ° 

Explicit calculations for A o and A I give 

A (rad) - - ebw' ~ sinw(xO - r) 
(R)O- r 

+ sin(wxO) [ Si(wr) - ;]}, 

A ~':~I = - ebw' {sin(wXO)Ci(Wr) 

- cos(WXO) [ Si(wr) - ;]}. 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The electromagnetic field tensor corresponding to this solu­
tion, can be calculated easily from Eqs. (4.11) to (4.13). One 
obtains 

FOl = Ex = ebw'rl(1 - x'Ir')sinw(xO - r), 

Fo, = Ey = - ebw'(xYlr3)sinw(xO - r), 

F03 = Ez = - ebw'(xzlr3)sinw(xO - r), 

F12 = - B z = ebw'(ylr')sinw(xO - r), 

F13 = By = ebw'(zlr')sinw(xO - r), 

F'3 = -Bx=O, 

(4.16) 

which is the correct answer, as one can verify directly using 
Eq. (1.6). 
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v. CONCLUSION 

We have obtained very simple expressions for the qua­
dripotentials corresponding both to the pure-radiation field 
and to the velocity-dependent field generated by a classical 
point particle. Both of the potentials vanish outside the light 
cone of the particle, but curiously they do not vanish inside 
it. 

Collecting Eq. (3.2) and Eq. (2.3) together, we obtain 
the foIIowing expression for the complete quadripotential 
generated by a classical point particle: 

A ey(X) = e f-+ 00

00 

ds' {) ( ± R 0) 

X{)(RmRm)~(..!. +aR ). (5.1) 
aR' R 

Equation (5.1) gives the same field strengths as the Lienard­
Wiechert potential ofEq. (1.1): 

A solution which is physicaIIy equivalent to Eq. (5.1), 
and then to Eq. (1.1), is given by the following curious 
expression: 

(5.2) 
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which apparently violates causality, since it gives propaga­
tion, for the quadripotential, in spacelike directions and 
backwards in time also. It can be immediately verified that A 
and A are connected by the following gauge transformation: 

- a J+OC (1 ) Aey(x) = Aelx) + ax; e _ 00 ds' Ii + aR . (5.3) 
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A linear eigenvalue problem in the spirit of Lax is constructed for the nonlinear differential equations 
describing stationary. axially symmetric Einstein spaces. In suitable variables these equations yield a 
generalization of the well-known sine-Gordon equation. The similarity of the system to the nonlinear (j 

Most of the striking results in black hole physics' are 
based on our knowledge of certain exact solutions of Ein­
stein's equations. Therefore, it is desirable to enlarge the 
known families of exact solutions. On the other hand, a sys­
tematic, nonperturbative solution method for the highly 
nonlinear Einstein equations is badly missing. That even 
stays true for certain restricted classes of solutions, like the 
stationary, axially symmetric ones. Recent investigations of 
the latter class by Geroch2 and Kinnersley3 revealed an 
amazing algebraic structure, which raised the hope that a 
more complete treatment of this important family of solu­
tions might be possible. These authors find an infinite-di­
mensional Lie algebra of infinitesimal symmetry transfor­
mations, the origin of which remains, however, rather 
mysterious. It is my intention to "explain" their results in 
relating them to similar properties of so-called "completely 
integrable Hamiltonian systems.'" 

In fact I conjecture that the Einstein spaces admitting a 
two-parameter Abelian group of isometries constitute them­
selves such a completely integrable system. This conjecture 
is based on the Lax type linear system (cf. Ref. 4) constructed 
in Sec. 4 of this paper. This also raises the hope that linear 
methods like the inverse scattering method' may be em­
ployed to solve the nonlinear equations. 

Although from a physical point of view the stationary, 
axially symmetric Einstein spaces are the more interesting 
ones, I shall keep the discussion general and treat arbitrary 
two-parameter Abelian isometry groups. The case of two 
spacelike Killing vector fields is mathematically interesting, 
as it leads-in a special case-to the equations of the nonlin­
ear a-model, known from elementary particle physics. Ex­
pressed in suitable variables, the latter is equivalent to the 
well-known sine-Gordon theory.5 

The aim of the present paper is to construct a system of 
linear equations in the spirit of Lax (cf. Ref. 4). This is 
achieved in several steps. For the convenience of the reader I 
repeat in Sec. 1 the standard reduction of the problem to a 
two-dimensional one. 2 

In Sec. 2 the infinite set of conservation laws found by 
Geroch2 and developed in a more systematic way by Kin­
nersley3 is used to derive an equation similar to one obtained 
by Luscher and Pohlmeyer6 for the nonlinear a-model. In 
Sec. 3 a one-parameter family of solutions is generated from 
any given one, to be used in Sec. 4 for the construction of the 
linear eigenvalue problem along the ideas of Lund. 7 

1. REDUCTION TO A TWO-DIMENSIONAL 
PROBLEM 

Geroch2 has shown how an Einstein space E admitting 
a two-parameter Abelian group G2 ofisometries may be de­
scribed covariantly on a two-dimensional manifold S. The 
space S is obtained from E as the space of orbits of the group 
G2 in E. At least locally the projection JI from E onto S 
induces the structure of a smooth manifold on S. Let * JI 
denote the corresponding linear projection of the tangent 
spaces. Introducing two independent Killing vector fields t f 
(i = 1,2) that generate the group G2 the linear map * JI can be 
represented by the matrix 

*JI/1 Y = tr'" - A iktftkv' (1.1) 

where A ik is the inverse of the 2 X 2 matrix 

Aik=tftkg,lY' (1.2) 

The projection of the metric g/1v of E defines a metric tensor 
hab (a,b = 1,2) on S. There are two cases to be distinguished: 

(A) Both Killing vector fields t fare spacelike; hence 
sgn(Aid = ( + , + ) and sgn(hab ) = ( - , + ): 

(B) one of the Killing vector fileds is timelike (stationar­
ity) and hence sgn(A ik ) = ( - , + ) and sgn(hab ) 

= (+, +). 

Whenever necessary I shall discuss the two cases sepa­
rately referring to them as (A) and (B). 

As a consequence of R/11' = 0 the vector fields 

fl ik./1 €/1VK;.5r\:rt~ (i,k = 1,2) 

are curl-free, 

(1.3) 

flik [/1.1'J = O. (1.4) 

Therefore, they can be derived from potentials fl ik : 

flik/1 = a/1flik· (1.5) 

In order to be well defined on S the flik have to be constant 
along the orbits of G2, i.e., 

!.t' sP ik = t 'f fl ik/1 = 0, (1.6) 

which will be assumed from now on. 

As discussed in Ref. 2, the equations Rllv = 0 on E are 
equivalent to the following equations on S: 

R ~t) =! Tr(A -IDfl0) -! Tr(A -IDaAA -'D0), 
(1.7a) 
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(1.7b) 

where R ~:;,>, resp. D(I' are the Ricci tensor, resp. covariant 
derivative, corresponding to the metric hab' A is the matrix 
(AilJ of Eq. (1.2) and 

(1.8) 

In two-dimensional spaces it is always (at least locally) possi­
ble to choose coordinates in which hab = h71ab 

with (_ 1 ) 
(71al,) = ° + ~ case (A), 

(1.9) 

(71uh) = (+ 1 0) case (B). ° + 1 
In these special coordinates Eq. (1.7b) decouples from Eq. 
(I. 7a). Therefore, one can first solve Eq. (I. 7b) and then use 
the solution for A in Eq. (1. 7a), which can easily be integrat­
ed.' From now on the choice Eq. (1.9) for hab will be made, 
and I will restrict myself to the study ofEq. (1.7b). 

The relation 

- (deu),.{-l = dc, (1.10) 

where e is the matrix (O~ 1 6), allows us to write Eq. (1.7b) in 
the form (p,_eA): 

aa(1'- ll1a " 11) = 0; 

11 has the properties 

2 _ {- 1'21 
Trl1 = ° and 11 - 1'21 

Taking the trace of Eq. (1.11) yields 

aaaar = 0. 

case(A), 

case(B). 

(1.11) 

(1.12) 

(1.13) 

Because ofTrll = ° the matrixll is an element of the Lie 
algebra sl(2,R ). Using the basis 

Ql = ich. Q2 = 0'11 Q3 = 0'3 

for sl(2,R ), Il can be expanded as 
3 

Il = I qiQi' 
i= 1 

(1.14) 

(US) 

The Killing form of sl(2,R ) yields a pseudo norm for the 3-
vector q = (qj): 

case(A), 

case(B). 

In terms of q Eq. (1.11) can be written as 

aa(rlq X aaq) = 0, 

(1.16) 

(1.17) 

where the cross product is the usual one in a three-dimen­
sional space with the metric given in Eq. (1.16). 

2. THE INFINITELY MANY CONSERVATION 
LAWS OF GEROCH 

Since there occur some relevant differences in signs I 
prefer to treat the cases (A) and (B) separately. 

Case (A) 
Equation (1.11) can be read as the integrability condi-
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tion for (aa=eabab) 

a cfll = 1'-llla all (2.1) 

with some 2 X 2 matrix W [which incidentally turns out to 
be closely related to the matrix of potentials n of Eq. (1. S), 
namely W = - en]. 

Taking the trace of Eq. (1) yields (0' - Fr,,,) 

(2.2) 

and hence aaaaO' = 0, i.e., l' = (deu )112 and 0' (0' - ! Trw) 
are a pair of conjugate solutions of the wave equation in two 
dimensions. 

Geroch2 has demonstrated that the "potentials" Il and 
w give rise to the recursive construction of an infinite se­
quence of new potentials Il nand w n via an infinite sequence of 
conservation laws involving these potentials. I prefer to fol­
low the somewhat more appropriate presentation of Kin­
nersleyl and define 

all" + 1 = - a(p,wn) - aWlln -Ilawn + 20'alln , (2.3a) 

aWn + 1 = a(p,lln) - awwn + Ilalln + 20'aw", 
n = 0,1,2 ... , (2.3b) 

with the initial data 

Ilo = 0, III = Il, Wo = - I, WI = W. (2.3c) 

The integrability conditions for the existence of the poten­
tials Il nand W n are easily proved by induction, starting from 
Eq. (2.1). 

A more concise form of Eqs. (2.3) is obtained using 
generating functions, defined by 

V(s) f snlln , u (s)_ f snwn· 
n=O n=O 

In terms of V(s) and U(s) Eqs. (2.3) read 

s-laV(s) = - a(p,U(s» - awv-

(2.4) 

(s) -llaU(s) + 20'aV(s), (2.Sa) 

s-laU(s) = a(p,V(s» - awU(s) + llaV(s) + 20'aU(s), 
(2.5b) 

In turns out that V (s) can be eliminated from these equations 
by the following ansatz: 

V(s) = /(s,1',O')IlU(s), (2.6) 

where/is a real function to be determined. Putting the an­
satz for V(s) into Eq. (2.Sa) yields the compatible system of 
equations 

1'2p - 20'/+ s-1 + I = 0, 

a/ a/ a/ -I a/ r-/- -20'- -1'- +s - =0, 
a1' a1' aO' a1' 

r-/ a/ _ 2 a(O'f) _ 7 a/ + S-I a/ = 0. 
aO' aO' a7 aO' 

The solution with/(O,r,O') = ° is given by 

(2.7a) 

(2.7b) 

(2.7c) 

/(s,r,O') = _1_ [150' - 1 + V (2s0' - 1)2 - 4S272 ]. 
2sr2 

(2.8) 

Using this function in the ansatz equation (2.6) for V (s), Eq. 
(2.Sa) is identically fulfilled, irrespective what U (s) may be. 
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Equation (2.Sb) becomes now 

JU(s) = r'j (I-lal-l- rfl-lJI-l + 2r2 J(rf) Jr 
1 - r:f2 Jr 

+ 2r 3 Jf Ja)U(s). 
Ja 

(2.9) 

The last two terms in Eq. (2.9) can be eliminated putting 

U'(s)-(1 - r12)U(s), (2.10) 

for which 

(2.11 ) 

is obtained. 

This equation takes a particularly simple form in light­
cone coordinates on S defined by 

Xl + X2 Xl _ X2 

5=-2-,1]=-2-

and with the function 

yl(SI"') 1 - rf = ( 1 + 2s(r - a) )112 
I + rf I - 2s(r + a) 

instead off The result of these changes is 

JtU' = ~(1 - IIr)r-2I-lJtI-lU', 

J,p' = ~(l - r)r-2I-lJ1]I-lU'. 

(2.12) 

(2.13) 

(2. 14a) 

(2. 14b) 

These equations show a striking similarity with Eqs. (9) of 
Luscher and Pohlmeyer6 in their work on the 0(3) nonlinear 
a-model and in fact goes over into their equation in the spe­
cial case r = 1, a = 0, if one identifies I-l with their 4. A more 
detailed discussion of this similarity will follow in Sec. 4. 

Case (8) 

Due to 1-l 2 = r and the different signature of hab' there 
are some changes in sign compared to case (A). 

r and a are now a pair of conjugate harmonic functions 
Eqs. (2.7) become 

r1' + 2af - s-"j - I = 0, 

r1 Jf + 2a Jf _ r Jf _ S-I Jf = 0, 
Jr Jr Ja Jr 

r1 Jf + 2 J(af) + r Jf _ S-I Jf = 0, 
Ja Ja Jr Ja 

with the solution 

(2.1Sa) 

(2.1Sb) 

(2.1Sc) 

f(s,r,a) = _1_ [ 1 - 2sa - V (1 - 2sa)2 + 4s2r2 ]} 
2sr 

(2.16) 

The resulting equation for U reads 

+ 2r 3 Jf Ja)u. 
Ja 

(2.17) 
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respectively [U'-(l + rf2)U] 

J U' = - r-"j (pal-l + rfl-lJI-l) U ' . 
1 +r12 

Convenient coordinates for this case are 

5 = Xl + ix2, t = Xl - ix\ 

in which Eq. (2.18) becomes 

JtU' = - ~(1 - IIr)r-2I-lJ§;I-lU', 

JtU' = - ~(1 - r)r-2I-lJtI-l U ', 

where the function 

(2.18) 

(2. 19a) 

(2.19b) 

I( )( )_ 1 + irf _ ( 1 - 2s(a + ir) )112 y Sl'" s,r,a = -- -
1 - irf 1 - 2s(a - ir) 

has been introduced instead off (2.20) 

3. THE GENERATION OF ONE-PARAMETER 
FAMILIES OF SOLUTIONS 

In view of the special role played by r (which together 
with a could be introduced as coordinate in S) it is conve­
nient to normalize the matrix I-l, putting 

with 

ji-r-II-l 

{
-I in case (A), 

1-l
2

= 1 in case (B). 

Equation (1.11) yields 

J1](rjiJt ji) + Jt (rjiJ1]ji) = ° in case (A), 

Jt(rjiJtji) + Jt(rjiJ§;ji) = ° in case (B). 

Equations (2.14), resp. (2.19), become 

[U=( -S/f)II2U'] 

Jt U = ~(1 - IIr)jiJ§;jiU, 

J1]U = ~(1 - r)jiJjiU 

to be supplemented by 

JsB1]r = 0, 

resp., 

JtU = - ~(1 - lIy)jiJ§;jiU, 

JtU = - ~(1 - r)jiJtjiU, 

to be supplemented by 

JsB~=O. 

(3.1) 

(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4a) 

(3.4b) 

(3.4c) 

Supposing one is able to solve Eqs. (3.3), resp. (3.4), for 
U given some solution I-l of Eq. (3.2a), resp. (3.2b), then a 
lengthy but elementary computation shows that 

ifS
) = U(syljiU(S), sER, (3.Sa) 

(3.Sb) 

yields a one-parameter family of solutions ofEq. (3.2a), resp. 
(3.2b). ifS

) has the further property 

Jj/'s) = ( lIr)U-IJ§;jiU (3.6a) 

and 

(3.6b) 
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in case (A) and similarly for (B), which also entails 

(a -(-'-»' - _1 (a -)' and (a -('»2 2(a )2 :,11 - ,11 ,,11- = y "fi· . y2. 

Similarly r(') obeys 

r(')-Ia,-r(') = J.. r-1a,.r 
" y2" 

and 

in case (A), and analogous relations in case (B) 

(3.7) 

(3.8a) 

(3.8b) 

The family fir,) is to be compared to the family tI(Y) of 
Ref. 6. The unitarity of U(Y) in Ref. 6 is replaced here by the 
condition detU = 1, which plays an analogous role for the 
group SL(2,R ) as does the unitarity for the group SU(2). In 
order to see this, one defines for an arbitrary, nonsingular 
2 X 2 matrix a 

aX - EaFE = (deta)a- I
• (3.9) 

The conjugation X has the following properties: 

axx = a, (;t.:n.y = A·:n., AEiC, 

(ab y = b xax, (a + bY = aX + b x, 

a = - aX¢:::=? Tra = 0, 
(3.10) 

In particular fiX = - fi, which together with Eqs. (3.3), 
resp. (3.4), leads to 

(3.11 ) 

showing that Eqs. (3.3), resp. (3.4), are compatible with the 
normalization UXU = Dux = 1, i.e., UESL(2,R). 

The transformation 11--+I1(s) is very similar, but not 
equal, to the one found by Geroch. 2 The infinitesimal form of 
Eq. (3.5) is 

8fi = [w,fi], 8r = 4ar, 

whereas Geroch's transformation is 

8fi = [[w,k ],ji] + 2afji,k], 87 = ° 
with some constant matrix kESl(2,R ). 

(3.12) 

(3.13) 

Clearly one can also supplement the transformation 
11--+I1(S) by a constant SL(2,R ) "rotation" Uo(k) in the form 
filS) = [U(s)Uo(k)]-lfiU(s)Uo(k). 

The use of the transformationl1--+l1(s) is twofold. On the 
one hand, it provides for a method to generate new solutions 
ofEg. (1.11) and hence of Eqs. (1.7) from old ones, ifit is 
possible to compute U (s). This has already been undertaken 
successfully9 with Geroch's transformation Eg. (3.13). On 
the other hand, the family fils) will be essential for the con­
struction of the linear eigenvalue problem in the next 
section. 

4. CONSTRUCTION OF THE LINEAR 
EIGENVALUE PROBLEM 

This section is devoted to the derivation of a linear ei-
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genvalue problem in the spirit of Lax (cf. Ref. 4), using the 
family 11(') originating from each solutionl1 ofEq. (1.11). For 
that purpose the representation of filS) as a 3-vector [cf. Eq. 
(1.15)] 

3 

11 = L q'Qi 
i_-'O I 

with the normalization 

{
-I in case (A) 

q2 = + 1 in case (B) 

[recall q' = - (ql)2 + (q')' + (ql)'] is used. 

Case (A) 

From q' = - 1 it is clear that 

(all)' > ° and (a71q)' > O. 

Therefore, the functions 

A Y(all)'. B =Y(a"q)2 

are real. Let a be defined through 

a,.q.at;<J 
cosa = -"----. 

AB 

As a consequence of Eq. (3.2a) q obeys 

aiJ"q + !rJ
(a;:7a'lq + a 71

7all) - (all·a 71q)q = 0, 

which in turn implies for the invariants A, B and a the 
equations 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

a,~ + !7- Ja;:7B cosa + !rJa
71
7A = 0, 

a;:B + !rJa;: 7B + !7-Ja'17A cosa = 0, 

(4.5a) 

(4.5b) 

a~,p + AB sina - !a71(r
Ja717 ; sina) 

- !a;:(7- la;:7 ~ sina) = O. (4.5c) 

Equation (4.Sc) is a generalization of the well-known sine­
Gordon equation to which it reduces for A = B = 7 = 1. 

According to Eq. (3.7) the vectors q(S) corresponding to 
filS) have the invariants 

A (,) = _l_A B(s) = r(s)B, a(s) = a. (4.6) 
y(s) , 

The vectors q(S), all(s) and a
71

q(S) can be orthonormalized 
with respect to the metric 

+ J 
yielding the basis 

rBall(S) + yJAa
71

q(S) z \S) = q(s), Z ~,) = _.......:': ____ -'-_ 
2AB cos(a/2) 

yBaJ](s) _ yJAa q<s) 
Z(s)-,,, 71 

3 - 2AB sin(a/2) 
(4.7) 

Let Z<s) be the matrix built from the rows Z ~s) 
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z(s) 

Z (s) = (z ~S»). 
z<;') 

(4.8) 

By a somewhat tiring computation one derives the following 
equations for Z (s) 

(4.9a) 

(4.9b) 

1 a 1 . a o - A cos - - A sm -
, y 2' Y 2 

1 A a 0 la I 'a A . - cos -, '2 tfX - 2r- TJr - sma 
y 2 B 

~ A sin ~, - ~atfX + ~r-'aTJ r; sina, 0 

The matrices Ci are elements of the vector representation of 
the Lie algebra so(2, 1). The compatibility condition of Eqs. 
(4.9a), (4.9b) 

a"c, - asc, = [C"C,l 

is equivalent to Eqs. (4.5). 

(4.10) 

Introducing a basis for the vector representation of 
so(2,1), 

l, ~G _ ~ 
one can expand the Ci as 

3 

C i = I UJ/lk 

with 

(UJ/) 

k~1 

o 
o 
o 

o ~), 
o 0 
(4.11) 

(4.12) 

= ( - !a"a + !r-'ae-r!!.... sina, - yB sin !!....,yB cos!!....), 
- A 2 2 

(4.13a) 

(UJ/) 

(
Ia 1 -'a A. 1 A . a 1 A a ) 

= 2 tfX - 2r "r B sma, r sm 2 , r cos 2 . 
The final step (cf. Ref. 10) is now to go over to the spinor 
representation of the matrices C i • 

The matrices 

(4.14) 

may be taken as the representatives of the basis (Ik ) in the 
spinor representation of so(2, 1). Hence the spin or represen­
tatives of the matrices Ci are 
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(
iI2)aT/a - (iI2)r-'asr(B IA) sina, - iyBe - ial2) 

= ~ iyBeia12, - (i/2)aTJa + (i/2)r-'asr(B IA) sina 
(4,15a) 

( 
- (i/2)atfX - (i/2)r'a TJr(A IB) sina, - (ilY)AeiaI2 ) 

=! (ily)Ae - ial2,(i/2)atfX - (i/2)r-'a TJr(A IB) sina . 
(4. 15b) 

Introducing the normalized two-component spin or I/; 
(l/;+a31/; = 1) yields finally the desired linear eigenvalue 
problem 

a,,1/; = c,l/;, 

asl/;=c,1/; 

with c;from Eq. (4.15) 

(4.16a) 

(4. 16b) 

The matrices ci depend parametrically on the real pa­
rameter s which plays the role of an "eigenvalue" in Eqs. 
(4.16). Unfortunately, the dependence on the "eigenvalue" s 
is rather more complicated than in the known examples of 
the Lax equations (cf. Ref. 4 for a survey of examples). The 
comparison with the nonlinear a-model becomes simpler if 
one changes from the variable s to a variable u defined by 

u=( 1 + 2s )1/2, - 1 _ 2s (4.17) 

which gives for the function 

y(s(u» = u( 1 + (1 - l/u')(r - a-I) )1/2, 
1 + (I - u')(r + a - 1) 

reducing to y = u for r = 1, a = o. 
Case (8) 

(4.18) 

In contrast to case (A) the vector q has now positive 
square q' = 1, because of f.J' = r' > O. Furthermore, the vec­
tors a"~ and a8 are now complex. This does however not 
prevent one from making a similar construction as in case 
(A). 

Choosing the square root appropriately, the functions 

A _ Y(a8)2 and B=Y(a?,-:(})' (4.19) 

are complex conjugate to each other. The angle a, defined 
through 

a.,q.acq 
cosa = ~ (4.20) 

AB 
turns out to be real. The analog of Eq. (4.4) is 

as-<1fJ + !r-'(as'TafJ + a('"a~q) + (asq·afJ)q = 0 

leading to the equations 

J;;A + !r'J{;rB cosa + !r'J('"A = 0, 

J{;B + !r'J{;'TB + !'T-'JpA cosa = 0, 

a,-<1ta + AB sina - a~(-21 'T-'a.-:r.:! sina) 
~ !> ~ ~ B 

a ( I -'J B . ) - 0 - t, 2'T t,'T - sma - . - - A 

Dieter Maison 

(4.21) 

(4.22a) 

(4.22b) 

(4.22c) 
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A suitable real basis in the space of q's is now 

yBa(p) + y1Aagq(S) 
Z\S) = q(s), ZiS) = _--"--___ ---=-_=_._ 

lAB cos(a/2) 

- yBa.n(S) _ y1Aa;fl(s) 
Z~)= ___ ~s_~ ___ ~s __ ~ 

2iAB sin(a/2) 
(4.23) 

The equations for Z(s) become 

(

,YB cos(aI2), iyB sin(a/2) )z 
atZ(S) = - y~ cos(aI2),0,(i/2)aga - (iI2)r 1asr(B IA) sina (s) C1Z(sl, 

iyB sm(aI2),(iI2)aga - (i/2)7-1as7(B IA) sina,O 

(4.24a) 

(

0, (l/y)A cos(aI2), - (ily)A sin(aI2) )z 
asZ(S) = - (~/Y) cos(aI2),0, - (i/2)asa + (iI2)7-1atT(A IB) sina (s) C,Z(s), 

- (zly)A sin(aI2), - (i/2)asa + (i/2)7-1atT(A IB) sina,O 
(4. 24b) 

Taking 

I, ~(~ ° 
° ° ° ° 

(4.25) 

as a basis for the vector representation of the Lie algebra 80(2,1) the Ci can be expanded as 
3 

Ci = L w/lk 
E=I 

with 

( k) (i a i la B. . B . a B a ) 
WI = 2 ga - 2 7 - s7 A sma,zy sm 2 , ycos 2 ' (4.26a) 

( k) ( i a i -la A . i A . a I a ) w2 = - - sa + - 7 tT - sma, - - sm - , - Acos - . 
2 2 B Y 2y 2 

(4.26b) 

The spin or representation of the basis (Ik ) is given by 

- - - i 
Ql = ~O"J' Q, = ~O"l' QJ = - - 0"2 

2 

yielding the spinor representation of the matrices Ci 

C
1 

= ~(i/2)aga - (i~2)7-1as7(B : A) sina, - yBe ~ iaI2), 

yBe1a12
, - (zI2)aga + (zI2)7'las7(B IA) sma 

(4.27) 

(4.28a) 

c, = ~(- (iI2)asa + (i/~)7-1atT(A I~) sina, - (l/Y)A.e
UaI2»). 

(l/y)Ae - lu/2,(zI2)asa - (zI2)7-1atT(A IB) sma 
(4.28b) 

The linear "eigenvalue problem" (with "eigenvalue" s 
hidden in y) having eqs. (4.22) as compatibility conditions is 
given by 

af/' = CIt/!, 
ast/! = czt/!, 

(4.29a) 

(4.29b) 

where t/! is a complex two-component spinor, normalized to 
t/!+O",t/! = l. 

Equations (4.16), resp. (4.29), differ in two respects 
from the Lax equations of the examples of completely ipte­
grable systems like the sine-Gordon equation or the 
Korteweg--de Vries equation. 

First the dependence on the "eigenvalue" s is rather 
involved [cf. Eqs. (2.13), resp. (2.20)]. In particular the ex­
pansion of the "wavefunction" t/! around y = ° or y = 00 

used in the sine-Gordon theory in order to derive an infinite 
sequence of local conservation laws and to prove the com-
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plete integrability is in general not possible here. Second, the 
interesting solutions are the asymptotically Minkowskian 
ones, for which the linear problem has a different asymptotic 
behavior than the one assumed usually, leading to asymptot­
ic free wave solutions for t/!. Nevertheless, the asymptotic 
behavior in the present case is simple enough that one may 
hope a method similar to the "inverse scattering method'" 
may be invented to reduce the nonlinear problem to a se­
quence of linear ones. 

At any rate it is clear that the linear Eqs. (4.16), resp. 
(4.29), are a very special feature of the system and contain a 
lot of information, which may be sufficient to prove the com­
plete integrability of the system, a point to be clarified by 
further investigations. 
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An attempt to separate the long and short range forces 
by Gaussian method 
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In the study of phase transition problems, short range forces (SRF) playa dominant role. A constructive 
and rIgorous study of the effects of short range forces has yet to be given. It is suggested in the present 
paper that by separating long. range forces (LRF) from the short range forces, it would be possible to 
eslimate contnbulions to the vmal expansIOn of the collective oscillations due to short range forces. The 
method of Stratonovlch or the functional integration technique is employed in the treatment of the 
interaction term of the partition function. 

I. INTRODUCTION 

In the present paper an explicit form of V (r) is irrelevant 
since no particular physical system is under investigation. 
Our problem is concerned with the mathematics of this tech­
nique leading to an explicit expression of the SR and LR 
terms of the VCr). From there on, it is hoped we shall be in a 
position to study specific physical problems with definite 
forms of V (r) for solids, liquids, and gases leading to a new 
study of first and second order phase transition or order­
disorder transitions.' 

The problem of obtaining thermodynamic properties of 
a system with long range interaction (LRF) is confronted in 
many branches of physics, e.g., in plasma or in electrolyte 
theory.2.J·4 Such forces cannot be treated in the same way as 
short range forces (SRF), since a straightforward calculation 
of the virial coefficients leads to a divergent answer so that 
either the divergent virial series has to be manipulated into a 
finite answer or a different approach has to be applied as in 
the Debye-Huckel electrolyte theory. 5,6 These methods have 
a number of setbacks especially when we need accuracy 
greater than 1st approximation and it is therefore necessary 
to produce or invent a method which gives the higher order 
corrections in a simple way and also present the possibility of 
investigating these systems at high densities, solids. A sys­
tem with purely LRF has both mathematical and physical 
drawbacks since mathematically, the grand partition func­
tion will have an essential singularity when treated as a func­
tion of interaction terms or of temperature and will only exist 
in the absence of attractive forces. But physically, for exam­
ple in an electrolyte, forces change their nature drastically at 
short distances. 

The Gaussian method or the functional integration 
technique has application to a fairly wide class of statistical 
mechanics problems'; the great sucess of statistical mechan­
ics is invariably associated with systems in which interaction 
between the particles is either neglected or can be trans­
formed away.' Systems under conditions in which interac­
tion plays an essential role are vastly more difficult to ana­
lyze rigorously and meaningful approximations are hard to 

"'Present address: Quantum Chemistry Group, Box 518, S· 75120, Uppsala 
1, Sweden. 

obtain. Unfortunately almost all phase transition prob­
lems-melting, condensation, ferromagnetic transition, or­
der-disorder transition, and the like fall into this category. 
At present we do not have a complete understanding of any 
of these phase transitions as they occur in nature and it is 
interesting to note that we understand even less about boil­
ing water than about liquid helium. 

The immediate effect of interparticle interaction is that 
it will hinder the drift motion of the individual particles but 
contrary to this enhances their collective motion. The most 
direct method of studying the effects of intermolecular po­
tentials between molecular systems that do not form stable 
compounds under ordinary conditions to date is the molecu­
lar beam scattering experiment (MBS).9 However for study­
ing effects of intermolecular potentials of stable systems, the 
MBS method cannot compete with optical spectroscopy 
(OS) which gives to a large extent only information on the 
attractive portion of the potential. It should however, be not­
ed that the MBS is more universal and covers the entire ener­
gy range. Intermolecular potentials are of basic importance 
for the understanding of many macroscopic properties of 
matter. It is at the basis of all theories on the equation of state 
of gases, liquids and solids. In fact the two-body potential is 
the starting point of the theoretical description of gas kinetic 
processes. Thus once the potential curves (hypersurfaces) 
are available, nonequilibrium statistical mechanics-Boltz­
mann equation-or the simple equilibrium statistical me­
chanics can be used to compute all the transport properties 
or, when molecules are involved, relaxation times for rota­
tional and vibrational degrees of freedom. lO.ll It is important 
to point out that previously information on the intermolecu­
lar potential has been obtained from measurements of these 
and other macroscopic properties. These experimental 
methods have the main disadvantage that since the observed 
values are averaged over the behavior of many molecular 
interactions, the data are frequently not sensitive to impor­
tant details of the potential. 

We believe that the method we are developing in this 
paper can prove to be very powerful in theoretical investiga­
tions of the problem of order-disorder transitions in alloys 
and lattice gas of Yang and Lee. The Ising model" which was 
initially developed as a model of ferromagnetism can be ap­
plied. It assumes that the energy of a lattice of spins is given, 
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in the absence of an external magnetic field, by 

H =! I' VijPiPP 
ij 

where Pi is the spin variable which the model assumes to be 
the only significant variable of the spin at the lattice site 
indexed i. pi assumes the values ± 1 (spin up and spin 
down); Vij denotes the interaction energy between the parti­
cles i and} when their spins are parallel. The prime on the 
double sum indicates the constraint i=l=}. The partition func­
tion for an Ising model of N sites is therefore 

ZN = I exp( - f3! I' VijPiPj), 
! III ij 

where };!Ill denotes summation over all spin configurations 
and f3 = l/kT. The free energy per spin is given by 

F = - kT lim ~ 10gZN' 
n-~oo N 

From the knowledge of this function we could compute all 
thermodynamic properties of the system. 

The shape of a typical intermolecular potential in the 
radial region most effective at thermal energies is well 
known in literature. Scattering experiments indicate that 
this potential shape is typical for collision partners of which 
at least one has a closed shell. And for such systems, the 
potential minima are located between 3.0 and 6.0 A while the 
depths lie between 1.10-' and 60X 10-' eV. Thus the attrac­
tion at long distances can be attributed to the long range 
Coulomb coupling between the electrons in the two sys­
tems-London dispersion forces. Therefore, the electron 
motion are correlated in such a way as to reduce the poten­
tial energy. Theoretical calculations predict for ground state 
atom-atom interactions an R -6 behavior. The strong repul­
sion at short distances can be largely attributed to a repul­
sion ofthe electron clouds, due to the Pauli principle mutual 
exclusion of electrons, and to the electrostatic repulsion of 
the nuclei. In view of the difficulties encountered in calcula­
tion of potential surfaces and especially of the well location 
and depth, theoretical understanding is still based on aproxi­
mate methods. At long ranges, beyond the minimum 
R -;.2Rm reliable semiempirical methodsl'.l' are available for 
obtainingconstantCintheexpression V (R ) = - C I R 6. Un­
fortunately, there are no reliable methods available for esti­
mating well location R m and depth E. However, at very short 
ranges (~2 A) the Thomas-Fermi-Dirac method has been 
shown to give reliable results. IS 

II. CLASSICAL PARTITION FUNCTION 
A. Thermodynamic properties 

Let us consider a system of interacting particles with 
the following Hamiltonian, 

p 2 

H= I-' + I V(ri-r), 
; 2mi ij 

(11.1 ) 

where Pi and m i are the momentum and mass of the ith parti­
cle respectively. V (r; - r) is the interaction energy between 
particles at positions r; and rj' 
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The classical partition function for such a system is giv­
en by the following configuration integral,16 

Z = I;r f dP, dr, e - f)H 

( 
m )3N 12 f -f)V( ) = -- IT dre r. 

21T'KT , ' (11.2) 

after carrying out integration on the kinetic energy term. 

It is evident from Eq. (11.2) above that our problem re­
duces to the evaluation of the following integral, 

Q = I;r f dr, e - f)V(r.). (11.3) 

The above integral involves both short and long range 
terms of the interaction potential. Our primary aim is to try 
and separate these two terms. In this way, we believe that we 
shall have introduced a new method for concrete and accu­
rate investigation of the points of phase transitions. 

Let us define a Fourier transform in a box fl (periodic 
boundary condition), 

f(x) = ~ Ie-'KXf(K), 
fl K 

with the inverse 

f(K) = L e'KXf(x) dx 

such thatf(K) is of order unity. 

We note that 

1 'K 
- Ie l x=o'x 
fl K 

and 

~ i e'Kx d 'x = 0 fl f1 K,a 

the number density isp(x). Its Fourier transform is 

I " 'f(' Px = fl L P "e - I X 

" 
with the inverse 

PK = L e'Kxp(x) d 'x = ~ e'Kx". 

Let us now consider the following potential, 

(11.4) 

(11.5) 

(11.6) 

(II. 7) 

I V(xm-xn) = I Iexp[iK(xm-xn)]V(K), 
m,n m,n K 

(11.8) 

and from the definition of the number density Eq. (11.6), we 
come to 

1 -I V(Xm - Xn) = - I V(K)p(K)p( - K) 
m,n fl K 

(11.9) 
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Putting the constraint m#c-n we obtain 

L V(xm -XII) = (_1_)3 fd'KVKPKP --K + NVo. 
mr ll 21T 

(11.10) 

Here N is the number of particles in the system. 

In this formalism, the expression for Q takes the form 

Q=Qorrfd'xexp(-.!!.- L VKPKP-K) , 
II fl KrO 

where (11.11) 

( 
N N2 -) Qo = exp (J - Vo + (J - Vo 
2 2fl 

which corresponds to the self energy part of the system. 

We shall now introduce new variables by representing 
the number density in the form 

P K = C K + is K' P _ K = C K - is K' 

where 

CK = HPK + P - K 1 = L cosKx" 
" 

and Eq. (11.11) takes the form 

(11.12) 

(11.13) 

Q = Qo IT f d lX" exp( - .!!.- L VK(C~ + S~») 
" ~ 1 2 K7'=O 

as evidenced by Eq. (11.12). 

If we now call 

(J - 2 
- VK=A. K, 
2 

then Eq. (11.14) becomes 

(11.14) 

Q=Qo)lf d'x"exp[ -4k~0A.~(C~+SD]. 

(11.15) 

Equation (11.15) is a standard form of integral and we shall 
now apply the following identity, 

exp( - 4C~A.~) 

= exp(logY--;) f: 00 exp( - a~) exp(iaKA.KCK Y"Z)da K, 

(11.16) 
and come directly to 

Q = Qo f IJ daxdPK exp [ - ~ (a~ + P ~ + 10g1T)] 

(11.17) 
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Using Eq. (11.13) above, we can transform the last inte­
gral in Eq. (11.17) to be of the form 

~ f exp[i ~ (CxaK + Sxf3K)A.K Y"Z] d'x" 

= [f d'xexp[iF(x)] r, (11.18) 

where 

F(x) = L AK Y"Z(a K cosKx + PK sinKx). 
K-tO 

Now assuming thatF(x) is large only for a finite region 
about the origin and write 

[1 d lxe1F(XJ] \" :::::> fl ,v exp(N 1 d lxj eiF(X) - 1 l). (11.19) 
!1 II 'X fl !1 

Thus we have 

(11.20) 

The factor fl 'v occurs already for the free particles. It 
may be advantageous to remove the peculiar fl dependence 
of A. K assuming that 

and introducing new variables 

a K = a~/Yfl, /3 it = /3~/Yfl, 
Eq. (11.20) will thus be transformed to 

Q = Qo f IJ da K d/3 K 

x exp( - ~ L (a~ + /3 ~ + flIOg1T») 
fl kyO 

xexp(~ L d 'xl eiF(x) - 1 l). 

where we have dropped the primes and now 

1 -
F(x) = - L (a K cosKx + PK sinKx)4>K' 

fl KTO 

(11.21 ) 

To illustrate results obtainable in this formalism, we first 
expand, 

P(x) 
eiF(x) = 1 + iF(x) - -- + .... 

21 

Then 

f d 'xF(x) = O. 
J!1 

(11.22) 

In order to compute Sd lxF2(X) it is imperative to note that 
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with 

F(x) = ~ I F(K)e - iKx 
n K#O 

F(K) = (aK + i/3K + a _ K - ifJ _ KHcf>(K), 

we have 

J d 3xF 2(x) = (~ I F(K)F( - K»). 
n K#O 

Thus the part of the partition function that is integrated 
over is the exponential of minus 

~ I (a~+/3~)+ ~ I F(K)F(-K) 
n K*O 2n 2 K#O 

= ~ I (a~+/3D+ ~cf>tcaK+a_K)2 
n K#O 2n 

(11.23) 

This is a Bogolyibov quadratic form. However we only 
need the Gaussian integral. Thus considering a pair K and 
- K for a K and /3 K variables and performing all the neces­

sary rearrangement and certain basic manipulations, we ob­
tain the following result: 

Q = Qo exp( ~ logn) 

(11.24) 

or finally 

Q = n N exp [ - (~ 0 Vo + 2~ VoN 2) ] 

From Eq. (11.25), we can now compute Helmholtz free 
energy for the system, 

A (n,O ) = - KT 10gQ + free kinetic energy term. 
(11.26) 

We can now write down expressions for certain thermo­
dynamic properties of such a system. For example, pressure 
P will be given by 

p _ _ (aA) - an r' 
(11.27) 

N 2 
- N 

p= --Vo+--
2n 2 20n 

N" y'20VK 
+--~ 

20n 2 K 7'=0 1 + (N / n )(20;v' V K ) , 

881 J. Math. Phys., Vol. 20, No.5, May 1979 

and entropy S of the system will be of the form 

S= _ (aA) 
ao n 

= _1_2 {I [IOg(1 + N y' 20VK ) 

20 K#O n 

(11.28) 

From the knowledge of the free energy of the system as 
given by Eq. (11.26), one is, in principle, able to calculate all 
the thermodynamic properties of the system and compare 
the values with experimental results. 

B. Change of variables 

Here we shall use the relevant Gaussian quadrature for­
mulas. I7 Let us introduce new variables: 

k+_ aK±a_K ±_/3K±/3-K 
=-K - , 17 - . 

y'2 y'2 
The Jacobian of transformation will evidently take the form 

at: 1 at: 1 

aaK y'2 aa -K y'2 
-1. 

atK 1 atK 1 

aaK y'2 aa -K -v'2 
(11.29) 

In terms of the new variables, the Gaussian averaging 
becomes 

= J JIo da~/3Kexp[ - K~O (a~+/3~+log1T)]("-> 

= J Jlo dt: dt K d17: d17K ( ... ) 

xexp [ - I ct~ + t~ + 17~ + 17~ + 210g1T)] , 
K·.,LO 

(11.30) 

where 

(11.31 ) 

and 

F(x) = 2 I AKct: cosKx + 17K sinKx). 
K/O 

We can thus get rid of t K and 17: by simply integrating 
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Eq. (11.30) and obtaining the following, 

E(-'-) = I I dt: d1J K (-.-) 
K#O 

(11.32) 

In an external field U (x), the partition function Eq. 
(11.21) will take the form below, 

C. Formal relations for external field response 

By retracing the steps outlined earlier, we could write 
an expression for the partition function in the presence of an 
external potential U (x) in the form 

_Q_ = exp( - N Uo) 
QcflN n 

(11.34) 

On the other hand, 

Q = I .. J dx!···dx n exp( - ~ ~ Vij) 

x exp[ - e I U (x) ,tl c5(x, - x) d 3X ]. (11.35) 

Now considering Q as a functional of U (x) and noting that the 
local density is 

N 

n(x) = I c5(x, - x), 
,~ 1 

then the variation Q with respect to U(x) is 

~~ = -e n(s) , 
Q c5U(s) 

1 c5 2Q 
Q c5U(s)oU(s') = e

2

n(s)n(s'). 

But since 

n(s)n(s') = (n(s) + on)(n(s') + On) 

= n(s) n(s') + on(s)c5n(s'), 

(11.36) 

(11.37) 

(11.38) 

(II.39) 

it follows then from Eq. (II.37), Eq. (11.38), and Eq. (11.39) 
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that 

ones') 
e 2on(s)on(s') = - e -- . 

c5U(s) 
(11.40) 

We recognize in Eq. (11.40) that n(s') is a functional of 
U(s). 

Next we consider Q as a functional of n(s) expecting 
this to be more correlated with it. Thus 

and 

I 
on(s) c5U(s') ds' = o(s - s") 

c5 U (s') c5n(s') 

~~ = - eIn(s") c5U(s") ds". 
Q c5n(s) c5n(s) 

(11.41 ) 

(11.42) 

Expressions for higher order and mixed derivatives can 
be found if desired. 

D. Separation of short and long range 
interactions 

This paper sets out on an attempt to separate long and 
short range parts of interaction potential V (xi - xJ). In do­
ing so we believe that it is necessary to define the regime and 
limits of the short range part of the potential. The region of 
long range forces includes certain aspects of short range in­
teractions. So by determining the short range region, we aim 
at renormalizing the long range part of the interaction poten­
tial. Our Gaussian average denoted by E was performed in 
reciprocal K space corresponding to the Fourier transform 
of function F(x), see Eq. (11.23). 

Now assuming that short range forces act in K space for 
values of K>Ko, then we could draw a sharp distiction be­
tween K> Ko and K < Ko the latter corresponding to purely 
long range interactions. 

With the above in mind, let us denote by E L the average 
carried out over a K and f3 K for K < Ko corresponding to long 
range forces. Then we write 

E
W 

= E(exp(~ I d 3x(e'F(X) - 1»)) 

(11.43) 

We have inserted E which is later set equal to 1. Here 

F(x) = FL(x) + Fs(x), 

representing long FL(x) and short F sex) range forces, 
respectively. 

Let us now concentrate on the short range part of the 
potential by taking the average over a K and f3 K denoted by Es 

for K > Ko. Equation (11.43) can be written in the form 

w ((NId3 ['F,(x) 11 A)) e = EL exp - x e - e n 
(11.44) 
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with the short range average 

~ = lOS( exp( e ~ f eiF,(X)(/F,(x) - 1) d lX)). (11.45) 

Further we consider ~ and treat it by a virial develop­
ment in e in order to determine the contributions from differ­
ent terms, linear etc. The FL(x) will remain and ~ is a func­
tion of aK and(3K for K <Ko· 

Develop 

A = AD + e dA I + ~ d 2A I + ... . (11.46) 
de E = 0 2! de2 

E = 0 

Here the constant term AD = ° corresponds to a system with 
purely long range forces. 

Considering the linear term in the expansion given by 
Eq. (11.46), 

dA I = N J'r(Ko) f /F, (xl d lX. 
de E" fl 

(11.47) 

J'r(Ko) = lOs (eiF,(x) - 1) 

= (exp( - ~ I 1 <1> (K W - 1)). (11.48) 
fl K>K" 4 

Equation (11.48) describes a system with purely short range 
forces. Since we will develop exp[iFL (x)] up to Fi (x) we see 
that the short range forces induce a renormalization of the 
quadratic form of the long range part. 

In the quadratic approximation to the short range 
force, we need the following term, 

d
2

A I 
del E, 

Nlf fl> d lX d Jy exp[ i[FL(x) + FL (Y)ljZ (y - x), 

(11.49) 

where 

Z(y - x) 

=exp[- ~ L I<1>KI2] 
fl K;"K" 2 

x [exp( - ~ I 1 <1>; 12 cosK (y - x») - 1]. 
K~K" 

(II.50) 
Thus to this order 

(11.51 ) 

Let us now go back and reexamine Eq. (11.44) by ex­
panding it in powers of FL(x) up to quadratic term. Thus 

W= Wo + WI + W2• 
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Wo is the constant part of the exponential and corresponds to 
a system with purely short range interactions, 

N e2 N 2 f WD = e -J'r(Ko) + -- Z(y) dy. 
fl 2! fl 

(11.52) 

The linear term WI = 0, simply because 

f FL (x) d lX = 0, 

the absence of long range forces in the region K > K o, i.e., 

e2 N 2 

WI = --2i 
2! fl2 

W2 is the quadratic part and has the form 

W2 = - ~fFi.<X)dJX[ 1 + eJ'r(Ko)j 
2fl 

(11.53) 

(11.54) 

The obvious physical intepretation ofthe quadratic term 
Eq. (11.54) is that a system with long range forces has acertain 
amount of short range interactions. 

We could go on with this scheme and obtain higher 
order terms in W. However from what we have done above, 
the trend looks pretty obvious and in fact we already know 
what terms to choose from our expansions in order to deal 
with a system with purely short range or long range forces. 
Our next task would be to reexpress the partition function Q 
in terms of the short range and long range Gaussian 
averages. 

Thus thermodynamic properties of a system with pure­
ly short range forces can be computed from the following 
partition function, 

Q = Qoew", (11.55) 

where Wo is given by Eq. (11.52). And similarly from 

(11.56) 

for systems exhibiting long range interactions. W2 is given by 
Eq. (11.54). 

III. THE GRAND PARTITION FUNCTION 
A. General remarks 

It seems easier to make contact with the standard treat­
ment (e.g., virial series) via the grand partition function. The 
grand partition function E(e,fl,z) is defined by 

_ ZN 
.::(e,fl,z) = L QN(fl,e) - . (111.1) 

N>O N! 

Here 

(111.2) 
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and 

e~ Op. 

z=--
A 3 ' 

A = (~)1/2. 
21Tm 

We go back to the beginning and express QN in terms of 
Gaussian quadratures. However, to include the V(O) and 
V(O) terms, we use variables a o and Po. Extend F(x) to in­
clude K = 0 terms and let t(-··) involve Gaussian averages 
over ao and Po as well. Then 

QN = t\ [ f d lxeiF(x) llV)! eOV(O)/2eOV(O)/WI N (III. 3) 

such that 

(I1I.4) 

with 

and we expect the term (OI2n)VK = 0 to vanish since it 
comes from N (N - 1)/2. 

In what follows, we drop that term and Eq. (I1I.3) will 
take the form 

Q =) exp(.! V - ) f d 3xe iF iX»). 
N \ 2 x-o 

The ordinary virial development gives pressure in the form 

pO = ~ logE = bIz + b,z' + b 3Z 1 + ... , (III.5) n 
where bhb" .. are the virial coefficients. It follows from Eq. 
(III. I) above and Eq. (II.43) that 

OJ I I -= - og..: n n 

Z2 f = z + - f(x) d 3X + .... 
2! 

(111.6) 

Here 

f(x) =!e IiV(x) - II 
and z is determined from if In. 

It is well known from statistical thermodynamics that 

if - O(JIOgE) 
Jf1 iW 

(
J lOgE) 

=Z ~ lI,il' (III.7) 

B. Separation of long range forces in the grand 
partition function 

In this subsection we shall try to compare results ob­
tainable in Sec. II by separating long and short range interac­
tions in the grand partition function. From Sec. III A we 
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have 

E=t\exp{z f d 3xexp[iF(x)] exp [ ~ V(O)]}) 

and putting 

F=Fs+Fv 

Rs = exp[OV sCO)/2], 

RL = exp[OVL(0)/2], 

we can show that 

E = tL \ exp(z f /F/(X)RLd 3X)) 

(111.8) 

Next we perform the cumulant expansion which is simple 
smce 

( iF,(x)R _~ I) - 0 Es e s -, 

for all x. Thus 

Es( exp [ z f eil
, R I (eIF'R, - I)d 'x ]) 

z' ,.' 
-~-X2+ ~X, 

2! 3! 

(111.10) 

with 

X 2 = f f dx dy R i exp!i[FL(x) + FL(v) 1 I f(x - y), 

(III. I I) 

X, = f f f dx dy dz R l exp[i[FL(X) + FL(v) + FL(z)] I 

X [J(x - y)f(v - z)f(z - x) + 3f(x - y)f(v - z)]. 

Here 

fer) = e (lV(r) - I 

refers to the short range part of the interaction potential. 

Our next task is to carry the development of the long 
range part 

IFI(x)R 
e L> 

and briefly mention the physics they represent. 

As in Sec. II, the constant part corresponds to a system 
with purely short range forces 

W') = znR L + ~ ff(x)R L2 d 3X 
. 2! 

X ~; R l f f f dx dy dz U;,J,3;;1 + 3/.,1,,). 

(III. 12) 

For the time being we have kept RL unexpanded. 
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We therefore have 

- f f FL (x) [j(O)D(X - y) + I(x - y) ]FL (y) dx dY } 

(111.13) 

for the short range forces, as can be seen in Eq. (111.10), and 
we could also write an expression for the next term (zJ 13!)XJ, 

which is rather long. 

The linear part WI all refers to the a o and (30 modes and 
can be treated separately. 

The quadratic part of the expansion admittedly con­
tains a lot of algebraic manipulations and we are not going to 
reproduce that here. We just mention that with 

FL(x) = ~ I FL(K)e - iKx 
n K 

we would split off the K = 0 term and the result would be 
essentially the same result we obtained in Sec. II. Namely, 
the long range forces involve some amount of short range 
interactions. So the contribution to the grand partition func­
tion from terms K *0 are 

K<K" 
Here 

B(K) = In B(x)eiKxd1x 

and 

+ ~Rl{3j'(0)+ ~Ij(m)j(-m)j(m)}. 
4 n m 

(III. 15) 

Now turning to the zero mode, the quadratic part is pro­
portional to 1/ n and does not contribute. The linear part re­
quires completing the square and gives 

exp( - n ~ V(O){1 + zRLj(O) 

+ ~ R;,[f, + 3j2(0)]rZ'R;) (III. 16) 

Lastly, putting all these approximations together, we come to 
the following vi rial formula, 

1 I -- og.: n 
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- ~~ I 10g{I + 2t1V(K)[A +B(K)]} 
2 n K*O 

- ~ V(O)(1 +zRLj(O) + ~ RiLt;+3j(0)]Y 

Xz'R L (111.17) 

which in effect gives the pressure of the system. 

We have thus shown that for both the classical partition 
and the grand partition function, the constant term of expan­
sion Wo of Gaussian averages describes a system with purely 
short range forces while the quadratic term W, corresponds 
to a system with a mixture of short and long range interac­
tions which is to be expected. 
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APPENDIX: THE USE OF THE GRAND 
PARTITION FUNCTION 

Let us consider a system with the following coordinate 
independent Hamiltonian, 

(AI) 

The coefficient e and 17 will be set equal to unity later. The 
classical partition function for such a system will take the 
form 

= (_m __ )3N 12n N 
21TKT 

x exp( _ eN(N - 1) V(O)e' + eN V(O)17')' 
2n 2 

(A2) 

Thus the free energy for the canonical ensemble is given by 

A = N (log N A J _ 1) _ ~ log( ZN) 
e n e n N ' 

(A3) 

and therefore its variation is given by 

DA = N(N - 1) V(O) + N V(O). 
2n 2 

(A4) 
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Pressure for such a system will be 

p = N ~ + ~ [~log(~)] 
nee an n N e.N 

(A5) 

and its variation is 

b = N(N - 1) V(O). 
p 2n' 

(A6) 

The chemical potential for the system is 

fl= ~ 10g(N~J)_ ~[:NlOg(~:)] (A7) 

with a variation of 

bfl = N - ~ V(O) - ~V(O). 
n 

(A8) 

The grand partition function for such a system is of the form 

8(n,e,z) = I ZN(n,e)zN IN! (A9) 
N:;,O 

and it is clear from the above that 

(A 10) 

with 

Z I = Z exp( 2~ V (0)£) exp( ~ V (0)7]')- (All) 

Using Gaussian quadratures we can write the following, 

= ---=- exp( - a6) I I= 
Y IT- = 

(A12) 

such that 

(A 13) 

Thus the grand partition function will be of the form 

- 1 I= -a~ d [n (. $)] .:: = ---=- e a o exp Zl exp lao ---=- , 
YlT -x YlT 

(AI4) 

where 

$ (0) = [2eV(0)£']II2. 

It follows readily from Eq. (AI4) that the grand partition 
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function satisfies the following functional equation, 

d;:;' (z ) ( - $ , ) [ ( $ ')] ~ =nexp --- 8 zlexp --
~ W W 

(A15) 

with 

8(0) = 1. 

Now to show how the grand partition works, we use the 
maximum term, 

Zt/ 
N! 

On applying Stirling's approximation, we find that 

10g(n:l) = N $' (A 16) 
N n 2 

and this yields 

- N (N $') zl(N) = -exp --n n 2 

( e - )N (N $') =>exp - 2 V (0) n exp n 2 . 

Thus the value of 8 is 

_ (N' $') N .::=exp n4 e. (AI7) 

The equation 

N=z(a~;) 
is an identity and 

logE 

n 
N' $' N --+ n' 4 n 

(A18) 
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S -wave off-shell T and K matrices for the Yukawa 
potential by Ecker-Weizel approximationsa) 

u. Das, S. Chakravarty,b) and B. Talukdar 

Department of Physics. Visva-Bharati University. Santinikeran 731235 West Bengal. India 
(Received 12 April 1978) 

Expressions for s -state off-shell wavefunctions associated with outgoing and standing wave boundary 
conditions are derived for the Yukawa potential by using Ecker-Weizel approximations. The results are 
used to relate the T and K matrix elements to tabulated transcendental functions. 

I. INTRODUCTION 

In a recent paper' (hereafter cited as paper I) two of us 
have obtained s-state eigenfunctions of the Yukawa Hamil­
tonian associated with Jost and regular boundary condi­
tions. We have accomplished this by solving the relevant 
Schrodinger equation using Ecker-Weizel approximations.' 
The purpose of the present paper is to show how, using the 
approximations of paper I, it is possible to derive the off­
energy-shell results for scattering by a Yukawa potential. 
We formulated the problem in terms of van Leeuwan­
Reiner approach] to off-shell scattering as used by Fuda and 
Whiting' and by our group. 5 In this approach expressions for 
off-shell T and K matrices are derived by using off-shell 
wavefunctions associated with outgoing wave and standing 
wave boundary conditions. Both wavefunctions are ex­
pressed in terms of Jost solutions and Jost functions. In addi­
tion to the ordinary Jost function there also appears an off­
shell Jost function. In close analogy with the ordinary Jost 
functions the off-shell Jost function is determined by the be­
havior of the off-shell wavefunction irregular at the origin. 
We consider the s-wave scattering of a particle by a central 
potential V (r). Let k denote the on-shell momentum related 
to the energy by E = k ' + iE, E < 1, and q, an off-shell mo­
mentum. The radial van Leeuwen-Reiner equation for the 
Jost solution is given by4 

(:~ + k' - V(r) Y(k,q,r) = (k' - q')exp(iqr). (1) 

In writing Eq. (1) we omit, for brevity, the subscript 1=0 
and use units in which fz'12m is unity. For this case the off­
shell Jost functions can be obtained as 

f(k ± q) = f(k, ± q,O). (2) 

The ordinary Jost solutions and Jost functions are related to 
off-shell ones by 

f( ± k,r) = limf(k, ± q,r), (3a) 
q -k 

and 

f( ± k) = limf(k, ± q). 
q .k 

(3b) 

"'Partially supported by the Department of Atomic Energy. Government of 
India. 

h'One of the authors (SC) acknowledges the receipt of a Junior Research 
Fellowship of the University Grants Commission. Goverment of India. 

The off-shell wavefunctions lJr(k,q,r) and 1/1"' (k,q,r) satisfy­
ing outgoing and standing wave boundary conditions are 
given by the following expressions: 

and 

I/I+(k,q,r) = - ~1TqT(k,q,k ')f(k,r) 
1 + -[f(k,q,r) - f(k, - q,r)], (4a) 
2i 

1/1/' (k,q,r) = - !1TqK (k,q,k ')[(k,r) + f( - k,r)] 
1 + 2i [f(k,q,r) - f(k, - q,r)]. (4b) 

In Eqs. (4a) and (4b), T(k,q,k ') andK (k,q,k ') represent the 
half-off-shell T and K matrices. We have 

T(k q k ') = f(k,q) - f(k, - q) 
, , i1Tqf(k) ' 

(5a) 

and 

K (k,q,k ') = ~ _ f(k,q) - f(k, - q) 
I1Tq f(k) + f( - k) 

2 Imf(kq) 

1Tq lJ(k )Icosb(k) 
(5b) 

Here b(k) stands for the negative of the phase of the Jost 
function. Obviously, it is the phase shift induced by the 
potential. 

The Yukawa potential behaves like 1/r near the origin. 
Off-shell T and K matrices for such a potential can be calcu­
lated by using the relations'·? 

T(p,q,k ') 

2 k' - 'lx = T(k,q,k ') + - P dr sinpr 
1T pq () 

x [1/1 +(k,q,r) - sinqr + ~1TqT (k,q,k ')exp(ikr)], (6) 
and 

K (p,q,k ') 

2 k' - 'loo = K (k,q,k ') + - P dr sinpr 
1T pq 0 

X [1/1 j (k,q,r) - sinqr + ~1TqK (k,q,k ') coskr]. (6b) 
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Equations (6a) and (6b) represent the basic formulas for 
computing off-shell T and K matrices for potentials singular 
at the origin. These equations do not involve the potential 
explicitly. 

In Sec. II we solve Eq. (I) for the Yukawa potential 
using Ecker-Weizel approximations and write down the ex­
pression for/(k,q). In Sec. III we relate the Yukawa TandK 
matrices to tabulated transcendental functions. We con­
clude by noting that the approximate results presented in 
this paper satisfy the usual relations between T and K matri­
ces as derived by Kouri and Levin. 8 

II. OFF-SHELL JOST FUNCTIONS 

For the attractive Yukawa potential 
- Vo exp( - w)/r, Eq. (1) reads 

[
d 2 VoexP(-lIr)}r . _ + k 2 + r- (k,q,r) = (k 2 _ q2) exp(lqr). 
dr r 

The standard substitutions 

f(k,q,r) = exp(ikr)v(r) 

and 

w= -In(1-x) 

transform Eq. (7) in the form 

[X(l_X)~_X(I_2ik)~_ VoX ]V(X) 
dx' 11 dx I1ln(1 - x) 

(k' _ q') . = x(l - X),(k. q)/J.l- I. 

11' 

(7) 

(8a) 

(8b) 

(9) 

In the Ecker-Weizel approximation one proceeds by assum­
ing that V oX/ 11 In( I - x) is a slow Iy varying function of x and 
to a first approximation it is a constant - y. Recently Lam 
and Varshni9 has discussed the rationale of this approxima­
tion for a considered quantum state of a fermion. Working 
within the framework ofEcker-Weizel model, we transform 
the independent variable in Eq. (9) by substituting 
x = 1 - y. We thus obtain 

y(1 - y)- + I - _1_ - I - _1_ - + y v(Y) { d ' [ 2 'k ( 2 'k}] d } 
dy' 11 11 dy 

= (k 2 - q') [yi(k _ q)/Il - I _ ilk - q)!I']. 

/1' 

A particular solution of Eq. (10) is given bylo 

v(y) = (k' - q2) [(a(a,b;c;y) - fn I(a,b;c;y)], 
/1' 

where 

888 

i(k - q) 
a == , 

a= 

11 

- ~[k - (k 2 - YI12)112], 
11 
i 

b = - -[k + (k' - YI1') 112 ], 
11 
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(10) 

(II) 

(12) 

(13a) 

(13b) 

and 

2ik 
c= 1--. 

/1 
(l3c) 

The functionfa (a,b;c;y) is related to a generalized hypergeo­
metric function by 

fa(a,b;c;y) = yO' 
o{o+c-I) 

X }FlI,o + a,a + b;a + 1,0' + c;y). (14) 

This series converges when Iyl < 1; it converges when Iyl = 1 
provided that Re(c - a - b) > 0 which is true in our case. 

From Eqs. (8a) and (11), the off-shell Jost solution is 

k2 _q' 
f(k,q,r) = exp(ikr) [(a(a,b;c;exp( - w» 

112 

- f(7 + 1 (a,b;c;exp( - w»]· 

Making use of the recurrence relation 10 

(0' + a)(a + b )fa + l(a,b;c;Z) 

= 0'(0' + c - 1 )fa(a,b;c;Z) - Z a, 

Eq. (15) can be rewritten in a convenient form 

(15) 

(16) 

f(k,q,r) = exp(iqr) + ab exp(ikr)fu + I(a,b;c; exp( - w»· 
(17) 

From Eqs. (14) and (17) it is easy to see that asymptotically 
f(k,q,r) ~ exp(iqr). In the on-energy-shelllimit, Eq. (17) 
yields 

f(k,r) = exp(ikr)[ 1 + ab;; (a,b;c; exp( - w»]· (18) 

This result agrees with our previous result in Paper I ob­
tained by solving the relevant Schrodinger equation. The off­
shell Jost function obtained from Eq. (17) is given by 

f(k,q) = T(1 + a)F(c + 0') (I9a) 
ro +a+o)F(1 +b+a) 

For the on-shell case one has 0' = O. Thus 

k _ r(c) 
f( )- T(I+a)F(I+b) 

(19b) 

III. TAND KMATRICES 

The off-shell Jost functions in Eqs. (19a) and (19b) can 
be used to write the half off-shell T and K matrices given by 
Eq. (5) in closed form in terms of r functions. In order to 
obtain the fully off-shell T and K matrices it is necessary to 
combine Eqs. (4a), (4b), (17) and (18). It is easy to show that 

lJI+(k,q,r) - sinqr + ~1TqT(k,q,k ') exp(ikr) 

= !!!!.... exp(ikr) if, t I(a,b;c; exp( - I1r» 
2i 

- fa' + l(a,b;c; exp( - W))J - ~ab1TqT(k,q,k ') 

X exp(ikr)f.(a,b;c; exp( - W», 

Das, Chakravarty, and Talukdar 

(20) 
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and that 

I/IJ' (k,q,r) - sinqr + !1TqK (k,q,k 2) coskr 

= ~~ exp(ikr) [fa + I(a,b;c; exp( - w» 

- fa' + I(a,b;c; exp( - w)] 

- !1TqabK (k,q,k 2}f;(a,b;c; exp( - w» coskr, (21) 

Making use of Eqs, (20) and (21) in (6a) and (6b), we change 
the variable by substitutingy = exp( - f.lr). We thus obtain 
off-shell T and K matrices as 

T(p,q,k ') 

= T(k,q,k ') - - P dy yP - I [fa + I(a,b;c;y) (k 2 2)ab {L I 

21Tf.lpq 0 

- fa' + I(a,b;c;y) - i1TqT(k,q,k 2}f;(a,b;c;y)] 

- i1TqT(k,q,k 2)J.(a,b;c;y)] }, (22) 

and 

K(p,q,k 2) 

= K (k,q,k ') + (k' ~ p')ab {1Tq K (k,q,k ') 
21Tlf.lpq 2 

x [fy p"- IJ.(a,b;c;y) dy + fy p' - 'j;(a,b;c;y) dy 

- fy p'''- 'j;(a,b;c;y) dy - fy P - 'j;(a,b;c;y) dy ] 

- fy p'-1a + 1(a,b;c;y) dy + fy P' -1a' + 1 (a,b;c;y) dY]}, 

(23) 

with 

p = - i(P + k )If.l, p' = i(P - k )If.l, 

p" = _p, and pm = _p'. (24) 

All the integrations in Eqs. (22) and (23) can be carried out 
by using the result 

i1dY y" -1(J(a,b,c;y) 
() 

= rJ3(f3 + c - I)(a + (3)]-'.FlI,/3 + a,(J + b,a + /3; 

/3 + 1,/3 + c,a + /3 + 1;1). (25) 
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The final results for the Yukawa T and K matrices are given . 
by 

T(p,q,k 2) 

= y(k
2 

- p2){i1TqT(k,q,k 2)[X( _ p,k) - X(P,k)] 
21Tf.lpq 

+ [Y(p,q,k) - Y(p, - q,k) - Y( - p,q,k) 

+ Y(-p,-q,k)]}, (26) 

and 

K (p,q,k ') = y(k' - p2) {i1Tq K (k,q,k ')[X ( - p, - k) 
21Tf.lpq 2 

+ X ( - p,k ) - X (p, - k) - X (p,k )] 

+ [Y(p,q,k) - Y(p, - q,k) - Y( - p,q,k) 

+ Y(-p,-q,k)]}, (27) 

where 

I 
X (p,k ) = ~ X J'zCa,b,p;c; I + p; I). 

abp 
(28a) 

and 

Y(p,q,k) = [(O' + I)(O' + c)(O' + P + 1)]-' 

0'+2,0'+c+ l,p+0'+2;1). (28b) 

In writing Eqs. (26) and (27), we have also used 

4F,(I,1 + a,1 + b,1 + c; 2,1 + e,1 + j;Z) 

= (~)LF2(a,b,c;eJ;Z) - I], 
abcZ 

(29) 

which follows directly from the infinite series representation 
of the generalized hypergeometric function, 

In conclusion we note that the results presented in Eqs. 
(26) and (27) for the Yukawa T and K matrices are formally 
similar to those for the Hulthen potential treated in Refs. 6 
and 7, In an interesting work Kouri and Levin' have ob­
tained a relation connecting the K operator and the real part 
of T. This can be used as a check on complicated expressions 
one usually obtains for the off-shell T and K matrices for 
local potentials. Our approximate expressions in Eqs. (26) 
and (27) are seen to satisfy this relation. Thus there is no 
physical uncertainity in pursuing Ecker-Weizel approxima­
tions to the off-energy-shell region. The results presented in 
this paper will be useful as starting points of any perturba­
tion-theoretic calculation. 
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The classical limit of quantum nonspin systems 
R. Gilmore 
Physics Department. University of South Florida. Tampa. Florida 33620 
(Received 28 August 1978) 

The classical limit of operators X belonging to any compact Lie algebra 9 is computed. 
If X E 9 • the classical limit in the representation r" whose highest weight is A. is 
limrA(XIN) = ~s,g(f,.X.n). where the limit is taken as N~oo. the sum runs from 
i = 1 to r = rank g. A = ~fL,(.f, are the highest weights of the r fundamental 
representations of 9.s, = lim fL/N. and g(f"X .n) is the expectation value of X with 
respect to the coherent states If" n) in the representation rf'. Examples and 
applications are given. 

1. INTRODUCTION 

The classical limit of quantum spin [SU(2)] systems has 
recently become a powerful tool for rigorously studying the 
ground state and thermodynamic critical properties of some 
physical systems. A rigorous justification for the use of the 
classical limit involves the use of atomic coherent states for 
SU(2)' to put lower and upper' bounds on the quantum par­
tition function. These bounds are obtained by replacing the 
spin Hamiltonian by its Q and P representatives' (functions 
defined over the sphere surface) and the trace over operator­
valued functions by an integral over the sphere. The Q and P 
representatives of all irreducible spherical tensor operators 
are also known. J In the limit of large N ("thermodynamic 
limit") the Q and P representatives per particle become 
equal. so all spin operators can be replaced by their classical 
limits 

I~i~ rJ[(X IN)K 1 = [S(;¢IX I e~) r. o<s = 2J IN,;;'!, 

(I) 

where K is finite. I ~;(J¢i) are the coherent states of SU(2) in 
the representationj = ~. and X = Jlo J+. L The classical lim­
it has reduced to a simple algorithm the problem of studying 
the critical properties of systems depending on N identical 
particles whose internal dynamical group is SU(2): 

(1 ) Write down the Hamiltonian per particle in terms of 
intensive4

.' angular momentum operators. 

H IN = hQ(JIN). 

(2) Replace the angular momentum operators by their 
c1assicallimits (I). This converts the operator hQ into a c­
number "potential" he- The appropriate finite temperature 
potential is <P(f:i') = he - (f:i'Nt' InY(N,J). where Y(N,J) is 
an SU(2) multiplicity factor. 

(3) The minima of he and <P (f:i') (f:i' = lIkT) 
rigorously give the ground state energy per particle and the 
free energy per particle in the thermodynamic limit. respec­
tively. The critical properties of the system are determined 
by studying how the minima of he and <P (f:i') change as a 
function of changing interaction parameters and tempera­
ture, respectively. 

Step 2 involves Lie group theory. and in particular the 
use of coherent states. Step 3 involves catastrophe theory, 
and in particular local and nonlocal bifurcation theory. This 
algorithm' has been successfully applied to study the ground 
state and thermodynamic critical properties of a large class 
of quantum optics Hamiltonians of Dicke type" and nuclear 
Hamiltonians of pseudospin type. 7

., 

2. CLASSICAL LIMITS FOR COMPACT 
ALGEBRAS 

Powerful though this algorithm is, its use is restricted to 
model systems constructed from operators belonging to the 
Lie algebra su(2). The Bogoliubov and Lieb inequalities, on 
which Step 2 of this algorithm is based, are independent of 
specific group-theoretic details, except that the Lieb inequal­
tiy requires a compact domain. Therefore, the only obstruc­
tion to extending this algorithm to other groups is the lack of 
a classical limit for operators belonging to Lie algebras more 
complicated than su(2) ("nonspin"). 

Coherent states for general Lie groups have been intro­
duced"'O and extensively studied." If G is a compact semi­
simple Lie group with Lie algebra g, r A is an irreducible 
representation characterized by highest weight (or any ex­
tremal weight) A, IA,A) is the state of highest weight, and H 
is the stability group of IA.A). then the coherent states 
IA,a) are defined byll 

(2) 

Here a is a group element and also a coset representative. 
The coset generally depends on the representation, or equiv­
alently on A. The Q-representative of an operator XEg can be 
determined from the generating function, 

(~I eYx I~) = (~I n-'eyxn I~). 
The product of group elements can be written in a more 
convenient form using Baker-Campbell-Hausdorff 
formulas, '1.12.13 

(3) 

(4) 

Here S+ is a sum over the "shiftup" operators in g. corre-
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sponding to positive roots in the algebra,13 so that 
S.IA,A) = O. S_ is a "shiftdown" operator, and d·H is diag­
onal. Using (4) in (3), we find 

(5) 

The coefficients d depend on nEG/H, XEg, and the param­
eter y. 

The highest weight can be written 14 
r 

A = Lilli' (6) 
j-;- I 

where r is the rank of g, ( are the highest weights of the r 
fundamental irreducible representations, and Ili are nonne­
gative integers. The right-hand side of (5) factors 
accordingly, 

(5) = ed.(III,f,) = tr (eM, )1'. (7) 
i~ I 

The functions exp (d·f) are easily computed, for 

(~I e
Yx I~) = eM. (8) 

By combining (8) with (3) we have a concise form for the 
generating function, 

(9) 

In order to compute the classical limit of X, it is useful 
first to write the matrix elements in (9) as follows: 

(f f) y2(f f) 
= 1 + y 'I X I ' + _ 'I X2 I ' + .,. 

n n 2! n n 

= 1 + yg(f;,x,n,y). (10) 

Then (9), considered as a generating function, can be written 

f (AI V~k IA) 
k=O n k. n 

= tr (1 + yg(fi,x,n,y))'" 
i~ I 

- nr
" Ili! [(f,xn )]k, 

- i ~ I f <fli _ k)'k;! yg i "y . 
(11 ) 

The expectation value of the Kth power of XIN is 

(~I (X IN)K I~) 
r ( Ili! ) 1 1 11 L {" _ k)IN k, k! NK-:i.k, 

1-- 1 k, 'f-"i i • I 

x(:y r [yg(fi,x,n,y)]k'ly~o. (12) 

This simplifies considerably in the limit of large N, for 
'2k i<Xand 

lim I -8 
K-:i.k - K.:i.k,' 

N-~oo N ' 

892 J. Math. Phys., Vol. 20, No.5, May 1979 

I· Il,! I· (Ili)k' .k 1m = 1m - =S' , N' , 
IV '% <fli-k)!N' N.if" 

(13) 

so that (12) becomes simply 

S·x r (1l)"KI , 
(12) --+ XI, H~ K ; kt[g(f;,x,n,y = 0)], 

(14) 

(
A A \ (r (f f) f 

,~i~y n l (X INllnl = i~' Si ~I X I~ ). 
In short, the classical limit of (X IN)K is determined from the 
Q representative of X in each of the fundamental representa­
tions of g. 

Theclassicallimitof(X IN)K(y INlcanbedetermined 
by constructing the appropriate generating function and fol­
lowing the procedure described in Eqs. (3)-( 14). The result is 
simply that the classical limit of the operator product is the 
product of the classical limits of the operators. Nor does it 
matter in what order the operators occur, for the commuta­
tor [X IN, YIN] = N-I([X,Y]!N) vanishes in this limit. 

The result (14) is valid for all compact semisimple Lie 
groups. The proof can be extended to noncompact semisim­
pIe Lie groups, provided we deal with their square-integrable 
representations. II 

3. EXAMPLES AND APPLICATIONS 

To illustrate how the classical limit (14) is used and why 
it is useful, we consider two examples and an application. 
These all deal with the groups SUer), so we consider the 
coherent states for this group first. The stability group H 
depends on the class of representations used. For the fully 
symmetric representations, H = U (r - I) and the coherent 
states have already been explicitly constructed. 9 If the gener­
ators for SUer) obey commutation relations" 
[Eij,Ers ] = E,lSjr - ErPsi and the extremal state is \1), then 

n = exp{~ I O/e - i4>, Ejl - ei,p, E ,j )}, 
2j~2 

(15) 

and the expectation values of the operators E ij in the first 
fundamental representation are 

(f f) 
s· 'I E I ' = hh., 'n ]I n /', 
hi = cosO 12, i = 1, 

(16) 

04> = ~ ._, 'sinO 12, i> 1, 
2 

These results are valid only in the fully symmetric represen­
tations ofSU(r). We remark that Hamiltonians constructed 
from operators belonging to suer) have been studied in nucle­
ar physics for r = 2,IS r = 3,16 and r = 6.". 18 
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Example I: For SU(2), J, = (Ell - E22)12, J. = E 12, 

J_ = En, so that 

J J I (J./N)K I J) = (s!sinOe'<P)K, o<;s = KIN<;l.(17) 
\erP 8rP 
The classical limit of J_ is (s/2)(e - '<P sinO) and for J, it is 
(s/2) cose. This is the basis for the algorithm described 
above. 

Example 2: For SU(3), in the representation character­
ized by Young partition (A hA2), A = /1.,J; + /1J" where 

{Ji1,/1,) = (AI - A,,A,) and fl and f2 are the highest weights (~, 
3 

-,!, -,!,) and (,!",!" - ~) of the 3 and 3 representations, 
"3 :1:1 :1 

where 5, = lim /1/N and XEsu(3). 
.'V . • "x: 

Application: We assume the Hamiltonian describing a 
system of N nucleons, each with r available states, has the 
form 

hQ = iI IN = (diagonal) + (interaction). (19) 

For the diagonal contribution we take 
r 

(diagonal) = I c,(H/N), CI<C,<···<c,., (20) 
,= \ 

where H, and Eli are elements in the Cartan subalgebra of 
suer). We assume a quadrupole form for the interaction, as 
follows, 

(interaction) = '1 [(;; Y + (~\ YJ, 1 <j<;r, (2Ia) 

Q [( E'j)2 (Eji )2] or =- - + - , 
2 N N 

1 <i <j<;r, (21b) 

where Q>O. Expression (21a) describes an interaction be­
tween the ground and an excited state, (21b) between two 
excited states. The Hamiltonian (19) can be regarded as the 
multilevel extension of the Lipkin-Meshkov-Glick pseudo­
spin Hamiltonian. II 

The ground state of (19) belongs to the fully symmetric 
representation ofSU(r), with A = Nfh so that 51 = 1, 
s, = '" = 5 r __ \ = 0 in (14). Therefore the classical limits of 
(20) and (21) can be read directly from (16): 

(22) 

(23a) 

(21 b) ~ .Q(e,8j sin2i.)2 (e - 2i(<P, - <1» + e2i(<P. - <1»). 

2 e' 2 
(23b) 

Equations (20) and (21) represent Step 1 in the extension to 
"nonspin" systems of the algorithm described in Sec. I. 
Equations (22) and (23) represent Step 2. 
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For the Hamiltonian, (20) + (21 a), the ground state en­
ergy per nucleon is obtained by minimizing (22) + (23a). A 
simple local bifurcation analysis6 shows that the system is 
disordered (all 0, = 0) for Q<.1j = Cj - eh but a second­
order phase transition occurs as Q becomes larger than .1 j 
and the system becomes ordered, with cos OJ = .1jlQ, all 
other 0, = 0 (i=f=J)' This result is exact in the thermodynamic 
limit. 

For the Hamiltonian (20) + (21 b), the ground state en­
ergy per nucleon is obtained by minimizing (22) + (23b). A 
nonlocal bifurcation occurs that may be treated by a catas­
trophe theory analysis. 6

•
8 The ground state is disordered for 

Q <.1. -.1,. There is a locally stable ordered state for 
} - - -

Q>.1 -.1, which is metastableforY Q <Y.1j + Y.1, 
} - - -

and globally stable for Y Q > Y .1j + Y .1,. The corre-
sponding phase transition is first order. The order param­
eters of the locally stable ordered state are defined by 

2'(<1> _. <1» 1 A.. A.. b' II 2 0 2 '0 2/ll 2 e . . = - ,'fJ, + 'fj ar ltrary, u, + j = 1T, j U i 

= [Q - (.1 j - LlYQ + (Ll j - .1,)], Ok = OandrPk arbitrary 
(k=l=i, k=l=j). The saddle barrier separating the ordered state 
from the disordered state has height.1 f1 /Q. 

4. SUMMARY AND CONCLUSIONS 

A simple formula (14) is derived in Sec. 2 for the classi­
cal limits of operators belonging to compact Lie algebras. 
This allows the extension of a simple algorithm (Sec. 1) for 
determining the ground state and thermodynamic critical 
properties of systems whose Hamiltonians are constructed 
from operators belonging to such algebras. In its first appli­
cation to groups other than SU (2), the algorithm reveals that 
the multilevel extension of the Lipkin-Meshkov-Glick 
pseudospin Hamiltonian supports second or first order 
ground state energy phase transitions, depending on wheth­
er the quadrupole interaction between two levels does or 
does not involve the ground state. 
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Path integrals for waves in random mediaa) 
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The problem of wave propagation in a random medium is formulated in terms of Feynman's path integral. 
It turns out to be a powerful calculational tool. The emphasis is on propagation conditions where the rms 
(multiple) scattering angle is small but the log-intensity fluctuations are of order unity-the so-called 
saturated regime. It is shown that the intensity distribution is then approximately Rayleigh with calculable 
corrections. In an isotropic medium, the local or Markov approximation which is commonly used to 
compute first and second (at arbitrary space-time separation) moments of the wave field is explicitly 
shown to be valid whenever the rms multiple scattering angle is small. It is then shown that in the 
saturated regime the third and higher moments can be obtained from the first two by the rules of 
Gaussian statistics. There are small calculable corrections to the Gaussian law leading to "coherence 
tails." Correlations between waves of different frequencies and the physics of pulse propagation are 
studied in detail. Finally it is shown that the phenomenon of saturation is physically due to the appearance 
of many Fermat paths satisfying a perturbed ray equation. For clarity of presentation much of the paper 
deals with an idealized medium which is statistically homogeneous and isotropic and is characterized by 
fluctuations of a single typical scale size. However, the extension to inhomogneous, anisotropic, and 
multiple scale media is given. The main results are summarized at the beginning of the paper. 

1. INTRODUCTION AND SUMMARY OF 
RESULTS 

The problem of propagation of waves in a random me­
dium appears in a number of areas of research and applied 
science. Some examples are atmospheric optics, radio as­
tronomy, and underwater sound. The problem is further­
more an old one which has been studied extensively, The 
earlier work (summarized in the monographs of Tatarskii l 

and Chernov2) employed the Rytov approximation, In this 
approximation the logarithm of the amplitude is computed 
using first order perturbation theory, The Rytov method is 
applicable whenever the intensity fluctuations are small. 
When the wavelength is small it reduces to first order geo­
metric optics or WKB. More recently, a different approxi­
mation which reduces the problem to a Markov process has 
lead to considerable progress in cases where the intensity 
fluctuations are not small. This method is explained in Ta­
tarskii's second book' and in two excellent reviews of the 
recent literature.4

.' Nevertheless, important problems re­
main. In particular, there does not exist a global view of what 
is going on in the so-called saturated regime where the inten­
sity fluctuations are important. 

In this paper Feynman's path integral' is applied to the 
problem of wave propagation in a random medium. It pro­
vides a natural and systematic method for attacking the 
problem, especially when the intensity fluctuations are large 
and the Rytov approximation fails. The path integral is 
widely used in quantum mechanics and statistical mechanics 
but it is expected that many readers will not be familiar with 
it, thus the paper is meant to be self-contained. The reader 
who desires further background information on path inte­
grals will do well to consult the book of Feynman and 
Hibbs: 

"'This work was done under the sponsorship of the Advanced Research 
Projects Agency Contract DAHCIS-/3-C-0370. 

Because some readers will not be familiar with path 
integrals there are some peculiarities in the organization of 
this paper. In real situations, random media are often statis­
tically inhomogeneous or anisotropic and frequently have a 
power law spectrum in the scale size of fluctuations. Path 
integrals are capable of handling all these complications. (In 
fact the author first developed the method for propagation of 
sound in the ocean,7 a problem which has these complica­
tions and more.) However, it is vastly easier to explain the 
path integral method for an idealized medium which is sta­
tistically homogeneous and isotropic and whose fluctuations 
are characterized by a single' typical scale size L (small com­
pared to the distance R of propagation). The bulk of the 
paper is therefore devoted to a study of this idealized situa­
tion. Once this has been done the transition to realistic media 
is relatively simple. However, this manner of presentation 
has a defect for which only an apology can be offered. Be­
cause of the temporary restriction to a single scale size, re­
sults which are directly applicable to atmospheric optics do 
not appear until late in the paper (specifically, Secs. 7 and 8). 
Finally, to illustrate the power of the path integral method 
(and, hopefully, motivate the reader), a number of results for 
the idealized problem will be summarized below. The trans­
lation of these results to more complicated cases is generally 
straightforward: The details are given in the text. Listing the 
results will require the definition of some symbols. This will 
(temporarily) be done in terms ofthe idealized problem and 
the reader who has worked on propagation in a random me­
dium will find that they are familiar objects, e.g., Tatarskii's 
phase structure function D. For other readers, the motiva­
tion for these definitions will become apparent in Secs. 2 and 
3. 

Actually, there are two distinct kinds of problems of 
propagation in a random medium, corresponding to whether 
the scattering angles, single and/or multiple, are large or 
small. If the fluctuations are weak so that a single scattering 
approximation (Born approximation) applies, there is little 
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Forward Diffusion Severe Interference 

Backscattering No Backscatter 

(a) ( b) 

FIG. 1. The difference between multiple large angle scattering (a) and mul· 
tiple small angle scattering (b). 

distinction between the two cases. However in a multiple 
scattering regime, which is the case of interest here, the two 
kinds of problems are very different. This is illustrated in 
Fig. 1. The considerations of this paper will be restricted to 
situations where the single and multiple scattering angles are 
small. This is sufficient to cover the applications mentioned 
above. The large angle multiple scattering situation is like a 
problem in radiative transport and is most efficiently treated 
by other methods. 

It will be assumed that the problem can be reduced to a 
scalar wave equation with an index of refraction n(x,t ) which 
may depend on the frequency w =ck. In a homogeneous me­
dium <n) is a constant and for waves ofa fixed frequency can 
be set equal to unity. Defining 

Ii(X,t)= I-n(x,t), (1.1) 

Ii will be taken to have a zero mean and a covariance 

<Il(X,t )Ii(x' ,f') =p(lx - x'l,t - t'). (1.2) 

It will be further assumed that either Ii is a Gaussian9 ran­
dom field or that kL<Il2)112 is small, in which case the distri­
bution need not be specified. 

Let the two-dimensional vector ro=(xo,Yo) label the lo­
cation ofa point source10 in the planez=O. Then in a plane of 
constant z > 0, the signal will be E (z,r ,ro,t) where r=(x,y) 
specifies the transverse coordinates of the observation point. 
The total range of propagation will be denoted by R and for 
Irl, Irol<:R, and a CW source it is useful to define a complex 
envelope iff' by 

E (z,r,ro,t)= Re[ iff'(z,r,ro,t )ei(kz-wI)]. (1.3) 

The time dependence of go is due to fluctuations in the medi­
um. It will be assumed that the full wave equation for go can 
be approximated by the parabolic wave equationl-7.11 

(. a 12k ) 
I az + u\7 - Ii(r,z,t) go(r,ro,z,t) =0, (1.4) 

where 
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plus a boundary condition at z = 0 

(
ik (r - r)2) go __ (41Tz)-lexp 2z ° . (1.5) 

If Land T are the characteristic lengths and times over 
which Ii changes, the validity condition for Eq. (1.4) are (i) 
kL> 1, (ii) kL<.wT, and (iii) that the rms multiple scattering 
angle (<Il 2)R /L)! should be small. 

Feynman's path integral gives the solution to the para­
bolic wave equation in terms of a (strictly speaking) infinite 
dimensional integral. It turns out that this integral can be 
studied in almost exactly the same way as Mercier l2 original­
ly attacked the phase screen integral. The result is that prop­
agation in a statistically homogeneous medium is very simi­
lar to the phase screen problem. This will continue to be true 
in rather general inhomogeneous media, of which the phase 
screen is a special case. 

In order to indicate what can be learned from the path 
integral it is necessary to review some known features of 
propagation in a random medium. The qualitative character 
of iff' is determined by two parameters <P and n defined by 

cp 2 = k 2( (LR 

Ii(e z z,t )dz y) 

= k 2R J: f( I z I ,O)dz + 0 (L / R ), (1.6) 

where ez is a unit vector in the z direction and in the second 
line it has been assumed that R>L and 

fl=6kL 2/R. (1.7) 

The parameter cP is just the rms phase fluctuation as com­
puted in first order geometric optics1 and serves as a measure 
of the strength of the fluctuations. The other parameter n is 
essentially the square of the ratio of the scale size L to the 
extent of a Fresnel zone. As shown in Fig. 2 if <P is less than 
one or less than fl, then the Rytov1-' approximation is valid. 
In the region where the Rytov approximation is valid, the 
problem can be considered to have been solved years ago. 
The intensity fluctuations (scintillations) are small and the 
relation between go and Ii is simple and direct. Also, as 

Saturated 

~ 
FIG. 2. Parameter regimes in tP-il space. 
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shown in Fig. 2, when both (/) and (/) In are greater than 
unity, the fluctuations in If saturate. 1J In particular, the vari­
ance of In I If I' = In 1 approaches a constant of order unity 
and the properties of If are determined more by statistical 
considerations than by the detailed properties of J1-. 

Path integral methods have nothing new to add when 
the Rytov approximation is valid. The considerations of this 
paper will therefore be restricted to the saturated regions. 
There is then a small parameter a = n I(/) whose order of 
magnitude" is 

6L'I' 
a- (1.8) 

R JI2(p'>~ 

The path integral allows the calculation of any moment of If 
as an asymtotic series in a. The result is that If is uniformly 
distributed in phase and that the moments of intensity 
1 I ~ I' are given by 

<r> = n!<J >n [1 + !n(n - l)Ca + 0 (a')], (1.9) 

where C is a calculable constant of order unity whose precise 
value depends on the spectrum of J1-. In the limit a = 0 the 
distribution is therefore Rayleigh 'S with 

P(/) = _1_ exp [ _ _ 1_]. 
<I> <I> 

(1.10) 

However, the correction grows with n and cannot be neglect­
ed for n ~ (2/a)!. It follows that there must be significant 
deviations from a Rayleigh distribution when 1 1<1> is great­

er than -(2/a)!. 

In addition to the distribution of If, one also wants to 
know the coherences in space and time. Recent work on 
coherences has been greatly facilitated by the observationH 

that under certain conditions the problem can be replaced by 
a simpler local or Markov one where, in effect, one makes the 
replacement 

p(x,t )--5(z)p( I r I,t), 

with r = (x,y) and 

p( Irl,t) = f~ f«r' + z')l,t )dz. 

(1.11) 

(1.12) 

Note that (/)' is equal tok 'Rp(O,O) and it will be convenient to 
use the function p to define T and L by the expansion 

( 
r' t' ) k'Rp~(lrl t)=(/)' 1- - - - + .... 

, 2L' 2P 
(1.13) 

Within factors of order unity, the Land T so defined will be 
equal to the length and time over which the original covari­
ance p is nonvanishing. 

It has been pointed out by several authorsH that in the 
Markov approximation the coherence of If * and If can be 
computed exactly. It is 

<1f*(r',r~,t')If(r,ro,t» ' 
~---=----- =exp[ -!D(r-r',ro-ro,t-t')], 

1f~(r',r~)1f o(r,ro) 

(1.14) 

where 
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( 1.15) 

and D is the phase structure function of first order geometric 
optics I 

D (r,ro,t )=2k 'R f fP(O,O)-p( I ur+ (l-u)ro I ,t )]du. (1.16) 

The phase structure function always appears in an exponen­
tial and in the saturated region where (/)2 is large, D can be 
approximated by an expansion in r,ro, and t 

[ r'+r~+r.ro t 2 ] 
D(r,ro,t)=(/) , + - + .... 

3L2 T' 
( 1.17) 

Coherences are then characterized by two parameters (/)IT 
and (/)IL. 

The literature is somewhat confusing as to the validity 
conditions for Eq. (1.14). It turns out that the approximation 
leading to Eq. (1.14) has a very simple interpretation in the 
path integral formalism. In the next section it will become 
evident that for the isotropic medium under consideration, 
Eq. (1.14) is valid as long as the parabolic wave equation is 
valid. From the path integral one can actually compute the 
first correction to Eq. (1.14). It is of order of the rms multiple 
scattering angle (RI L )'I2(P'>'12 which must be small if the 
parabolic wave equation is valid. 

For small a the path integral also allows the calculation 
of <If *(r,ro,t )1f*(r',r~,t')W(r",r~,t")If(r"',r~',t"'» and more 
generally an arbitrary 2nth order moment. In the limit a = 0, 
the real and imaginary parts of If are jointly Gaussian. To 
see the use of this result, let us consider a typical question of 
practical interest. Take a fixed source and receiver so that if 
is a function only of time and suppose that at t=O ?? liS'o is 
known to have a value 17. An interesting practical question is 
then what is the probability P (17') that If (t )! If 0 will take on 
the value 17'. Since?? has a Gaussian distribution, P (17') is 
simply 

P(17') = exp( _ 117' - e - D(t)!217 I 2, 40 _ e- D(t), 

1_e- D (t) JI" 
( 1.18) 

where D (t ) =D (O,O,t );::; (/)'(tlT)'. The qualitative behavior of 
P (17') is indicated in Fig. 3. It is evident that the signal stays 
in one quadrant of the complex plane and is therefore coher­
ent over a time of order T I(/). A further property of Gaussian 
statistics and a covariance of the form exp[ -!( (/)tlT)'] is 
that the signal will move in a straight line for times less than 
- TI(/). One can ask the more general question of given that 
W(r,ro,t)!1f o(r,ro) is equal to 17, what is the probability that 
If(r',r~,t')IW o(r' ,r~) will be equal to 17'. The result is just Eq. 
(1.18) with D (t) replaced by D (r-r',ro-r~,t-t'). 

As stated above the Gaussian statistics leading to P (1]') 
are obtained by computing moments. Again the approxima­
tion scheme breaks down for moments of order (21 a)'12 and 
Eq. (1.18) is valid only for 11] I and 11]' I less than (2/a)l!4. 
Actually the order a corrections to any moment are calcula­
ble. They are most important for intensity correlations 
where they lead to coherence tails' of order a which are small 
but fall much less rapidly than e- D

. 
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2 

FIG. 3. Illustrating Eg. (1.18). The signalr!, will lie, with 90% probability, 
within the circles: (I) for <PIll' small, (2) for <PIIT-I, and (3) for <PIll' 
large. The location of the signalrt at 1=0 was an unlikely one lying outside 
the 90% probability circle for a Rayleigh distribution. 

The path integral also provides a simple method for 
calculating the correlation between waves of different fre­
quencies. 4

.
5 In the saturated region, where <P > 1 the result is, 

for I UJ-u/ I small compared to (jj !(UJ+UJ') 

<I&'*(UJ')I&'(UJ) [1 (UJ-UJ' )2]A( ') exp - - --- UJ-UJ, 
1&';(UJ')l&'o(UJ) 2 UJg 

(1.19) 

where UJg is 

UJ;2= ((lR ! (kJ1(e7,t )dz y) (1.20) 

and for a single scale medium 

( 
6iUJ )112 . (6iUJ )1/2 A(UJ)= -- Ism--
UJoa UJoa 

(1.21 ) 

with UJr;2=c;-2Rp(0,0), where cg is the unperturbed group 
velocity. For a non dispersive medium UJo=UJg When a is 
very small the second factor on the right-hand side of Eq. 
(1.19) falls much more rapidly than the first one. The first 
factor 

exp [ - + (UJ:gUJ' Y] 
can than be replaced by unity. In the limit a=O the higher 
order correlations in frequency are Gaussian. One can then 
obtain probability distributions in frequency from Eq. (1.18) 
with exp[ -DI2] replaced by the right-hand side ofEq. 
(1.19) and e - D replaced by its absolute value squared. It is 
worth noting that a first order geometric optics calculation 
misses the second and dominant factor on the right-hand 
side ofEq. (1.19) and therefore vastly overestimates the 
range of coherence in frequency. 

It can be seen from the path integral that saturation 
corresponds to the appearance of multiple Fermat paths 
which satisfy a perturbed ray equation. The signal tends to 
propagate along these Fermat paths and because there are 
many of them, they interfere and produce Gaussian statis-
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tics. They will become manifest in an experiment with a 
pulsed source where the received signal will tend to show 
several arrivals. These multiple Fermat paths are responsible 
for the factor A in Eq. (1.19). 

With one exception these results can easily be extended 
to statistically inhomogeneous or anisotropic media and to 
media with multiple scales. The exception is that A(UJ) de­
fined in Eq. (1.19) cannot be computed for certain multiple 
scale media. Actually, the path integral yields further infor­
mation in the case of multiple scale media. It appears to be 
only partially understood3-1 that in this case there are two 
distinct saturated regimes. An examination of the path inte­
gral shows that there are indeed two, one of which (the fully 
saturated regime) is analogous to the saturated regime in 
single scale media and another one (the partially saturated 
regime) is new. Many experiments in atmospheric optics lie 
in the partially saturated regime and this case is treated in 
some detail (Sec. 8). The fundamental distinction between 
the fully and partially saturated regimes shows up in correla­
tions between waves of different frequency. In the fully satu­
rated regime the real and imaginary parts of go (UJ) are jointly 
Gaussian random variables. For partial saturation I&' (UJ) acts 
like a random phase times a Gaussian object. A consequence 
is that propagation of narrow pulses is qualitatively different 
in the two regimes. Depending on the medium there may be 
further qualitative differences between full and partial 
saturation. 

The detailed organization of the paper is as follows. 
Sections 2-6 and Appendices A and B are devoted to the 
idealized homogeneous, isotropic medium with a single scale 
size. In Sec. 2 the path integral is introduced and applied to 
the calculation of the first and second moments. Appendix A 
contains the calculation of the error in Eq. (1.14). Section 3 is 
devoted to the calculation of higher moments when a is 
small and Sec. 4 summarizes the statistics of ~ in the limit 
a = 0. Special attention is given to statistics in frequency and 
pulse propagation. The corrections to the limiting statistics 
are derived in Appendix B and discussed in Sec. 5. The ap­
pearance of multiple Fermat paths is demonstrated in Sec. 6. 
Media with multiple scales are introduced in Sec. 7 and the 
distinction between full and partial saturation is made. In 
the fully saturated case there is a simple modification of the 
results for a single scale medium (Table II). The partially 
saturated regime is more difficult. Section 8 is devoted to 
partial saturation in a medium like that encountered in at­
mospheric optics. Appendix C contains some calculations 
relevant to Sec. 8 and Appendix D discusses some other 
kinds of multiple scale media. Methods for handling inho­
mogeneous and anisotropic media are given in Sec. 9 and 
Appendices E and F. 

2. FIRST AND SECOND MOMENTS FROM THE 
PATH INTEGRAL 

Feynman6 pointed out that the solution to Eq. (1.4) 
with the boundary condition in Eq. (1.5) is given by an infi­
nite dimenisonal integral. It is defined as the limit of a finite 
dimensional integral with 2n - 2 integration variables corre-
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sponding to the Cartesian components of n - I two-dimen­
sional vectors rj= 1,2, ... ,n -1. With the convention that 
rj Ije O and rj Ij=n are the source ro and receiver r coordinates, 
Feynman's integral is 

i f(n - 1 X kn )" l5'(r,ro,t)= lim - II d'rj --.-
n '00 2k j= 1 21TlR 

{
ikR n[n'(r.-r 1)2 ]} Xexp --L - } }- -fl(rj+ ezZi't ) , 

n FI 2 R 

(2.1) 

where each component ofrj= l, ... ,n -I, is integrated over 
the range - 00 to + 00 andzj=jR/n. Infl, rj is understood to 
be a vector in the xy plane and ez is a unit vector in the z 

direction. At each point rl,r" ... ,r,,_ 1 in the integration vol­
ume, the n -I points in space (rl,zl), (r"z,), ... (r,,_I,Zn .. I) can 
be thought of as discrete points along a path r(z) connecting 
(ro,O) to (r,R) with rj=r(z), see Fig. 4. In this sense Feyn­
man's integral is an integral over paths. Associating R/n 
with a differential increment dz in range the argument of the 
exponential has a continuum limit 

ikR " [n2 (rj-rj 1)2 ] 
--;;-j~ 2 R - -fl(rj+eht ) 

-+ik i R 

[4(r'(z»2- fl (r(z)+ezZ,t) ]dz, (2.2) 

where r' dr/dz. The path integral for 'f! can then be sche­
matically written as 

)P,(r,ro,t)= _1_' fd (paths) 
2k 

(2.3) 

where the integration is over all paths connecting (ro,O) to 
(r,R ) and the volume element in path space d (paths) is the 
coefficient of the exponential in Eq. (2.1). 

We will be computing averages of products of path inte­
grals and the following formula will be needed. Let r nCz), 
n = 1,2,,,, be some set of paths and 5" = + 1 corresponding 
phases. Then if either fl is a Gaussian random field or 
kL<Jt'yl2~ I and its statistics are arbitrary, it is well 
knownl-6 that 

FIG. 4. A path in the path integral for n = 6. 
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(2.4) 

As a first application of the path integral we can com­
pute <if). This will not turn out to be a particularly interest­
ing quantity but the calculation is simple and it will show 
how path integrals work and where the Markov approxima­
tion comes in. Bringing the average inside the path integral 
and using Eq. (2.4) yields 

i':' = _1_ d (paths) exp:"- (r')2dz--. f ('kIR k' 
2k 2 0 2 

X i R 

lRp([ (r(z) - r(z'»2 + (Z_Z')2] 112,0) dzdZ) 

(2.5) 

The Markov approximation now appears as follows. The 
parabolic wave equation assumes that the normals to the 
wave fronts point in directions that are close to the z axis. In 
terms of the path integral this means that for the important 
paths 1 r' 1=1 dr/dz 1 must be small. It then follows that for 
important paths (r(z)-r(z,»2+(z-z,)2;::; Iz-z'1 2 and Eq. 
(2.5) becomes 

i (k' iRiR ) <'f!)= -exp - - p(lz-z'I,O)dzdz' 
2k 2 a 0 

x f d (paths) exp(i; i R 

(r')'dz). (2.6) 

The remaining path integral is just the path integral for ~. ° 
and for R>L the double integral over p can be replaced by 
Rp(O,O). The final result is then 

<i5')=i5'oexp[-44>2]. (2.7) 

This is the usual formula obtained in the Markov approxi­
mation.3-5 What we have seen here is that this approximation 
has a very natural interpretation in terms of the path integral 
and that it is valid as long as the parabolic wave equation is 
valid. 

Since 4>' is large in the saturated region <i5') is exponen­
tially small and therefore not particularly interesting. The 
same is true for <i5' i5') and its complex conjugate <i5'* i5'*). 
The path integral for < i5' i5') will be a double path integral 
over two paths fl(Z) and f,(Z) and will contain a factor 

( 
k' fR fR 

exp -2Jo Jo {p([(r,(z)_f,(Z,»2+(z_z,)2]1I2,0) 

+p( [(r,(z) - r2(z,» 2 + (z -z' )2]112,0) 
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(2.8) 

where t is the time difference between the two t"s in the 
average. This factor is of order exp[ - <P'] in all important 
regions of path space and < W W) is exponentially small. 

A more interesting quantity is <W*(2)W(1» where 
W(l) is a shorthand notation for W(rl,rohtl) and W*(2) for 
3' *(r"ro"I,). The formula for this object is 

1 f (ikIR, 2 '2 ) -- d 2(paths)exp - [(r 1(z» -(r2(z» ) dz-V , 
4k 2 2 0 

(2.9) 

where the path integral is a "double path integral" over two 
paths rl(z) and rlz) connecting (ro"O) to (rl,R ) and (ro"O) to 
(r"R ), respectively and 

V=~ (R (R {PC[ (rl(z)-r l(z,»2+ (Z-Z')2) 112,0) 
2 Jo Jo 

- 2pC [ (rtCz) - r,(z'» 2 + (z -z' )2)112,11 -I,)} dzdz'. 

(2.10) 

There is now a region in path space where the integrand is 
not exponentially small. It is rl(z):::; r,(z) and almost all of the 
path integral will come from this region. As before, 
(rl(z) -rl(z'»)2 and (r,(z) - r,(z'»' can be neglected relative to 
(z-z')' and in the same spirit [(rl(z)-r,(z'»'+(z' _Z)']112 
can be approximated by [(rtCi)-r,(Z)'+(z' _Z)']II2, where 
z=~(z+z'). Then for R>L the integral over z-z' can be 
done and 

V= lRd (Irl(z)-r,(z)I,II-I,)dz, (2.11) 

where 

d ( I r I ,t ) = k '[p(O,O) - p( I r I ,f»). (2.12) 

At this point it is convenient to change variables to paths u(z) 
and v(z), 

u(z) = ~(rl(z)+r2(z» - ~(rl +r,) ~ -~(rol +ro,)( 1- ~). 

(2,13) 

v(z)=rl(z)-r,(z), 

which satisfy the end point conditions u(O)=u(R )=0 and 
v(O)=(rOI-rO')' vCR )=(rl-r,). From the finite form of the 
path integral in Eq. (2.1) it is clear that this change of vari­
ables is allowed and that the associated Jacobian is equal to 
unity. After integrating the first term in the exponential by 
parts and using the end point conditions, the path integral 
for <W*(2)W(I» becomes 
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xexp [ -ik lR u(z)·v"(z)dz 

(2.14) 

where 1=11-1,. In analogy with the formula 

_ e;XYdy=D(x), 1 f'" 
2rr -- oc 

(2.15) 

the integral over the path u in Eq. (2.14) will produce a "15 
functional" which forces V" to vanish identically. 16 With the 
end point conditions given above v(z) must then be 

v(z)=(rl-r2)~ +(rol -r02)(I- ~). (2.16) 

In d the path v can then be replaced by the right -hand side of 
Eq, (2,16) and the factor containing d then becomes just 
exp[ -!D]. The remaining path integral is equal to 
(2rrRlk >-2 and the result l) reproduces Eq. (.14), 

<~*(2)i5";(1» =exp[-lD(l,2»), (1.14') 
W ;(2) i§' 0(1) 2 

where D (1,2) is a shorthand notation for 
D (rl -r"rol -r02,/1-I,). 

Appendix A contains an explicit calculation of the first 
correction to the Markov approximation for <~*(2)W(1». 
It is shown to be proportional to the rms multiple scattering 
angle «P')RIL)! which must be small if the parabolic wave 
equation is valid. Henceforth, all calculations will be done in 
this Markov approximation. The general prescription is that 
whenever pC[ (r;(z)-r/z'»2+ (Z-Z,)2) ,1;-1) appears, it is 
to be replaced by 

D(Z-Z')p(/r{ z:z' )-rj ( z:z' )/,I;-Ij ). 

Turning now to the calculation of <W*(w')W(w», the 
path integral for this quantity will contain [with k = k (w) 
and k' =k (w')] 

(exp [ -ik LR

/L(U(r 1(z)+ezZ)dz+ik' 

X lR/L,u' (r,(z) + ezZ)dz]), 

(2.17) 

where the time dependence of /L has been suppressed and the 
subscript indicates that for a dispersive medium /L can de­
pend on w. Let us first compute this average in the absence of 
dispersion. When/L,u is independent of w it is, in the Markov 
approximation 

exp( -1(k - k 'fRp(O,O) - kk' 

X lR [p(O,O) - pC I rl(z) - r,(z) 1,0) )dz). (2.18) 

For paths which make a significant contribution to the path 
integral, the second term in the argument of the exponential 
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must be of order unity or less. In this term one can therefore 
approximate kk' by k' where k=!(k+k'). Generalizing to 
dispersive media, one finds that in the same approximation 
the result isjust Eq. (2.18) with Rp(O,O) replaced by (C./Wg)2, 
where (vI( was defined in Eq. (1.20). The path integral will 
also contain a factor 

(2.19) 

which can be simplified by making an orthogonal transfor­
mation to paths u and v defined by 

fl(Z)= u(z)- k'v(z) , f
2
(Z) = u(z)- kv(z). (2.20) 

k-k' k-k' 

After making this transformation the path integral factors 
into a product of integrals over u and v. Upon dividing by 
if;(cv')f,',,(w) the integral over u cancels and the final result 
is, for I {v -{v' I small compared to w = !(w +w'), 

-'..< .(,_/ *---'.( w_'_) b.J---'.( ~_v )-'-) _ [ 1 (W - w' ) 
2
]A ( ') -- -exp - - --- W-W , 

(,)~«(v')f§'o({v) 2 Wg 

(2.21) 

where 

xexp(- k
2 

(R (V'(Z»2dZ). 
2(k-k') Jo (2.22) 

In the saturated region where cJ> is large, I v(z) I will be very 
small for the important paths and the expansion 

p(O,O) - p ( I v(x) I ,0) :::::; !P(O,O)( V~) Y (2.23) 

can be used. The path integral for A is then 

A(w--{v')= fd(pathS) exp( 
2(k-k') 

/
I(d(paths) exp[- ik' (R (V'(Z»2dz ). 
J 2(k-k') Jo 

(2.24) 

This type of path integral was evaluated by Feynman and 
setting k -k' = (w -w')/c~,' it is equal to 

( 
W_W')112 ( w_w')I!2 A(w-w') 6i-- /sin 6i-- , 

w cfX w oa 
(2.25) 

wherewo-
2 =Rp(0,0)/c:anda = 6(L 4/R 3,0(0,0» 1I2=fl/cJ>. 
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Combining Eqs. (2.21) and (2.25) yields Eq. (1.19). Some 
features of these correlations in w were mentioned in the 
Introduction. We will return to their interpretation in Sec. 6. 

Except for the explicit verification of the validity of the 
Markov approximation, the above results could be obtained 
by more familiar techniques which do not employ the path 
integral. The power of the path integral will become appar­
ent in the next section when higher order moments are com­
puted. They are extremely difficult to treat by the usual 
techniques. 

3. HIGHER MOMENTS FOR SMALL Ct 

When cJ> is large, the average of any path integral will be 
exponentially small unless there is a region of path space 
where each path associated with an ~) is close to a path asso­
ciated with an (,'*. Such a region does not exist for <~) or 
<t:') and we have already seen that they are exponentially 
small. More generally, any moment with an unequal number 
of ~"s and ~)*'s will be vanishingly small. 

Beyond < W *(2)~' (1» the first nontrivial object is 
<W*(4)W(3)W*(2)W(1». It is given by the quadruple path 
integral over four paths fl(Z), .. ·f.(Z), 

< i'5 *(4)if(3)W*(2)W(1» 

f ( 'k 4 

= (2k) 4 d 4(paths) exp - Tj~/ - I Y 

(3.1) 

where 

(3.2) 

There are two regions of path space where M is of order unity 
or smaller. They are: (a) I fl(Z)-f,(Z) I <L/cJ>, 
I f 3(Z)-f.(2) I <L/cJ>, with the distance between pairs of 
paths arbitrary and (b) I fl(Z) - f4(Z) 1< L/cJ>, 
I fJ(Z)-f'(Z) I < L/cJ> again with the distance between pairs of 
paths arbitrary. In region (a) where I rl(z) - fb) I is of order 
L/cJ>, the oscillating factor 

expC~ lR [(f'I (Z»2- (f~(z»21dZ) 

~exp[ - i~ lR (rl(Z)-f,(Z»'(f';(z)+r~(z»dz] (3.3) 

in the path integral will restrict I r';(z) + f~(Z) I to be of order 
2cJ>/(kLR). For a typical path I r/z)+f2(Z) I will then be 
roughly 

1 (R)2" " cJ>R - - I f 1(Z)+fz{Z) I ~ -. 
32 . 6kL 

The centroid of the other path f 3(Z)+f4(Z) will be restrained 
in a similar way. It follows that most paths will be such that 
the ratio of the distance between the pairs to the scale length 
L is roughly cJ>R/(6kL 2) =a- I

, where a is the parameter de-
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fined in the Introduction. For small a the pairs are separated 
by many times L and therefore are uncorrelated. In region 
(a) M then reduces to 

M::::: i
R 
d C I rl(z)- r,(z) I ,11 -I,)dz 

(3.4) 

and in region (b) it becomes 

M::::: iRd C Ir1(z)-r2(z) I ,IJ -(2 )dz 

+ (R d C I rl(z) - r.(z) I ,t l - t. )dz. 
Jo 

(3.5) 

Thus in each of the two important regions of path space, the 
quadruple path integral factors into the product of two dou­
ble path integrals, each of which is precisely the integral 
encountered in the calculation of <1f*1f). The result is that 

< IS" *(4)15~ (3)W*(2)W(1 »:::::<W*( 4)1f(3» <g:'*(2)1f(1» 
+ < 1#'*(2) g'(3» < g:'*(4)g'(1», 

(3.6) 

where the two terms come from the two regions (a) and (b). 

In Appendix B the error in Eq. (2.6) is obtained by com­
puting the first correction. It is of order a and will be dis­
cussed in detail in Sec. 6. 

Generalizing to an arbitrary moment is easy. The gen­
eral non vanishing moment is 

and can be written as an integral over 2n paths riz) and r;(z). 
There will now be n! important regions of path space corre­
sponding to the number of ways paths riz) can be paired 
with the paths r;(z). In each ofthese regions the 2n-tuple path 
integral can be approximated by a product of n double path 
integrals. Some simple combinatorics shows that the result 
will be as follows. Let Tbe a permutation of the indices i. For 
example, if n = 3 and the permutation is (1,2,3)-(3,1,2), 
then T = 3, 2 = 1, and 3 = 2 or if the permutation is 
(1,2,3)-+(2,1,3), then T =2,2= 1 and 3=3. With this 
notation 

(VI g:'*(j),g g:'(i»)::::: p~s JI (1f*{J)If(i), (3.7) 

where the sum is over all n! possible permutations of the 
indices i. 

The same result holds for correlations in frequency. Ex­
tending the notation If (J) to include a frequency label Wj we 
have 

< g'*(j) If (i» [ 1 (W.-W )2] 
g'~(j)lfo(i) =exp -!D(ij)- 2 ~ A (w;-w), 

(3.8) 
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which holds in the saturated region where only small values 
of wi-wp I r i - rj I, etc., are interesting. The same construc­
tion that led to Eq. (3.7) for equal frequencies then shows 
that it holds for unequal frequencies as well. 

The interpretation of Eq. (3.7) will be given in the next 
section. A final remark here is that the arguments leading to 
Eq. (3.7) do not depend on the validity of the Markov ap­
proximation. The latter is needed only when <1f*(1)1f(2» is 
explicitly evaluated. 

4. THE STATISTICS OF ~ IN THE LIMIT a=O 

The moments of Eq. (3.7) correspond to a complex 
Gaussian distribution. The probability that 1f(j)lWo(j) will 
be equal to rJj forj= l, ... ,n is then 

(4.1) 

where the n by n matrix M is 

M= <If*(i)g'(j» =ex [_lD(i ') 
jI If ~(i) g:' o(j) P 2 J 

1 (W - W ,)2] - 2 ~ A (Wj - W). (4.2) 

Equation (1.10) corresponds to the special case n = 1 and Eq. 
(1.18) is obtained by dividing P,(rJ,rJ') by PI(rJ). The measure 
is d 'rJ=d {lmrJ)d (RerJ). 

In principle, Eqs. (4.1) and (4.2) determine all the statis­
tical properties of If. For example, it follows from Gaussian 
statistics that for g' (j) =A (j)e i

¢ (;) the correlations of ampli­
tude and rate of phase ¢=dr/Jldt are" 

<A(I)A(2» =ECIM12 I) -!Cl-IM,,1 2 )K(IM
12

I). 
<1) 

(4.3) 

where E and K are the complete elliptic integrals ofthe first 
and second kinds and 

<<j?(1)<j?(2» = - jj (1,2) In( 1-IM"I) 
4 

(4.4) 

where in the second line in the expansion of D in Eq. (1.17) 
has been used. Equation (4.4) can be extended to the deriva­
tives of f{J with respect to rand ro in the obvious way. Intensi­
ty correlations 1 (j) = I A (j) 12 are simpler with 

</(1)1(2»=<1)'+1 <1f*(1)1f(2» I'. (4.5) 

The appearance of Gaussian statistics in frequency is 
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somewhat unfamiliar. To see what it implies, let us compare 
the saturated regime to a simpler unsaturated one. When 
simple first order geometric optics applies and the medium is 
nondispersive, ?S (w) is equal to W o(w )ei"';, where; is a fluc­
tuating time shift independent of w. Under such propagation 
conditions, the statistics in (u are essentially trivial. The enve­
lope IS' (w) fluctuates but does so in such a way that at a fixed 
time when; has a definite value a knowledge of 'f! at one 
value of w determines W for all w. Another way to say the 
same thing is that a pulse will be subjected to a random time 
shift but will not be distorted in shape. For propagation in 
the saturated regime the statistics of W (w) are nontrivial and 
things are completely different. At one fixed time a knowl­
edge of IS' (w) at one w yields only statistical information 
about!' at nearby frequencies. Correspondingly, the medi­
um will distort a pulse in a way that is predictable only statis­
tically. A peculiarity is that <1S'*(w'):5'(cv» and has a phase 
corresponding to an average retardation. 

The above remarks about I&'(w) are most easily made 
quantitative in terms of pulse propagation. It is worth going 
into this in some detail both because the physics is intetesting 
and because it will connect with the Fermat paths of Sec. 6. 
For simplicity the unperturbed medium will be assumed to 
be nondispersive with w=ck. Let the transmitted signal be 
fo(T)=Je ''''1oCw)dw where!o( -w)=l~(w). Taking the un­
perturbed arrival time as the origin, the received signal will 
then be/r(T)=Je i"'TW({U)!o(w)dw. The signal/reT) is a 
Gaussian random variable whose complete statistics are de­
termined by the covariance of!ot?'. Assumingl9 that vari­
ations in rS o({V )f,«(v) over a frequency corresponding to the 
width of <f,'*( -~w)f,(~w» can be neglected, this co­
varIance IS 

<J~({V')f/*(o/)f,(w)'fi(w»= 11,( ~(w+w'» 12A (w-w'), 

(4.6) 

with 

(. W)i . (. cv)l A({v)= /- Ism /- , 
{VI (VI 

where the small a limit of Eq. (1.19) has been used and 
{v, =(voaI6=c/-- 21R 2p(0,O). 

Denoting the received intensity /;(T) by f(T), the aver­
age (I( T» is a measure of the distribution of energy over 
arrival times. According to Eq. (4.6) it is 

and vanishes for T < 0 because the integrand is analytic in the 
upper-half plane. Evidently, all the energy comes in after the 
unperturbed arrival time and is confined to a region 
O:S T:S (W,1T')-'. The net retardation is consistent with what 
was said above about the phase of <iif*(w')iif(w». The com-
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plete absence of energy for T < 0 is peculiar to the limit of 
small a and will later be seen to have a simple physical inter­
pretation (see Sec. 6). 

For a sharp transmitted pulse the distribution of energy 
over arrival times can be thought of as being due to two 
effects. One is the wander in arrival time of the center of the 
pulse and the other is spreading of the pulse around its cen­
ter. The two effects are in principle distinct. For the simple 
case of propagation in an unsaturated regime where 
~'({v) = e"";, the wander is of order <;')'12 while the spread is 
just the width of the transmitted pulse. As we will now see, in 
the saturated regime the spread and wander are roughly 
equal. The width of <f(T» measures the sum of spread and 
wander. A quantity which measures the spreading, indepen­
dent of wander, is 

(F"oc f(r+T')f(T')dr) 

(F"w (f(T'»dT'Y 

(4.8) P(T)= 

Whenf,iif has a Gaussian distribution P(T) is 

where 

(f" ",fo( T + T')fo( T')dr' ) 
2 

(fC

/ 6(T')dT,)2 

(4.10) 

The two terms in P(T) have the same height at T=O. The 
spike proportional to poeT) falls rapidly leaving the second 
term whose width is a measure of the spread. Comparing 
with Eq. (4.7) one sees that 

1 oc . r"", <f(T+ T'»(f (T'»dr' -f e- liuT IA (w) I 2dw= ---------:---

21T -- 00 (F"w <f(T'»dT'Y 

(4.11) 

and it is clear that the spread and wander are essentially the 
same. A physical interpretation ofthe two pieces of P (T) will 
be given in Sec. 5. Finally, a useful formula is 

\A(w)1
2

= 1:,I/(sin'(2:J/2 +sinh'(;:J12). (4.12) 

It is interesting to ask why it is that the square of the 
autocorrelation offo rather than the autocorrelation of/6 
appears in Po. The answer is that when!o(w)iif(w) has a 
Gaussian distribution, the medium cannot transmit any in­
formation that is not contained in the coherence <J; 
(w')W * (w')fo(w) I&'(w»_ As given by Eq. (4.6) this coherence 
depends only on IICw) I' and the medium can only transmit 
information about the autocorrelation off 

The statistics of the signal as a function of spatial wave 
numbers can be analyzed in a similar way. Multiplying 
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g='(f,fo,t) by a suitable function of fo and integrating over ro 
one can represent a boundary condition at z=o correspond­
ing to, say, a plane wave emerging from a finite aperture. For 
such a signal, the Fourier transform 

~ 0(1) = -I-fe - ir.lg=' o(r)d 'r (4.13) 
(217') 2 

will be sharply peaked around some 1=10, With the corre­
spondences t---->-I,UJ--+r one can proceed as above and discuss 
spread and wander in I. Again the medium can only transmit 
information contained in <g='*(r)g='(r'» which will typically 

depend only on / g='o(l(f+r'» /2. 

5. CORRECTION TO THE a=O LIMIT 
The leading corrections to the a=O limit are computed 

in Appendix B. The main results are as follows. 

The order a correction to <I n) is dominated by fluctu­
ations near the transmitter and receiver. This is not unex­
pected since near their end points the paths cannot be sepa­
rated into un correlated pairs. Explicitly <1 n) is 

<1 ")=n!<I)"[ 1 + !n(n - l)aC + 0 (a')], (5.1) 

where 

C = 
(317')1 L L" qf)(q,O)dq 

(5.2) 
4 (00 Jo qp(q,O)dq 

and p is the three-dimensional Fourier transform of p 

417' 100 

-p(/x/,t)=- qsin(q/xl)p(q,t)dq. (5.3) 
lx/ 0 

The consequences of the fact that the error grows with n 
were noted in the Introduction. Note that the correction to 
<1") is positive. This means that the intensity fluctuations 
overshoot (i.e., become larger than Rayleigh) near the 
boundaries of the saturated regime. 

The correction to a general correlation can also be com­
puted. They are always fractionally small. For example, 
< g='*(2)g='*(2)g='(l)g='(l» is proportional to e- D

(1.2) in the 
a =0 limit and the correction to it is of order ae- D

(I.2). The 
corrections to intensity correlations are the most interesting. 
In the a=O limit <1 (t l)1 (t,» is equal to 
<1)'(1 +exp[ -D(t,-t,)]J. At t,=t, the order a correction 
is given by Eq. (5. I). However, at large / t, - t,/, <I (t l )1 (t,» 
must approach <I)' and the corrections must go to zero. It 
turns out that half the correction dies like exp[ - D (t, - t,)] 
but the other half falls much more slowly, leading to a coher­
ence tail. (Note that this is consistent with what was said 
above about the corrections always being fractionally small.) 
For the general intensity correlation the coherence tail4 is 

<1 (r"fobt,)1 (f"fo"t,» 

=<1/[ I +e- D (I.2)+(aY31T/8)L 

1"0 q'p(q,tl-t,)[Jo( / fl-f,/ q) 
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(5.4) 

where Jo is a Bessel function and specializing to r l = r, and 
rOI = ro, produces 

<I (tJ1 (t,» 

= <1)2 [ l+exp[ -D(tl-t,)] 

+ a y3; L foq'P~q,tl - t,)dq ]. 

4 foqp(q,O)dq 
(5.5) 

Equation (5.1) is not reproduced at t, =t, because a term of 
order ae- D (I.2) has been dropped from both Eqs. (5.4) and 
(5.5). 

6. FERMAT PATHS 

There is an interesting connection between averages of 
the path integral and averages over Fermat paths which sat­
isfy the perturbed ray equation 

r"(z) + V'/l(f(Z) + e"z) =0, (6.1) 

where V' = (olox,oloy). This will be illustrated for the spe­
cial case of sources and receivers located at r=ro=O so that 
g=' is a function only of time. The path integral for 
<g='*(t )g='(0» is 

<g='*(t )g='(0»= 1_I_fd '(paths) 
\ 4k 2 

In the the saturated region we know that for 

(6.2) 

<g='*(t )g='(0» to be nonvanishing, t must be small and that 
only paths for which / fl(z)-r,(z) I is small (-Llct» contrib­
ute. Changing variables to w(Z)=!(fl(z)+r,(z» and 
v(z)=rl(z)-f,(Z), the path integral can then be approximat­
ed by 

<g='*(t )g='(0» 

= (4! 2 f d'(paths) exp( - ik lR {V(z)-[ w"(z) 

+ V'/l[w(z) + ezz,o]] - tJl(w(z) + ezz,O) }dz)), 

(6.3) 
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where the first term in the argument of the exponential has 
been integrated by parts and a dot indicates differentiation 
with respect to time. The integration over the path v(z) pro­
duces a "fJ functional" which forces w" + 'il f.1 to vanish for all 
z. Thus the integral over w(z) is restricted to paths which 
satisfy the ray equation (6.1). This is a general feature of the 
saturated region. Higher order correlations are dominated 
by configurations where paths rj(z) and rF(z) are pairwise 
close. A similar analysis shows that for each such pair, the 
path w/z)=![r,(z)+rj'(z)] satisfies Eq. (6.1). 

Equation (6.3) can be further analyzed. For most media 
jL and f.1 are satistically independent. The average, < ), can 
then be thought of as two independent averages < )/1 and 
( )/1 over f.1 and jL. The fJ function of w" + 'il f.1 that is pro­
duced by the integration over v is effected only by the aver­
age < )/1' while the phase exp(iktfJi] is effected only by the 
other average ( )/1' It is therefore possible to write 
< (; *(t )(;(0» as the integral over paths w of a f.1-averaged {j 
functional which can be interpreted as the probability that a 
given path w will satisfy Eq. (6.1) times a phase which is to be 
averaged over jL. To do this correctly, it is necessary to go 
back to the definition of the path integral in Eq. (2.1). The 
integration variables v (.; and w k' k = 1 ,2, ... ,n are then discrete 
and the mathematics is straightforward. The integration 
over the v's can be done trivially and after some manipula­
tion, one finds 

<f,'*(t )?S'(o» = f d (paths)'P(path) 

where the integration d (paths)' is over paths w(z) with a 
modified volume element 

1 (II X n )211 d (paths)' = --, II d 'Wj - , 
(41T) j~ I R 

(6.5) 

which does not contain k and 

(6.6) 

is the probability that w will satisfy the finite difference 
approximation 

n' 
R>(Wj + I +wj _ 1 -2w) + 'ilfl(Wj+e"zi'0) =0 (6.7) 

to the ray equation. In the limit n-+ 00 , P (path) is the prob­
ability [with a measured (paths)'] that W will satisfy Eq. (6.1). 
Equation (6.4) shows explicitly that <15'*(t )15'(0» is a sum 
over Fermat paths with fluctuating phases ktfJi. Finally, 
bringing the average of jL inside the exponential yields 
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<1S"*(t )15'(0»= f d (paths)'P (path) 

xexp [ -:'t'((lRJi(w(z)+e"z,O)dzY)J. (6.8) 

In the Markov approximation where w(z) is neglected rela­
tive to e"z in the average of jL, Eq. (6.8) becomes 

(?S'*(t )15'(o»=exp [ -!tP ,( ~YJf d (paths)'P(path) 

which is the standard result. 

This provides a new way to look at the Markov approxi­
mation. It requires that an average like 
< (f~Ji (w(z) + e"z,O)dz) 2) along a path which satisfies the 
perturbed ray equation (6.1) should be well approximated by 
the corresponding average <(f~Ji(e"z,0)dz)2) along the un­
perturbed ray. Fora homogeneous and isotropic medium, this 
will be the case as long as the rms multiple scattering angle 
( (f.1')RI L ) ~ is small. 

According to Eq. (6.8), <f,'*(t )t'(O»can in principle be 
computed by a geometric optics method which searches out 
the rays which satisfy the perturbed ray equation. Geometric 
optics corresponds to an approximate evaluation of the path 
integral by the method of stationary phase. 6 In the saturated 
region the stationary phase approximation will in fact be 
valid since for tP> 1 the phase kf~f.1dz is necessarily large. 
To get Gaussian statistics for 'l!, it is necessary that there be 
several rays connecting a given source and receiver. In path 
integral language this means that there will be multiple sta­

tionary phase points and 15' will be a discrete sum };~kejtf' 
over contributions, one from each stationary phase point or 
ray. The phases IPk and amplitudesA k as well as the number 
of rays will fluctuate with fl yielding Gaussian statistics for 
t'. 

It is difficult to prove rigorously that there are always 
multiple rays in the saturated regime. However there is a 
simple construction which shows the essential physics. At 
one fixed time the rays are stationary points of the path 
length S defined by 

S=k lR [!(r'(z»2 -f.1 (r(z)+ e"z) ]dz. (6.10) 

Let S (r) be S evaluated for the special paths that go in a 
straight line from the source at (0,0) to an arbitrary point 
(r ,zo) with 0 < Zo < R and then follow another straight line 
from (r,zo) to the receiver at (O,R ). Multiple stationary points 
of S (r) as a function ofr will be indicative of multiple station­
ary points of the complete functional in Eq. (6.10) and the 
spacing of such points in r will be similar to the spacing 
between multiple rays. Now doing a simple integral shows 
that S (r) can be written as 

S(r)=!(r)'B-S,(r), (6.11) 
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where B=kRlzo(R -zo) and SI is kf.l integrated along the 
above mentioned path. To simplify S (r), B -I can be replaced 
by its average value RI(6K). Then defining r=Lu and 
SI(r) = <Pf(u) the quantity to be studied is 

(6.12) 

and we are interested in its stationary points which satisfy 

(6.13) 

By constructionfis a random function of order unity which 
changes by order one when its argument changes by order 
one; i.e., I Vfl-l and Vfchanges sign roughly each unit in u. 
For fl><P the first term in Eq. (6.13) dominates and there 
will be a single solution near u=O. This is the unsaturated 
regime. In the saturated regime, <P>fl, the random charac­
ter off guarantees that there will generally be many solu­
tions, spaced by about one unit in u (a distance I in r) and 
filling up the interval ° < I u I < <Plfl (0 < I r I < <PL In). To 
find the other boundary of the saturated regime, <P> 1, we 
have to ask when the multiple rays are physically meaning­
ful. From their interpretation as stationary phase points of 
the path integral it can be verified that two rays will be phys­
ically distinct if S varies by a quarter cycle, i.e., order unity 
between the two. The variation in S between two solutions of 
Eq. (6.13) will be roughly <P and if they are to represent 
physically distinct rays <P must be greater than unity. 

An experiment with a pulsed source will tend to see 
several arrivals corresponding to the multiple Fermat paths. 
This random multipathing is the origin of the rapid falloff of 
frequency coherence which takes place in the saturated re­
gime. To see how the orders of magnitude work, the differ­
ence in travel time between the ray nearest u=O and the 
furthest one out at 1 u I-<Plfl is 
to=W-I(<p 2!2fl+<P ):::::<P 2/(2flw) where the two terms come 
from the two terms in Eq. (6.12) and it has been assumed that 
<P>fl. Frequencies which differ by more than to-I will then be 
incoherent in agreement with Eqs. (1.19) and (1.21). Note 
that to is positive. This is why in the limit a = ° all the energy 
arrives after the unperturbed arrival time and <f(r» van­
ishes for r < 0. Also the two terms in P (r) (Sec. 4) can easily 
be interpreted in terms of fluctuating multipath. The spike 
poe r) is the autocorrelation of each arrival with itself and the 
broad second term is the autocorrelation of different arri­
vals. Finally a word of caution. The above construction vast­
ly underestimates the number of rays. In reality the number 
of rays is probably an exponential of <Plfl rather than <Plfl 
as the construction would imply. It may be extremely diffi­
cult to actually resolve the arrivals. 

It is interesting to consider the transition into the satu­
rated regime in terms of propagation of a pulse. Consider 
first crossing the line <P=fl from the region where both <P 
and fl are large but fl < <P. With <P and fllarge but well 
outside the saturated region, one knows from the Rytov ap­
proximation that the receiver will see a single arrival with a 
considerable wander in time of arrival. At the boundary of 
the saturated region the pulse will begin to split into several 
arrivals and welJ inside the saturated region there will be 
many arrivals that are spread out over a time long compared 
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to the original wander in the single pulse. Crossing the 
boundary <P= 1 from the region where both <P and fl are 
small is rather different. In this case one knows that well 
outside the saturated region, there will be a single arrival 
with no discernible wander in time of arrival accompanied 
by a small scattered wave spread over a continuum of arrival 
times. As the boundary of the saturated region is ap­
proached, the single peak will shrink and the scattered wave 
will grow in amplitude. Well inside the saturated region, the 
original peak will have disappeared completely and the now 
large scattered wave will have broken up into a number of 
discrete arrivals. 

7. MEDIA WITH MULTIPLE SCALES 

So far it has been assumed that the fluctuations in f.l can 
be characterized by a single scale size L. Technically, this 
requires that the expansion of p, 

k2RP(r I O)=<p 2(1-~ +a~ + ... ) (7.1) 
, 2L 2 4L 4 

through order r4 exists and that the coefficient a is of order 
unity. There are cases of practical importance where this is 
not true. For example, optical index of refraction fluctu­
ations induced by Kolomogorov turbulence have the proper­
ty that the (three-dimensional) Fourier transform p(q) of p 
behaves like 1 q 1-1I1l over a long interval in q and the expan­
sion in Eq. (7.1) makes sense only when the cutoff (inner 
scale) is taken into account and then a is very large. This and 
the following section are devoted to these media with multi­
ple scales. It will be assumed that p(q) goes like 1 q 1- 2 - P for 
large q where 4 > p > 1. (If p is greater than four, the medium 
acts like one with a single scale size and for p < 1 it is so 
singular that (P2) does not exist.) In practice there is always 
some physical cutoff at large q (inner scale). However, the 
effects of such a cutoff will be ignored in what follows. 

For p > 2, the length parameter L will be defined by Eq. 
(1.13) as before and in the case p < 2, L will be defined by 

p( Irl ,0) =p(O,o) [ 1-+ I ~ n (7.2) 

for small I r I. For Kolomogorov turbulence,p is equal to 

and p(O,O) and L are related to Tatarskii's Cn by 2.91C ~ 
=p(O,O)L -SIl. The parameters <P and fl continue to be de­
fined by Eqs. (1.6) and (1.7). 

The main qualitative difference between propagation in 
single and multiple scale media is that in the latter case there 
is more than one saturated regime. In terms of the Fermat 
paths of the last section, it turns out that in a multiple scale 
medium the smaller scale inhomogeneities can make multi­
ple Fermat paths before the large ones do. This leads to a new 
kind of saturated regime. Even in a single scale medium with 
p> 4 the line <P = fl is not a sharp boundary. In reality there 
is a transition zone where random focusing along single Fer­
mat paths produces intensity fluctuations bigger than Ray­
leigh. Asp decreases below four this transition zone opens up 
and becomes a new saturated regime. The boundaries of this 
new regime can be found by studying the object 
1fl (U)2 - <Pf(u) of Eq. (6.12). 
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To see when the smaller scales can make multiple Fer­
mat paths, imagine throwing out all scale sizes larger than 
AL where 1 > A> O. The new scale length will be AL and <P 
and fl will be replaced by A p12<p and A 'fl. The combination 
<Plfl becomes A (p 4l12<Plfl and is equal to unity when 
A = (<Plfl f/(4- pl. Thus if p < 4 the small scales can make 
multiple Fermat paths when <P < fl, i.e., before the large 
ones do at <P=fl. However, if these mUltiple paths are to be 
physically meaningful A p12<p must be greater than unity and 
the smallest permissible value of A is <P -2IP. Putting every­
thing together, the small scales can make meaningful Fermat 
paths when <P 4/Pfl > 1. This is one boundary of the new satu­
rated regime. To find the other boundary, we need to ask 
when the multiple Fermat paths can be separated by L. For a 
given A the minima of !A 2flu' -A pI2<p/(U) extend out to a 
maximum I U [which is the largest value ofl U I for which the 
equation A 'flU-A p/2<PV/(u) can be solved. The maximum 
I u I is (<PI fl ),.1. (I' 4)12 and noting that u is distance in units of 
AL one sees that the Fermat paths can be separated by L 
when (<Plfl)A (I' 2)/2= 1. For p > 2 the most separated 
paths are due to large scales with A = 1 and the other bound­
ary of the new region is <P=fl. However, if p < 2 the smaller 
scales produce the largest separation and taking the smallest 
permissible value <P -2/p for A one sees that there can be 
Fermat paths separated by L when <P 2/p Ifl > 1. The regime 
where there are meaningful multiple Fermat paths all lying 
within L of each other will be called the partially saturated 
regime. The regime where the spacing between Fermat paths 
can be greater than L is analagous to the saturated regime of 
the single scale case and will be called the/ully saturated 
regime. The boundaries of these regimes are summarized in 
Table I. 

Although these boundaries have been obtained with a 
hueristic Fermat path argument they are in agreement with 
what one finds from more precise calculations. It is known 
that outside the saturated regimes the intensity fluctuations 
«! 2) _ </)2)1 </)2 are small, implying both the validity of the 
Rytov approximation and the absence of saturation. Inside 
the saturated regimes (as given by Table I) the intensity fluc­
tuations as computed in the Rytov approximation are large, 
signaling the onset of saturation. The line between the fully 
and partially saturated regimes corresponds to the place 
where two pairs of paths, in the sense of Sec. 3, can be sepa­
rated by more than L. When they are separated by more than 
L the pairs of paths are completely independent (full satura­
tion) and Gaussian statistics for 'l! follows immediately. If 
all pairs are within L of each other (partial saturation) then 
one expects that at least some statistics will not be Gaussian. 

Nothing that was done in Sec. 2 or Appendix A depend-

T ABLE I. Boundaries of the saturated regimes. 

Partially Saturated Regime 

ed in any essential way on the assumption of a single scale. 
The reader can verify that Eq. (1.14) for <W*(2)~(1» at 
equal frequencies continues to hold whenever the parabolic 
wave equation is valid. The only subtle point is that for p < 2 
the rms scattering angle is not well defined and, correspond­
ingly, in Appendix A, Eq. (A6) cannot be approximated by 
Eq. (A9). However, a rather straightforward analysis of Eq. 
(A6) shows that the fractional error in Eq. (1.14) is of order 
D (k '1,0) and it is known thatD (k 0

1,0) < 1 is the validity con­
dition for the parabolic wave equation when p < 2. Turning 
to coherences in frequency, there is however a significant 
defect in the theory if p < 2. When p is less than 2, the path 
integral in Eq. (2.22) cannot be approximated by that in Eq. 
(2.24) and A must be understood as a/unction defined by Eq. 
(2.22) whose evaluation would require a numerical 
calculation. 

In the fully saturated regime where pairs of paths can be 
separated by L or greater, the arguments of Sec. 3 proceed as 
before. One readily verifies that in the fully saturated regime 
the statistics of Ware Gaussian and the discussion of Sec. 4 
applies [except Eq. (4.7) which assumes Eq. (1.21) for A). 
Equations (B 12) and (B 17) of Appendix B holds in the multi­
ple scale case. The reader can then verify that for p > 2, Eqs. 
(5.1), (5.2), (5.4), and (5.5) for the corrections to Gaussian 
statistics continue to hold in the fully saturated regime and 
that for p < 2 these same equations hold if a is replaced by a' 
where 

a'= 4(P+ V IPr(3Ip) fl 
3l!21Tll2p <p(6- 2p)/p 

(7.3) 

The situation for the fully saturated regime is summarized in 
Table II. 

The higher order statistics in the partially saturated re­
gime are more complicated. For the case p < 2 everything 
can be worked out in detail and the results will be given in the 
next section. However, for p > 2 the path integrals yield only 
qualitative information. It is summarized in Appendix D. 

Finally, in multiple scale media the notion of multiple 
Fermat paths should be used with care. They exist but there 
are so many of them that they cannot, even in principle, be 
completely resolved. Nevertheless, the notion is useful in 
interpreting the path integral calculations and will continue 
to be employed. 

8. THE PARTIALLY SATURATED REGIME FOR 
p<2 

The partially saturated regime for p < 2 is of consider­
able practical importance. Many atmospheric optics experi­
ments lie in this region and, luckily, the complete statistics of 

Fully Saturated Regime 

2<p<4 
1 <p<2 

<p> 1,<p4/Plfl> I, <Plfl< 1 <P>I, <Plfl> 1 
<P>I, <pUPlfl> 1 <p> 1,<p4

/ Plfl> I, <p2
/ Plfl < 1 
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Table II. Changes needed to apply the formulas of Sees. 1-5 to the fully saturated regime. 

Boundaries 

Unchanged 
Replace <p / il > 1 
by <P2II'/il> 1 

fi can be worked out. There is a natural small parameter f:J 
defined by 

[3= (illif>4Ip)2- p. (8.1) 

For p = ;, [3 is related to Tatarskii'sl Cn by 

[3 = 1.19C" 4/5 R - 11/15k - 7115 and to the intensity fluctu­
ations as computed in the Rytov approximation by 
<(In! )') - <In 1 )'1 Rytov = 0.80[3 -512. The signal statistics 
will be given through order [3. 

Partial saturation is due to the appearance of mUltiple 
Fermat paths all lying within L of each other. The larger 
scales ( - L ) will tend to correlate the locations of these paths 
leading in general to a complicated statistics. However, for 
p < 2 the spectrum is so heavily weighted toward small scales 
that the locations of the Fermat paths turn out to be uncorre­
lated. This is not the case for p > 2 where the multiple Fermat 
paths become correlated and the path integral yields over 
qualitative information (see Appendix D). Even for p < 2 
where the locations of the paths are uncorrelated the large 
scales can still correlate the phases along different Fermat 
paths. We will see this at the end of the section when co her­
ences in frequency are studied. 

Consider Eqs. (3.1) and (3.2) for <1 ') in the partially 
saturated regime withp < 2. In the integration region (a) the 
separation between members of a pair of paths vl(z) (using 
the notation of Appendix B) must be such that d ( Ivl(z)1 ):S I, 
i.e., I vl(z) I:S Llif> 21P. The distance viz) between pairs (again 
in the notation of Appendix B) will be limited by the oscillat­
ing terms in the path integral to values such that ill vlz)1 
!vl(z) I-L' or I v,(z) I:SLif> 2IPlil. Note that the ratio of the 
cutoff on I v,l to that on I v I I is if> 41 PI il and is large. Now both 
I VI I and I v,l are small compared to Land Eq. (7.2) can be 
used to evaluate M in Eqs. (3.2) or (B3). Taking account of 
the fact that I VI I~I v,l, the expression for M in Eq. (B3) of 
Appendix B then becomes ,0 

(8.2) 

and when I vJL I-if> 21p and I v,IL 1-if>2!Plil the second 
term on the right-hand side of Eq. (8.2) is of order [3 and can 
be dropped. This is the same thing as saying that different 
pairs of paths in the path integral, or equivalently different 
Fermat paths in the sense of Sec. 6, are not correlated and 
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Limiting Statistics 

Unchanged 
Unchanged except 
that A is not known 
explicitly 

Corrections to the 
Limiting Statistics 

Unchanged 
Replace a by a' 

<! 2) becomes 2<1)'. What is happening is that for p < 2 the 
fractional power behavior of d at small separations is making 
the arguments of Sec. 3 valid even though the different pairs 
are separated by less than L. Note that this will only happen 
for p < 2. The generalization to <1 n) is straightforward and 
the result is a Rayleigh distribution with <1 ")=n!<1)". 

The true test of the method comes when one evaluates 
the corrections to Rayleigh statistics. It is shown in Appen­
dix C that to order [3 

<r)=n!<1)" [I + !n(n - l)C (P)[3 ], (8.3) 

where C (P) is a constant which depends only onp. This con­
stant is evaluated in Appendix C and C (+) = 1.06. The cor-

rections are small for small [3 showing that the approxima­
tion scheme is consistent but there will be significant 
deviations from a Rayleigh distribution when 

I/<1)~V 2![3C(p) . 

The statistics of i9(r,ro) as a function of source and re­
ceiver locations can be investigated in a similar way. One 
finds that they are Gaussian and at equal times and frequen­
cies the results ofSecs. 3 and 4 hold in the limit[3=O. There 
are coherence tails of order [3. These are discussed in Appen­
dix C. 

In the fully saturated regime the dynamics of the medi­
um enters only through D (t). This is not always true in the 
partially saturated regime. It is true when the Taylor hy­
pothesis is valid (a frozen field convected by a "wind") and 
the statistics in time can be obtained from the spatial statis­
tics. However, one can consider a different kind of medium 
where the time dependence of f1 is associated with linear 
waves whose dispersion relation is (JJ-k '~12. The Fourier 
transform of the second time derivative p of p will then be­
have like 

(8.4) 

at large I q I. For the Taylor hypothesis Eq. (8.4) holds with 
I> = 2 and in general I> can be considered as being defined by 
Eq. (8.4). Assumingp < 2, the statistics of '/; at unequal 
times are Gaussian in the partially saturated regime pro­
vided that p - I> < O. This can be verified by explicitly com­
puting the corrections. For p < 2 and p-I> < 0 the correc­
tions to Gaussian statistics are fractionally small for small [3 
and the results of Secs. 3 and 4 continue to hold at unequal 
times. However for p - I> > 0, a direct calculation shows that 
the corrections to Gaussian statistics are not fractionally 
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( a) ( b) 

FIG. 5. (a) The schematic track of a signal satisfying Gaussian statistics in 
time. (b) The track of a signal which moves faster in phase than amplitude 
(phase wrapping). 

small and therefore that the approximation scheme of Sec. 3 
is not consistent at unequal times. 

To see what is happening for p-o > 0 one can compare 
the path integrals for <I (t')1 (t » and < ( If *(t'» 2 ( f,' (t » 2 >. 
The latter is sensitive to the time dependence of the phase of 
('; while the former is not. A rather involved but straight­
forward calculation then shows that for p - 0> 0 the signal 
moves more rapidly in phase than in amplitude. This is to be 
contrasted with the case p -0 < 0 where the time statistics 
are Gaussian and according to Eq. (1.18) there is no tenden­
cy to move in phase as opposed to amplitude. As long as p < 2 
the signal has a Rayleigh distribution and over a long time 
the track of the signal will fill out a disk in the complex plane. 
The difference between p - 0 < 0 and p - 0> 0 comes in how 
this disk is filled up. For p-o < 0 the signal is Gaussian and 
it will make a track of the type shown in Fig. 5(a) which 
looks something like a random walk. However, for p -- 0> 0 
the track will wrap around in phase and slowly move in and 
out in amplitude as shown in Fig. 5(b). 

These peculiar features of time statistics in the partially 
saturated regime can be understood in terms of Fermat 
paths. We know that !f(t) is schematically 
:L"A" (t )exp [iift" (t)] where the locations ofthe paths are un­
correlated (for p < 2) but the large scales may correlate the 
phases @k(t). The question of random walking vs. phase 
wrapping is equivalent to the question of whether or not the 
time derivatives (dldt )iftk =rbk are correlated. For p-o < 0, 
the time derivatives are sufficiently weighted towards small 
scales that the rb" are uncorrelated and the signal random 
walks. However for p-o > 0, the effect of the large scales is 
strong enough to produce a correlated phase derivative com­
mon to all the Fermat paths. 

Propagation of sound in the ocean is an example of a 
situation where W(t) phase wraps in the partially saturated 
regime.' For the oceanp ;::::2,0 ;::::0, and in this special case it is 
possible to work out the detailed statistics of '// (t).' However, 
for other combinations of p and 0 it is not possible to com­
pute fourth and higher moments of ,1/ (t ) analytically, except 
when p .-f> < O. 

Checking consistency, it was stated above that for p < 2 
the statistics of rs(r,ro) as a function ofro and r are Gaussian 
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in the partially saturated regime. If the time derivatives on 
the right-hand side ofEq. (8.4) were replaced by spatial de­
rivatives we would have 8 = 2. Since p - 2 < 0 for p < 2 it is 
consistent that the statistics in ro and r are Gaussian and that 
the statistics in time are Gaussian when the Taylor hypoth­
esis (implying 8=2) is valid. 

For p < 2 and p-8 < 0, the statistics of 1,' (r,ro,t ) in the 
partially saturated regime are essentially the same as in the 
fully saturated regime. The reader may therefore wonder 
what the basic distinction between the regimes is. The an­
swer turns out to lie in the statistics in frequency. 

Let us examine the path integral for 
<t'*(w ,)15'(w,)t:'*(Wl)t'(W4». Up to a normalization it is 

<1/*«(vI)f,'(w,)6 *(w,)6'«(V4» 

-fd4(pathS) exp(!i (-1)1 Wj (R [r;Cz)]2dz-N ). 
J~ I C Jo 

(8.5) 

where with the Markov approximation, surpressing time t 

4 (v (()'lR 
N=!I(-Iy+j~ p(lr,{z)-r/z)l)dz (8.6) 

'.fC' I C [) 

and for simplicity the medium has been assumed to be non­
dispersive. There are the usual two important regions of path 
space (a) and (b). Let us concentrate on (a) where 
1 r , - r,l < Llq> 2/p and 1 r , - r41 < Llq> 2IP. First we will see 
how Gaussian statistics arise in the fully saturated regime 
and then see how the partially saturated case differs. In the 
fully saturated case typical values of, say, 1 r , - r) 1 are large 
compared to Land p( 1 r , - r) 1 ) can be set equal to zero. Ig­
noring correlations between the different pairs then yields 

N;::::!( ,.jt 1+ ,jt J( - 1), ,j W;~j LRp( Ir,(z) - riz) 1 )dz 

(8.7) 

which is a sum of two terms one of which depends on w, and 
(v, and the other on (V, and (V4, and the result is Gaussian 
st~tistics. In the partially saturated case typical values of 
1 r , - r , ! are small compared to Land p( 1 r, - r, I) is approxi­
mately equal to p(O). Now we have to set correlations be­
tween the different pairs of paths equal to p(O) rather than 
zero and N becomes 

x ( -1)' Ii (V,~IlJ (R [.0 ( 1 r,{z) - r,(z) 1 ) -.0(0) ]dz. (8.8) 
c Jo 

The path integral again factors into a product of two double 
path integrals and is expressable in terms of A as de~ned 111 

Eq. (2.22). Collecting the contribution from both regIOns (a) 
and (b) and supplying the correct normalization yields 

< ('; *(w,)f/«(vJ1,' *({Vl)i'7(W4» 
(';' ,~(WI)t' o(W,)6) ;(w,)6' o(ell.) 
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X[A (w,-wl)A (W.-wl)+A (w,-w1)A (W.-WI)]. 

(8.9) 

Because of the common exponential factor iiI front of the 
two terms on the right-hand side this is not Gaussian statis­
tics. What it corresponds to is an 'f/ of the form 
<5'(w)/?f o(w)=eiu"bt(w) where t/; is a real Gaussian random 
variable with <t/;)=O, <t/;')=Rp(O)c-2

, and x(w) is an inde­
pendent complex Gaussian random variable with zero mean 
and covariances <X(w)x(w'» = <x*(w)X*(w'»=O and 
<X*«(u)X(w'»=A(w' -w). It is straightforward to verify 
that this ansatz does in fact yield the correct 2nth moment of 
t' (w) in the partially saturated regime. In particular the sec­
ond moment 

<1f*(w)&'«(U'» 

1,) ;«(u) If o(w') 
<exp[i(UJ' -UJ)t/; lx*(UJ )x(UJ'» 

= <exp[i(w' - UJ)t/;]) <X*(UJ)x(UJ'» 

=<exp[ -!(w-UJ/)2Rp(O)c-'lA (w' -UJ) 

(8.10) 

comes out right. For a dispersive medium <t/;2) becomesUJ;2 
as in Eq. (1.20) and cg rather than C appears in A. 

Thus the fundamental distinction between the fully and 
partially saturated regimes is that in the former the statistics 
in frequency are Gaussian while in the latter they correspond 
to a phase times a Gaussian. Well inside the partially saturat­
ed regime UJg is small compared to the width in w of A. The 
phase ei,,,", then dominates the moments of lff(UJ), except for 
correlations involving only 1 'f/ (UJ) I' where t/; cancels. As the 
boundary <P 21p Ifl = 1 of the fully saturated regime is ap­
proached the width of A(w) becomes comparable to UJg and 
upon passing into the fully saturated regime A dominates the 
moments and the signal becomes Gaussian. In the terminol­
ogy of Sec. 4, for partial saturation the spread is small com­
pared to the wander. In pulse propagation eic"rJ; represents a 
quasideterministic wander which dominates <f(r». The 
phase ei,u.b cancels out in the integral [Eq. (4.8)] for P (r) and 
the spreading of a pulse is proportional to the inverse width 
ofA. 

In terms of Fer mat paths W(UJ)=~"Ak (w)exPU<pk(W)J, 
the non-Gaussing statistics can be understood as follows. 

TABLE III. The statistics of;; in the partially saturated regime for p < 2. 

Intensity 
Distribution 

Rayleigh 

Space 

Gaussian 
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p-8<O 
Gaussian 

Each ¢k(UJ) can be written as UJt/;+Ll¢k(UJ) where wt/; is a 
common phase generated by the larger scales. The phase 
differences Ll¢ k (UJ) are due to the small scales. They vary 
from path to path and are responsible for the Gaussian factor 
X(UJ). Note that only correlations in frequency measure t/; 
directly. Correlations in space or time see only Vt/; or ~ 
which for p < 2 andp-8 <0 are dominated by small rather 
than large scales, leading ultimately to Gaussian statistics. 
The phase wrapping in time for p - 8> 0 is a remnant of t/;. 

The statistics of lff in the partially saturated regime are 
summarized in Table III. 

The reader may be curious as to what happens at p = 2. 
The "small" parameter (3 is then equal to unity but according 
to Appendix C the coefficient C (2) in Eq. (8.3) vanishes. A 
detailed investigation' then shows that the corrections to 
Rayleigh statistics in the partially saturated regime are of 
order (In<Ptl. More generally, ifp=2 and In<P is large the 
statistics gjven in Table III apply with errors of order 
(In<p)-r. Atp=2 it is possible to computeA. It is given' by Eq. 
(1.21) with woa replaced by UJoa(ln<Ptr. In general, a medi­
um with 1 p - 211n<P < 1 will act like one with p = 2. 

As mentioned before, the case of partial saturation for 
p> 2 is discussed in Appendix D. 

9. INHOMOGENEOUS AND ANISOTROPIC 
MEDIA 

In practice, random media are only locally homoge­
neous and the covariance. 

p(x - X',! -! ';x) = (P(x,t )/l(x',t '» - (P(x,t» (P(x',t '» 
(9.1) 

depends on position x-!(x + x'). It is always assumed that 
the variations of p in x - x' are much more rapid than those 
in x but over a long propagation path the dependence on x 
cannot always be neglected. Also, in an inhomogeneous me­
dium (P(x) > =/lo(x) will generally not be a constant and 
consequently cannot be absorbed in the definition c=(ulk. 
Finally, the medium can be statistically anisotropic so thatp 
depends on the orientation ofx -x' as well as its magnitude. 

To obtain tractable path integrals in an inhomogeneous 
medium we will have to approximate the path dependence of 
i in p by evaluating x along some central path which will 
turn out to be an unperturbed ray. From Sec. 3 we know that 
paths are separated by L<Plfl (the precise definitions of L, <P 
and fl for inhomogeneous anisotropic media will be given 
below) and the problem will be tractable if 

(i) for changes in x of order L <Plfl the corresponding 

Variations in 
time 

p-8>O 
phase 
wrapping 

frequency 

phase times 
a Gaussian 
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variations in P can be neglected. It will also turn out to be 
necessary to expand flo in powers of distances between paths 
and we will have to require that 

(ii) flo(X) is slowly varying over distances of order 
UP/fl. The one other condition is that 

(iii) the parabolic wave equation is a valid 
approximation. 

When flo(X) is not a constant this requires that the nor­
mals to the wavefronts in the "unperturbed problem" where 
flex) =flo(x) remain close to the z axis. If this is true locally 
but not globally, then solutions based on the parabolic ap­
proximation can be patched together in the obvious way. 

When conditions (i), (ii), and (iii) are met it is reason­
ably straightforward to extend the path integral method to 
inhomogeneous and anisotropic media. It amounts to: (1) 
showing that with suitable definitions of (/> and D, <i5'> re­
mains exp[ - 4(/>2] and Eq. (1.14) continues to hold, (2) find­
ing a suitable definition for fl and then showing that the 
boundaries of the saturated regimes are still given by Table I, 
(3) showing that in the fully saturated regime the statistics of 
~ are Gaussian and that in the partially saturated regime 
they are (for p < 2) as given in Table III, (4) giving new for­
mulas for the corrections to Gaussian statistics and coher­
ence tails, and (5) giving a method for computing A(w). 
These steps will be carried out in order. In doing so it will be 
assumed that a ray approximation is valid for the unper­
turbed problem with fl = flo· 

A. The first and second moments 

The path integral for <W> will contain a factor 

[ 
k' {R (R 

exp - 2Jo dzJo dz' p(r(z)-r(z') 

+ ez(z - z'),O; 4 [r(z) + r(z') ] + 4ez<z + z'» ]. (9.2) 

The path dependance of the third argument of p will be ap­
proximated by setting !(r(z) + r(z'» = s(Z) where z = 4(z + z') 
and s is the unperturbed ray satisfying 

s"(z) + V,uo(s(z)+ ezZ) =0. (9.3) 

Here s=(sx,Sy) is a two-dimensional vector and (s(O),O) and 
(s(R ),R ) are the source and receiver coordinates. If there is 
more than one unperturbed ray connecting the source to the 
receiver, it is assumed that they are far enough apart that the 
path integral reduces to a sum of (statistically) independent 
terms coming from paths near each ray.2l Defining a new 
path u(z) by r(z)=s(z)+ u(z), the Markov approximation 
now amounts to setting 

r(z) - r(z') + ez<z - z') ::::: (s' (Z) + ez)(z - z'). (9.4) 

The essence of the approximation is neglecting u(z) - u(z'). 
By requirement (ii) the substitution s(z)-s(z'):::::s'(Z)(z-z') 
is always valid. The reader will note that by (iii) s' is actually 
small compared to ez. However, in a sufficiently anisotropic 
medium s' cannot be neglected on the right-hand side ofEq. 
(9.4). Assuming for the moment the validity of the Markov 
approximation, the analog of ,0(0,0) will be p(O,O;Z), where 
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p(O,O;z) = LOO,f([s'(z)+ez ] u,O;s(z) + ezZ)du (9.5) 

and the path integral for <i5'>, which is now trivial sincep no 
longer contains the path u, will yield < i5'> = i5' oexp[ - 4(/>2] 
where 

(/>'=k 2iRp
(0,0;Z)dZ. (9.6) 

Continuing to assume the validity of the Markov ap­
proximation, the next thing to compute is <W*(2)i5'(I». 
There are two paths r 1 =s+w, and r,=s+w, where s satis­
fies Eq. (9.3) with the boundary conditions s(O) = !(r01 + ro,) 
and s(R ) = 4(r, + r,) and the approximation is 

iR 
dz iR 

dz' p(r;(z)-r/z')+ ez(z-z'),ti-tj ; 

4 [r,{z) + r/z')] + 4ez(z + z'» 

::::: lRp(Wi(Z)-w/Z);ti-tp)dZ (9.7) 

for iJ= 1,2, where 

p(w,t;z) = Loo",p(w+ [s'(z) +ez]u,t;s(z) +ezZ)du. (9.8) 

The path integral for <i5'*(2)~(l» is then 

< ilY *(2) fi' (1» 
= -1-fd '(paths) eXP[iSo(path 1) -iSo(path 2) 

4k2 

where 

So=k iR 
[4(r'(z»'-,uo(r(z)+ezZ)]dz 

and 

d (w,t;z) =k 2rp(0,0;z)-p(w,t;z)]. 

(9.9) 

(9.10) 

(9.11) 

Introducing paths u=4(w1 +w,) and V=W,-w, we can, ac­
cording to (ii), expand So(path 1) - So(path 2) in powers of u 
and v and keep only the leading terms which are quadratic. 
Proceeding in this way yields 22 

<1,'*(2)W(1» f [ iR 

,,' .' = 12kif 01- 2 d 2(paths)exp ik (u'(z)·v'(z) 
f, 0(2)1, 0(1) 0 

- ui(z)viz)fliz»dz- foRd (v(z),t, -t,;Z)dZ], 

where the two by two matrix (in e,ey space) ,£liz) is 

(9.12) 

0' 
fliz) = -a a flo(X) 1 x = s(z) +0,,' (9.13) 

Xi Xj 

The path u now appears only as a linear factor in the expo­
nential and integrating over it will produce a product of [) 
functions which force v(z) to be equal to the special path (f(Z) 
which satisfies the differential equation and boundary 
conditions" 
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u;(z)+,u ij(Z) "''j(Z)=o, 

U(O)=rOl -r02 , 

u(R )=r l -r2 • 

(9.14) 

Then setting v equal to if in d the remaining path integral just 
produces l7 1 2k'l/ 012 and one finds Eq. (1.14) 

('l/*(2)'l/(1» = 'l/~(2) 'l/ o(1)exp[ -!D] (1.14") 

with 

(9.15) 

The object D defined in Eq. (9.15) is just the phase 
structure function of first order geometric optics l

•
7 for a gen­

eral inhomogeneous anisotropic medium which satisfies (i), 
(ii), and (iii). Note that u is always linear in rOl -r02 and 
r l -r2 • When,uo is a constant, 
f.(z)=(rOl -r02)(R -z)/R +(r l -r2)z/R, and for a homogen­
eous isotropic medium Eq. (9.15) reduces to Eq. (1.16). 

For an isotropic medium where p depends only on the 
magnitude of x-x', the Markov approximation is valid 
whenever the parabolic wave equation is. The reason is the 
same as in Sec. 2. In Appendix E the formula for the first 
correction to the Markov approximation to ('l/ * 'l/) is given. 
One can explicitly verify that the error is small when the 
parabolic wave equation is valid. 

The situation for anisotropic media is more complicat­
ed. Consider an anisotropic but homogeneous medium with 
constant ,uo. Typical inhomogeneities will not be spherically 
symmetric and one needs to consider the three cases shown 
in Figs. 6. The asymmetric inhomogeneities introduce a new 
small angle 80 , the ratio of the small dimension to the large 
one. Examining the error in the Markov approximation as 
given in Appendix E one finds that, for the case shown in 
Fig. 6(a), the Markov approximation fails when the rms 
multiple scattering angle is of order 80 , For the case shown in 
Fig. 6(b), it fails when the rms multiple scattering angle is of 
order of the angle of incidence 8 i and for the situation in Fig. 
6( c), it fails when the rms multiple scattering angle is of order 
unity, i.e., when the parabolic wave equation fails. Since 80 

can be small compared to unity, the Markov approximation 

(0 ) (b) 

(c) 

FIG. 6. Propagation through an anisotropic medium. The blobs are sche­
matic inhomogeneities and the heavy directed lines are the unperturbed 
propagation path at various angles with respect to the long axis of the blobs. 
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can fail in an anisotropic medium before the parabolic wave 
equation does but only for some propagation paths. When it 
fails Eq. (1.14) is not valid and this represents a defect in the 
theory which is not easy to remove. 

It should not be surprising that the Markov approxima­
tion can fail sooner in an anisotropic medium. The Markov 
approximation can be interpreted as the statement that the 
system has "no memory" in range, i.e., that scatterings at a 
given range point are independent of previous distant scat­
terings. In an isotropic medium this will be true as long as the 
rms multiple scattering angle is small and the wave keeps 
moving in the same direction. However, in an anisotropic 
medium, when the scattering by a given inhomogeneity can 
be highly dependent on the angle of incidence, a distant scat­
tering which has deflected the wave only through a small 
angle will not be "forgotten." For the inhomogeneities 
shown in Fig. 6 the scattering is strongly dependent on angle 
of incidence (measured from the long axis of the inhomoge­
neities) when the angle is of order 80 , When the incident wave 
is along the long axis as in Fig. 6(a), it begins to remember 
previous scatterings when the scattering angle builds up to 80 

and the pieces of the wave have incidence angles greater than 
80 , For the case shown in Fig. 6(b) the past history of the 
wave becomes important when pieces of the wave have been 
deflected by 8 i and are incident along the long axis. When 
8 i approaches 1T /2 as in Fig. 6( c) the process has no memory 
as long as the rms multiple scattering angle is less than unity. 

Yet another way to understand the peculiarities of ani­
sotropic media is to return to the remarks following Eqs. 
(6.8) and (6.9). For an isotropic medium the average of it 
integrated along a Fermat path w will be the same as the 
average of it integrated along the unperturbed ray s as long as 
the rms multiple scattering angle is small. However, in an 
anisotropic medium the average of it integrated along a path 
can be very sensitive to the local direction w' of the path. In 
fact, for the situation shown in Fig. 6(a), the average of it 
integrated along a Fermat path deviates from the average 
along an unperturbed ray as soon as 1 w' 1-80 and for the 
situation in Fig. 6(b) when 1 w' 1-8 i' This leads to the same 
criteria as before. 

The cominbation of an anisotropic medium and a spa­
tially varying f.lo(x) leads to a new set of complications. This 
will be illustrated for propagation in a channel where the 
unperturbed rays make loops as shown in Fig. 7 and where 
the long axis of the inhomogeneities is parallel to the channel 
axis. The medium will also be assumed to be statistically 
homogeneous in the direction of the channel axis but not 
necessarily in the transverse directions. (This is a prototype 
of the physical situation which occurs for sound propagation 
in the ocean. 7) The scattering will be strongest when the tan­
gent to the unperturbed ray is pointing along the long axis of 
the inhomogeneities, i.e., at the turning points. For small 8" 
one can in fact ignore all of the propagation path except for a 
set of discrete regions around turning point where the tan­
gent to the ray is within 80 of the channel axis. Assuming that 
a Markov approximation is valid for propagation through 
one of these regions, it will also be valid for propagation 
through many turning points provided only that the average 
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FIG. 7. Propagation in a channel. The channel axis (z axis) is parallel to the 
long axis of the inhomogeneities (blobs). The medium is assumed to be 
isotropic in the z direction and the unperturbed propagation path (heavy 
directed line) makes periodic loops. 

scattering at a given turning point is at most weakly depen­
dent on scattering at previous turning points. Assuming that 
the turning points are separated by more than a coherence 
length the effect of previous scatterings will be a random 
modulation of the range Zo and (transverse) location So of a 
turning point. Now the average scattering around a turning 
point is dependent only on its location So in the channel and 
not on its range zoo Thus the Markov approximation will be 
valid out to a range such that random variations in So are big 
enough to change the average scattering. This turns out to be 
a much longer range7 than that for which the rms multiple 
scattering angle (which is dominated by variations in zo) be­
comes of order 80 , The extended validity of the Markov ap­
proximation can be demonstrated explicitly using the Fer­
mat path formalism of Sec. 6. One works out the properties 
of Fermat paths which are randomly deflected at turning 
points and then compares averages of /1 integrated along 
these paths to averages of /1 integrated along the unper­
turbed ray. For a given channel one can then find out when 
the Markov approximation will break down. The result is 
just the criteria stated above. 

B. The saturated regimes 

It will temporarily be assumed that the medium has a 
single scale. Then in an anisotropic inhomogeneous medium 
the scale length L becomes a z dependent two-by-two matrix 
(in ex ey space) defined by the expansion ,0/' 

,o(w,O;z) = ,o(O,O;z)[ 1 - !(L -'(z»ijw,wj + 0 ( IwI 1
)]. (9.16) 

The first task in discussing the saturated regimes is to 
find the correct definition of {l and establish their bound­
aries. The general definition of {l will involve L and some 
geometric parameters associated with the unperturbed prob­
lem. From Sees. 3 and 7 one can see that {l measures the rate 
at which the phase of the oscillating factor in the path inte­
gral varies as a path moves away from an upperturbed ray. 
To examine this in more detail consider paths that leave the 
source at z = 0, go to the receiver at z = R, and at some point 
Zo in between are separated from the unperturbed ray s(zo) by 
I. Let S (I,zo) be the minimum of So(path) -So (unperturbed 
ray) taken over all paths of this class. The minimum is 
achieved for a path that follows an unperturbed ray from the 
source to (s(zo) + I,zo) and then another unperturbed ray from 
(s(zo) + l,zo) to the receiver. When /10 is a constant S (I,zo) is 
simply 

S (I,zo) = W)' B (zo), (9.17) 

where B which already appeared in Eg. (6.11) is 
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kR 
B (zo) = ) 

zo(R-zo 
(9.18) 

and {l~1 is the average of B -'L ~2, i.e., 

(9.19) 

Thus {l is a measure of the phase change required to move a 
path a distance L away from the unperturbed ray. In general 
there is a two-by-two matrix B defined by the expansion for 
small 1,22 

(9.20) 

and{l~' will bean averageofL ~'B ~I. It is convenient to weight 
the average by ,o(O,O;z) and {l will be defined as" 

{l~1 =! (L ~2)ij(B ~I)ij 

S~,o(O,O;z)(L ~'(z)>lB -1(Z»JlZ _ 1 ______ -" __ ---''---

- 2 S~,o(O,O;z)dz 
(9.21 ) 

With this definition of {lone can follow through the argu­
ments of Sec. 3 and verify that saturation and Gaussian stat­
istics are expected when 1> > 1 and 1>/{l > 1. A more precise 
procedure is to compute «1 ') - <1)2)/<1)' in the Rytov ap­
proximation to find the boundary of the saturated regime 
and then in the saturated regime compute the corrections to 
Gaussian statistics and verify that they are small. A straight­
forward evaluation of «1 ') - <1)')/ <1)'IRYtov shows that it 
does in fact exceed unity when 1> > 1 and 1>/{l > 1 indicating 
that the boundary is correct. Using the formulas of Appen­
dix F one can verify that in the saturated regime the correc­
tions to Gaussian statistics are indeed small. 

With the appropriate change in the definition of (L ~2\, 
for p < 2, the same procedure can be extended to media with 
multiple scales. The result is that with {l defined as in Eg. 
(9.21) the boundaries given in Table I remain correct and 
that for p < 2 the partially saturated statistics given in Table 
III also remain correct. 

To actually calculate B,/z) the following result is useful. 
Define a Green's function g,/z,z') by'2 

it... g iz,z') + /1 II, (z)g I,/z,z') = b ,/3(z - z'), 
iJz2 

g/O,z') = glj(R ,z') = 0. 

Then it is straightforward to verify that 

(B "(Z»'I = - g,/z,z). 

C. Correlations in frequency 
In general one can write 

<!;*«(v')i'f«(v» 

I<l(v') 6' o«(v) 
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=exp [ - +( w:gw/ YJA (w-w/), (1.19/) 

where the exponential factor comes from geometric optics 
and A is to be computed from the path integral. The geomet­
ric optics decorelation frequency Wg is 

Wg-2=((d~ iR 

[,u,,,(s,u(z)+ezZ,t) 

(9.24) 

and for a general dispersive medium both,u and the unper­
turbed ray s will depend on w. For a non dispersive medium 
(v is equal to wI(/> where (/> is evaluated at the central fre-

g 

quency (v. 

As before, the path integral for A is tractable only for 
media with p > 2. The derivation proceeds as in Sec. 3 and 
after introducing scaled paths 

( 
k'c )112 s= g / (v-Sw), wherew=!(w+w/)andcgis 

2«(v -w ) 
the group velocity at w=7V, the path integral for A gives 

A«(v)= K(w) 
K(O)' 

where" 

K (w)= J d (pathS)exp{ -ilR 

[(S/(Z»2 

with 

(9.25) 

(9.26) 

(9.27) 

If the path integral for K is written out in its finite form it 
becomes an ordinary integral oflarge dimension whose inte­
grand is the exponential of a quadratic form. Such an inte­
gral is proportional to one over the square root of the deter­
minant of the quadratic form and in particular A will be the 
square root of the ratio of two determinants. As the number 
of integration points goes to infinity the determinants be­
comes functional determinants. There are two equivalent 
methods' for computing the ratio of these functional 
determinants. 

In the first method one has to find all the eigenvalues w" 
of the differential equation 

(9.28) 

subject to the boundary conditions S(II'(O) = S(II'(R ) = O. 
Having done this A(w) is 

( 1) 1/2 
A(w)= II . 

" l+i(vlwn 

(9.29) 

In the second method one defines a two-by-two matrix 
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M y(z,w) by the differential equation 

M ~(z,w) +,uik (z)Mkiz,w) +iwhik (z)Mkiz,w)=O 

and boundary conditions" in z 

My(O,w) =0, M~(O,W)=Oii' 

Then A is given by the ratio of determinants'] 

A(W)=(detM(R,O) )1/2. 

detM (R ,w) 

(9.30) 

(9.31) 

(9.32) 

As an example of how A is computed consider a homo­
geneous isotropic medium where ,u,)=O and 
h=OcPC-lp~(O,O)L -'. The eigenfunctions of the operator in 

I} , Ij g 

Eq. (9.28) are then of the form 0ilsin(nl1TzIR) and 
ojzsin(n,1TzlR) and the eigenvalues are -n71T2wI and 
-n~1T'wl where w\ =c;.. 'IR 'p(O,O) as in Sec. 4. The infinite 
product in Eq. (9.29) is then a product over two sets of 
integers 

(9.33) 

and the two equal factors just cancel the square root. The 
result is 

X( W)I A(w)= II l-i-, -,-
tI~1 n1T(VI 

IT 
11= - x 

fl/O 

(iw/ WI)I11 

sin (im / (v I)' 12 

(9.34) 

and with (VI = (voa/6 Eq. (1.21) is reproduced. To compute A 

by the second method one finds immediately that 

M./z,w)=0uR (:t 2 

Sin(~ e~~y/2). 
Mli(z,O) = oil, 

and Eq. (9.32) yields the expected answer. 

Once (Vg and A have been determined everything pro­
ceeds as in the homogeneous isotropic case. In particular (';' 
satisfies Gaussian statistics in the fuly saturated regime and 
in the partially saturated regime for p < 2 (where A is unfor­
tunately not known) it is a phase times a Gaussian. There is 
one new point worth mentioning. In the calculation of Sec. 4 
<.f(T» vanished for T < 0 because A was analytic in the up­
per half-plane. When ,u/z) is nonzero there can be a finite 
number.of positive eigenvalues (V n . Then A is no longer ana­
lytic in the upper half plane and <.f (T» is nonvanishing for 
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T < O. This in fact happends for propagation of sound in the 
ocean.? 

The transition to inhomogeneous anisotropic media has 
now been completed. The reader who is interested in seeing 
how the method works in detail for a realistic problem can 
consult the book of Flatte, et al. J 

10.CONCLUSIONS 

The path integral has turned out to be a powerful tool. 
It has provided a precise (very nearly), complete and global 
picture of what goes on in the saturated regimes. The unsatu­
rated regime where the Rytov approximation is valid could 
also be treated by path integral methods. While this would 
lead to a more unified picture, in the end it would only 
amount to a rederivation of the Rytov approximation. A 
more fruitful endeavor would be to make an attack on the 
remaining unsolved problems in the saturated regimes. For 
situations where a scalar wave equation is sufficient and the 
(multiple) scattering angles are small the remaining prob­
lems are: 

(a) How to compute (except numerically) the coherence 
in frequency, A (Ui), for multiple scale media with p < 2. 

(b) What are the detailed (beyond those given in Appen­
dix D) statistics of '0) in the partially saturated regime for 
4> P > 2? 

(c) How to compute the second moment <tf*(2)3'(l) 
for those propagation paths in highly anisotropic media 
where the Markov approximation is not valid? 

(d) What is the detailed behavior of if at the boundaries 
between the unsaturated and saturated regimes and between 
the fully and partially saturated regimes? 

These are difficult problems which may not have any 
simple solution and, in particular, the path integral may not I 

APPENDIX A: CORRECTIONS TO THE MARKOV 
APPROXIMATION 

be the best method for attacking them. On the other hand, it 
is quite remarkable that the use of Feynman's path integral 
has reduced the problem to a few unknowns which occur 
only in special cases. 

Among the other methods for treating wave propaga­
tion in random media, the most powerful ones uses the Mar­
kov approximation from the beginning. With the Markov 
approximation one can derive local partial differential equa­
tions for the moments of If .]-5 These equations have been 
stuided extensively, especially by the Russian school. l4 In 
the Markov approximation the path integrals for the mo­
ments are formal solutions to these partial differential equa­
tions. The equations for the first and second moments can be 
integrated analytically and correspondingly the path inte­
grals can be done analytically. For the higher moments, the 
differential equations have yielded only some information 
about4 <J (l)J (2». The reason that this approach has not 
yielded more is that to determine the asymptotic (long­
range) behavior of a function from its defining partial differ­
ential equation is highly nontrivial. The path integral has the 
advantage that it works on a global rather than local level, 
making it easier to determine the asymptotics. 

The reader who is familar with Mercier's" treatment of 
the phase screen problem (an idealized case where all the 
scattering takes place on a thin sheet) will have noticed the 
similarity between his methods and those used here. The 
similarity is partly just the mathematics of manipulating in­
tegrals but there is also a physical reason. Any medium can 
be approximated by a (perhaps) large but finite number of 
phase screens. The wave field can then be expressed as a large 
but finite dimensional integral over the surfaces of the 
screens. But this is just the path integral in its finite form. 
Thus the path integral can be thought of as a scheme where 
one approximates the medium by n phase screens and then 
letting 11 go to infinity recovers the original problem. 

The exact path integral for <W*(2)1((l) can be expanded as 

u_ I I ( (ik (R, , ) In <r5 *(2)~-(1)= I - -- j d '(paths)exp - J [(r1(z»'-(riz)']dz- Vo [Vo- V] , 
In- 0 m! 4k 2 • 2 0 

where V is given by Eq. (2.10) and Vo is the Markov approximation given by Eqs. (2.11). The m = 0 term is the Markov 
approximation and the m = 1 term will be computed below for the special case < '// *( 1) t' (1». 

(AI) 

For < r5'*(l)t-(l»= </) the first correction contains [v,)- V] which can be replaced by - Vbecause, as may be seen from 
Sec. 2 the piece proportional to Vo vanishes. We then have to first order 

</)=</)0-- 4~ 2 f d '(pathS)exP(ik foR v'(z)·u'(z)dz- Vo] V, (A2) 

where paths v(z)=r,(z) - f,(Z) and u(z) = !(f,(Z)+ f,(Z» have been introduced. In terms of the Fourier transform p of p [Eq. 
(5.3)] Vis 

V= 2k 2 (R dz, (R dz,f d 'qdqzp(q' +q;)'I2,O)eXp [iqiz, -z,) 1 exp[iq·(u(z,)- u(z,»] sin[ !q·v(z,) ]sin [!q·v(z,)], 
J(l Jo 

(A3) 

where q=(qx,q) is a two-dimensional vector. Writing 
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exp[iq·(u(z,)- u(z,»] =exP{iq·1
R 

u(z)[(j(z-z,)-(j(Z-Z,) ]dZ} 

and inserting Vas given by Equation (A.3) into Eq. (A.2) one finds that since Vo depends only on v the integral over u(z) can be 
done and that it leads to a (j-functional which forces v to satisfy the equation 

(A4) 

with the boundary conditions v(O)=v(R )=0. In terms of the Greens function g(z,z') which satisfies (J'/Jz')g(Z,Z')=(j(z-z') 
and g(O,z')=g(R,z') =0, v(z) is constrained to be vo(z) where 

vo(z)= ~ (g(z,z,)-g(z,z,». 
k 

The path integral is then done by replacing v(z) by vo(z) in Vo and in the representation of Vand the final result is 

(1)-<1)0 =2k,(R dz, (Rdz,Jd'qdqjJ(v' q'+q;,O)exp[iqz(Z,-Zl)J 
<1)0 Jo Jo 

(AS) 

(A6) 

To estimate the size of the integral in Eq. (A.6), one notes that~, -z,1 will be restricted to order L or less and that for 
~,-z21~L, q·voCz) is of order q'L/k -q/k which is assumed to be small. The sines can then be expanded and using the identity 

(A7) 

one finds 

(A8) 

Ignoring the term f d (IvoCz)I,O)dz in the exponential which can only make the integral smaller, changing to variables u =z, -z, 
and z= Hz, +z,), approximating their limits by - 00 < U < 00 and 0 <z <R, and setting g(Z"Z,):::::g(Z,i) then yields 

<I) - <1)0 = Rp(O,O) ~ _ R <J1'). 
<1)0 3L' 3L 

(A9) 

The correction to Markov approximation to < 'fi *(2) 'fi (1» can be analyzed in the same way. It is fractionally small as long 
as <Ji2)R/ L is small. 

APPENDIX B: CORRECTIONS TO GAUSSIAN STATISTICS 

To begin with something simple, consider <I '). It is given by the path integral in Eq. (3.1) with t,=tj and the end point 
conditions r,(O) = rlR ) = 'a. Changing variables to u" u" v" and v, defined by 

r,(z)= u,(z) + !v,(z) + ~U2(Z)+ !v,(z), 

r,(z) = u,(z) + !v,(z)- !u,(z) - !v,(z), 

r,(z) = u,(z) - !v,(z) + ~u,(z) - !v,(z), 

rlz) = u,(z) - !v,(z) - ~u,(z) + !vJz), 

(Bl) 

the integral over u,(z) can be done and it produces a {) functional which forces u;(z) to vanish everywhere. With the end point 
conditions u,(O) = u,(R ) = 0, the only solution is u,(z) =0. The quadruple path integral then reduces to the double path integral 
over paths VI and v" 

<I ') 1 J [ lR" ] -- = -- d'(paths)exp ik vJz),viz)dz-M, <I> 4k' 0 
(B2) 

where M was defined in Eq. (3.2) and for u, = 0 it is explicitly 
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(B3) 

The two regions (a) and (b) discussed in Sec. 3 are I v,(z) I <LIef> with v, arbitrary and I vlz) I <LIef> with VI arbitrary. 

It was pointed out in the text that M is of order unity or smaller throughout regions (a) and (b). Actually, there is a further 

region [having Some overlap with (a) and (b)] where M can be small.It is (c) I v,(z) I <LN-;;;, I vlz) I <LIY-;;; and owes its 
existence to the fact that when both I v,(z) I and I v,(z) I are small, Mis quartic in the V's. In all other regions of path space, e -M is 
exponentially small. 

OUf first task is to dispose of the extra region (c) by showing that for small a the volume of path space occupied by this 
region is exponentially small compared to the volumes occupied by regions (a) and (b). An estimate of the volume of path space 
occupied by region (a) is 

1 f ' ( foR., ef>' foR ) --, d -(paths)exp ik v,(z)·v2(z)dz- -- (v'(z»'dz = 1, 
4k - 0 L'R 0 

(B4) 

where the integral is done by integrating over vzCz) which produces a fj functional that forces v,(z) to vanish. An estimate of the 
volume occupied by region (c) is 

I f ( foR,. ef> lR ) (6Ia) 24 -~ d '(paths)exp ik v,(z}v2(z)dz- --, (vi(z)+v~(z»dz = ~ - exp( -2Y 3Ia), 
k 0 2RL 0 sinh'Y 31a +sin'Y 3/a a 

(B5) 
where the value of the path integral is taken from Ref. 6. For small a, the volume occupied by region (c) is therefore 
exponentially small compared to the volume occupied by regions (a) and (b). This result, which may surprise some readers, 
deserves an explanation. In region (a) where I v, I is always less than LIef>, the factor 

exp[ik LR v; (z),viz)dz ) = - exp[ik foR V,(Z}V;(Z)dZ] 

will restrict I V; I to values less than ef> l(kLR ). Typical valuesoflv,l will then beR 'I v; I 16~L la. At a given rangepointzo, the 
variables v,(zo) and v,(zo) span a four-dimensional space. In this space the volume occupied by paths in region (a) is roughly 
L 4/(ef>a)'. At the same point the volume occupied by paths in region (c) is roughly L 'Ief> '. Thus at each pointzo, the volume 
associated with region (c) is a factor of a' smaller than that occupied by region (a). To compute the total volume in path space, 
one has to multiply together the volumes at each range point Zo, taking into account the fact that the paths cannot bend too 
rapidly. The path integrals in Eqs. (B4) and CBS) do just this. The resulting exponential ratio of volumes should no longer be a 
surprise since at each range point the ratio is down by a'. 

It is therefore sufficient to consider only paths lying in regions (a) and (b). The fact that integrating separately over 
regions (a) and (b) leads to a slight over counting can also be ignored. The volume in path space where regions (a) and (b) 
overlap is even smaller than the volume occupied by region (c). Now as was pointed out in Sec. III, for most paths in region (a) 
M::::::Mi:), where 

-R 

M~~)=2L d(lv,(z)I,O)dz (B6) 

and for most paths in region (b) M;:::::M ~b) with 

(B7) 

The path integral in Eq. (B2) can then be expanded according to 

R ( R ] (\1(") 'W)'" 

f d '(pathS)exP(ik ( V',(Z),V/Z)dZ-M] ~ f f d 2(paths)exp ik ( v,(z).v~(z)dz-Mba) 1 0 ~l J() '" 0 Jo In. 

,~ u..] (M g' ) _ M )'" 
+ I f d 2(pathS)exP[ik ( v,(z)-v2(z)dz- M bh ) , 

01- () Jo m. 
(B8) 

which is an asymptotic series in a. It is not a convergent series because (exponentially small) contributions from region (c) and 
the overlap of regions (a) and (b) are not being treated correctly. The m =0 terms correspond to Rayleigh statistics and the 
m = 1 terms are the first correction. They will be computed explicitly below. 

Equations (BS) generalizes to an arbitrary correlation in the obvious way. For a 2nth order moment there are n! important 
regions of path space. In each such region there is an Mo given by the analog ofEq. (3.4) or (3.5). The generalization ofEq. (B8) 
is then a sum of n! terms, each of which is a series of powers of the appropriate Mo - M. 

The path integrals for the m = 1 terms in Eq. (B8) can be evaluated by inserting a spectral representation for Mo- M. If pis 
the three-dimensional Fourier transfer of p [see Eq. (5.3»), then in region (a) 
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(B9) 

and 

4~' j d'(pathS)eXP[ik foR V'I(Z)'V~(Z)dz-M&a)J[M&")-M] 

=1TfoR dzJ d'qp(lql)j d'(pathS)exp [ -ik foR V,(Z){V;(z)-: O(z-Z'»)dz-M&a)] [l-cos(q·VI(Z'»]. (BlO) 

SinceM~ depends only on VI, the integral over v, can be done and it producesaofunctional which forces v;(z)~(q/k )8(z-z') to 
vanish. In terms of the Greens function g(z,z') defined by 

.!f.- g(z,z')=8(z-z') 
oz' 

(BII) 

with boundary conditions g(O,z') =g(R,z') =0, v,(z) is constrained to be (q/k )g(z,z'). In M&a) and cos(q·vl(z'» one can then set 
V I(Z) equal to (q/ k )g(z,z') and the remaining path just gives (I). The calculation of the correction in region (b) is identical and to 

leading order in a, 

(1')-2(1)' =41Tk' (R dzjd'qp(lql)Q(z,lql) (BI2) 
(I)' Jo 

with 

Q (z, I q I )=2[ l-COS( ~2 g(Z,z») ]exp [ -2Ia
R 

d ( 1:1 g(z,z'),O )dz']' 

An examination of the integral on the right-hand side ofEq. (BI2) shows that for small a, 

(i) d ( I: I g(Z,Z'),o) 

can be approximated by 

lk 2~(0 0)(qg(Z,Z'»)2 
2 P, kL ' 

(ii) 2[ I-COS( ~' g(z,z»)] can be set equal to (~' g(z,z) Y, 
and 

(B13) 

(iii) the dominant contribution comes from the regions z;::::O and z;::::R, where g(z,z');::::z(R -z')/R and z'(R -z)/R. 

The contributions from the regions z;::::O and z;::::R are the same and 

(1')-2(1)' 

(I)' 

= a(~)1/2 Lfoq'P(q,O)dq. 

4 foqp(q,O)dq 
(BI4) 

The correction to (JH) involves n! regions of path space and in each of these regions there are n(n -1)12 terms in Mo-M 
which differ only by permutations of the paths. The result is that the correction to (I") is n!(n) (n -1)/4 times the correction to 
(I'). 

Moving on to a more complicated object, consider (I (l)I (2». It is given by the path integral in Eq. (B2) but the end point 
conditions on the paths are now v,(O)=v,(R ) =0 and Vz(O)=fol -ro" v,(R )=rl-r, and now Mis 

M= foR [2d (I vl(z) I ,0)+2d (I vlz) I ,tl -t,) -d (I vl(z) + v,(z) I ,tl -t,)-d (I vl(z)-v,(z) 1'/1 -I,) ]dz. (BIS) 

The integration over region (a) gives (1)'(1 + corrections) while the integration over region (b) gives (I)'e- D (1,2) (1 + correc­
tions). As indicated the corrections in region (b) are proportional to e - D and are a small effect of no particular consequence. The 
corrections in region (a), on the other hand, are small but do not contain e- D and hence fall much less rapidly. This leads to a 
coherence tail in (1(1)1(2» which is not present in (W*(1)W(2». The interesting corrections in region (a) are computed by 

917 J. Math. Phys., Vol. 20, NO.5, May 1979 Roger Dashen 917 



                                                                                                                                    

changing variables from vl(z) and vz(z) to vl(z) and w(z)=vz(z) -(zIR ) (rl -r,)- [(R -z)IR ] (rlO-ro,) and then proceeding in 
exactly the same way as before. The result is 

<1 (1)1 (2»=<1)' [I +e- D
(\.2) + y(rl - r"rOI - ro2 ,t l - t,)], (B 16) 

where 

(BI7) 

and Eq. (BI2) is not reproduced for 1 (1)=1 (2) because a small term of order ye-Dfrom region (b) has been dropped. For small 
a this integral can be simplified in the same way that Eq. (BI4) was obtained from Eq. (BI2). It becomes 

( )
_ aV31T LSoq'p(q,t)[Jo(qlrl)+Jo(qlrol)ldq 

y r,ro,t - . (BI8) 
8 Sodp(q,O)dq 

Corrections to more complicated correlations and terms of order a' or higher can also be computed-the only obstacle 
being the labor involved. The calculation of the general coherence tail involves only some combinatorics. It is 

(lIk~I(l(k»In'-rrk=I<I(k»m,)". II • 

-------------= Gaussian terms" + L mkmjy(k-j), (BI9) 
II ~ I (I (k )In ) k.j I 

where y(k-})=y(rk-rprOk-roptk-t), the "Gaussian terms" are what one would compute from the Gaussian distribution 
and all terms of order e - D have been dropped. 

APPENDIX C: CORRECTIONS TO GAUSSIAN 
STATISTICS FOR P < 2 

Equations (BI2), (BI3), (BI6), and (B17) of Appendix 
B do not assume a single scale media and will be the starting 
point. For p < 2, in either the fully or the partially saturated 
regime Q can be approximated by 

Q(z,lql)::::;(~g(z,z»)2exp(- ~ Ilqlg(z,z) ip), 
k p+1 I kL 

(CI) 

where the cosine has been expanded, the short distance ex­
pansion for p, Eq. (7.2), has been used and the identity 

(R Ig(z,z')IPdz'= ~ Ig(z,z)IP (C2) 
Jo p+ I 

has been employed. 

In the fully saturated regime the main contribution to 
Eqs. (BI2) and (B17) again comes fromz::::;O andz::::;R. Us­
ing Eq. (C2) for Q then yields Eqs. (BI4) and (B18) with a 
replaced by a' where a' is defined in Eq. (7.3). 

In the partially saturated regime all values of z contrib­
ute to the integral but the dominant contribution comes 
from large Iql where 

-( )_ /3(O,t )2P [T(1 +Juy)l' sin(1Tp/2) 
p q,l - . 

41TJ I LIP I q I P t- 2 

For n = 2, Eq. (8.3), with 

C(P)={(P+ 1)(4 p)lP2P [T(1 +Juy)r(P-I»)2 

(C3) 

x sin(1TpI2)r «4 -p )lp)lp1T6(2 p) T (2p - 2) (C4) 

is obtained by inserting Eqs. (C3) (with t=O) and (CI) in Eq. 
(B 12). The extension to general n works in the same way as 
before. The coherence tails in the partially saturated regime 
are obtained by inserting Eqs. (C3) and (CI) into Eq. (B 17). 
For r,ro=FO this leads to integrals which cannot be done 
analytically. 
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I 
APPENDIX D: THE PARTIALLY SATURATED 
REGIME FOR P > 2 

It is difficult to make quantitative statements about the 
partially saturated regime when 4> P > 2. There is however 
some qualitative information. 

Equation (1.14) holds and <(/,) is equal to 
t/oexp( - 1<P2) in all regimes as long as the Markov approxi­
mation is valid. Furthermore <~' *«((}')!5' (OJ» continues to be 
given by Eqs. (1.19)-( 1.21). The argument that any correla­
tion involving an unequal number of ~'s and rf*'s vanishes 
also goes through as before. Thus IS' is uniformly distributed 
in phase. The difficulty arises when one attempts to compute 
the non vanishing higher moments. 

The statistics are not Gaussian. This can be verified by 
assuming that they are and then computing the corrections. 
They are not small. Some information can be obtained how­
ever by comparing the path integral for «1,'*(2»'(1,(1»2) 
with that for <If/(2)12IW(1)I'). Upon doing this one finds that 
I, always phase wraps as shown in Fig. S(b). It turns out that 
the typical space time scales over which the phase and inten­
sity change are those listed in Table 01 [the parameter [j was 
defined in Eq. (8.4)]. Note that for partial saturation where 
<pJ,/p In> I but <PIn < I the rate at which the intensity 
changes is always small compared to the rate at which the 
phase changes. Examining more complicated correlations 
leads to the conclusion that at a fixed frequency I, can be 
represented as 

'1/ (j) = '1/ o(j)exp [icb (j) lx(j), (01) 

where cb(j) is a real Gaussian random variable with <cb(j»=O 
and 

(02) 

The other factor X is an independent (of eft) complex random 
variable about which only three things are known: 

(I) any correlation involving an unequal number of {"'s 
and 
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TABLE Dr. Time and space scales associated with phase and In! in the partially saturated regime with 4> P > 2. 

Phase L/<P 

In! (L/<P )(fl/<P )(p 1)/(4 p) 

Scale Length 

X*'s vanishes, 

and 

(3) the decorrelation lengths and times for X are those 
listed 
under intensity in Table 01. 

To see what the representation in Eq. (01) means 
consider 

=exp[-~D(1,2)](lxI2), (03) 

where to get the second line one notes that <X*(2)X(1» will 
be approximately <!.t12

) for all space or time separations such 
that exp( - ~D ) is not vanishingly small. Thus, Eq. (1.19) is 
reproduced, as it should be. Similarly, 

«W*(2)2(if(1»2) =ex [-2D(1,2)](1 14) (04) 
(~Y;(2»2(~ 0(1»)2 p X 

and this correlation is known up to a constant. However, all 
that is known about the intensity correlation 

(1(2)/(1» = (lx(2) 12Ix(1) 12) (05) 

are its space and time scales. 

The extension to unequal frequencies is straightfor­
ward. At different frequencies 
«¢J(w)-¢J(O/»2) = [(w-w')lwlf and 
<X*({LI')X(W» =.1 (w -w'). The higher order moments of X 
are again non-Gaussian and unknown. However, their width 
in w is large compared to wg • As in Sec. 8 this means that 
pulse propagation is dominated by wander rather than 
spreading. 

As was mentioned in Sec. 8, there is a case where the 
non-Gaussian statistics of X can be studied in detail. It is for 
correlations in time when p = 2 and b =0 and is explained in 
Ref. 7. 

The above results are most easily derived using the Fer­
mat path formalism of Sec. 6. One can work out the joint 
probability that two paths will satisfy the perturbed ray 
equation. In the partially saturated regime withp > 2 it turns 
out that the Fermat paths are highly correlated and tend to 
lie within L (rP I n )2/(4 p) of each other. StUdying averages of 
it and f.t' along correlated Fermat paths then leads to the 
above conclusions. The detailed calculations are relatively 
straightforward but tedious and will not be given here. 
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(T/<P )(fl/<P )2/(4 _.p) 

p-8>2 

TN 

(T/<P )(fl/<P )(p W(4 p) 

2>p-8>O 
Scale Time 

APPENDIX E: CORRECTIONS TO THE MARKOV 
APPROXIMATION FOR INHOMOGENEOUS 
ANISOTROPIC MEDIA 

If the x dependence of p is evaluated along the unper­
turbed ray then the first correction to the Markov approxi­
mation can be evaluated for a general homogeneous aniso­
tropic medium. Let 

p(x,t;s(z) + ezZ) = f d lletl,xp(l,t;z), (El) 

then the generalization ofEq. (A6) is 

<I) - <1)0 

(1)0 

= 2k 2Ia
R 

dZ1Ia
R 

dZ2f d 2q dqj5(q + eAz,O;~(Zl + z,») 

where q = (qx ,qy) is a two-dimensional vector, d is defined 
in Eq. (9.11), and 

voCZ)j= qj [gj/Z,Zl) - g,/z,z,)] 
k . (E3) 

with gu defined in Eq. (9.22). 

For an isotropic medium Eq. (E2) can be analyzed in 
the same way as Eq. (A6) and one finds that 
«1)-<1)0)1<1)0 is of order of the rms multiple scattering 
angle. 

It is also straightforward to analyze Eq. (E 1) for a ho­
mogeneous but anisotropic medium. The result of doing this 
was stated in Sec. 9 A. 

APPENDIX F: CORRECTIONS TO GAUSSIAN 
STATISTICS FOR IN HOMOGENOUS 
ANISOTROPIC MEDIA 

When the approximation ofEq. (9.7) for the correlation 
between two paths is made, it is possible to compute the 
corrections to Gaussian statistics in the saturated regimes. 
The calculation is a fairly straightforward generalization of 
that done in Appendix B and only the final result will be 
gIven. 

Define a functionp«q;z) where q=(qx,qv) by 
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,o,(q,t;z)=,o(q-ez(s'(z)'q),t;z) where,o is defined in Eq. (E1). 
Then the analog ofEq. (B12) is 

(1') _2(1)2 lR f -
-'---'----'--c..- =41Tk' dz d 'qp,(q,O;z)Q,(z,q), 

(1)2 0 
(F1) 

where 

Q,(z,q)=2[ 1-cosq,qpij(z,z)k -'] 

with 

u,(z,z,);=k -'qPij(z,z') (F3) 

and d and gij are defined in Eqs. (9.11) and (9.22). 

Using fl and cP as defined by Eqs. (9.21) and (9.6) it is 
possible to show that the right-hand side ofEq. (F1) is small 
in the fully saturated regime and in the partially saturated 
regime for p < 2. As before, in the fully saturated regime the 
dominant contribution comes from the regions z:::::O and 
z:::::R and in the partially saturated regime,o, can be approxi­
mated by its aymptotic form for large Iql. Also, Q, can be 
simplified by expanding the cosine and replacing d by its 
expansion for small V,. The detailed calculation which is then 
fairly straightforward will be left to the reader. 

The generalization to <I") works in the same way as in 
Appendix B. 

The coherence tail is given by Eq. (B 16) with 

y(r,-r"ro,-ro"t)=21Tk'iR dzf d'q 

Xexp[iq·dz)],o,(q,l;z)Q,(q,Z) (F4) 

where (' is defined in Eq. (91.4). The approximations men­
tioned above can also be made in the integral for y. Finally, 
Eq. (B 19) holds with y given by Eq. (F4). 
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problem 
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The Guralnik-Hagen model for a self-coupled spin - 1/2 field is minimally coupled to a gauge 
gravitational field. The corresponding free gravitational Lagrangian is not explicitly introduced. It is 
shown that, using spontaneous breakdown of Lorentz invariance and the generalized Gordon 
decomposition, the Higgs mechanism generates a gravitational Lagrangian which leads to the usual 
linearized Einstein gravitational field equations. 

I. INTRODUCTION 

A reformulation of the energy-momentum conserva­
tion laws consistent with the group of general coordinate 
transformations is well known to lead to the conclusion that 
the geodesic equations of motion of matter follow, as a neces­
sary consequence, from the gravitational field equations. 
This result in one form or another may be called the Ein­
stein-Infeld-Hoffman (EIH) problem. lOne particularly 
simple formulation of this problem follows from the general­
ly covariant zero divergence of the energy-momentum ten­
sor which is assured by the field equations and the Bianchi 
identities. 2 By application of a suitable transformation to the 
covariant divergence a form is obtained which involves the 
ordinary divergence of the sum of the energy-momentum 
tensor of matter and pseudotensor of gravity. The symmetri­
cal nature of this formulation of the conservation laws sug­
gests the following question: To what extent are the gravita­
tional field equations determined by the equations of motion 
of matter? This question may be called the inverse EIH 
problem. 

In a previous paper, J we examined the consequences of 
the spontaneous breakdown oflocal Lorentz invariance for a 
self-coupled local spin-I field interacting with a gauge gravi­
tational field! The corresponding gravitational Lagrangian 
was not explicitly introduced. It was found that this model 
produced a term in the Lagrangian via Higgs mechanismS 
which lead, in the static weak field approximation, to the 
Newtonian gravitational field equation. This model was par­
ticularly interesting because it suggested that, for the gravi­
tational field, the gauge coupled matter field equations de­
termined to some extent the structure of the gauge 
gravitational field equations of motion. In this paper we shall 
study the analogous problem for the Guralnik-Hagen mod­
el6 of a self-coupled spinor field interacting with a gauge 
gravitational field. It is shown that, using spontaneous 
breakdown of Lorentz invariance and the generalized Gor­
don decomposition,' the Higgs mechanism generates a term 
in the Lagrangian which leads to the usual linearized Ein­
stein field equations. 

II. SELF-COUPLED LOCAL SPIN-! FIELD AND 
THE GAUGE GRAVITATIONAL FIELD 

We shall take as our model the Guralnik-Hagen La-

grangian6 of a self-coupled spino! field and minimally couple 
it to a gauge gravitational field4 

L = e¢yV(x)[a, - kcra/3)F'1a/3d¢' + P(¢,), (1) 

with 

y"(x) = e('a)(x)y(a), 

F"a/3) = e';p)\l ve(a}r' 

\l" era),' = al" e(a»' - r~v e(a)p' 

r~, = !g"A (a,. gAl' + al" gVA - aA gin,), 

gill' = O(a/3l(a>"e(/3\" 

O(a(J) = (- 1,1,1,1), 

(T(a/3) = !(y(a) y(/j) _ 1"(/3) y(a», 

e = det(e(a)I,)' 

P (tP) = - fl.¢tP + p .. (¢tP)2, fl.,).. = const> 0, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

where indices in parentheses indicate local Lorentz compo­
nents. The vierbien field e(a)1" was originally introduced as a 
means of describing a spinor function tP in a general Rieman­
nian manifold where ¢' transforms like a scalar under general 
coordinate transformations. The Lagrangian (I) is invariant 
under the combined space-time dependent Lorentz trans­
formation of the local spinor fields ¢" iF and gauge potentials 
F v(a/3) given by 

tb~[ 1 + !o-(a/3)w(a/3)(x)]tP, 

iF~iF[ 1 - !o-(afi )w(a/3)(x)], 

Fv(a(3)~F,;ar3) + (v(aA )(x)F,,<A) (/3) 

+ W([iA )(x)F'1.a)(A ) + al' w(a/3 lex), 

with 
1"'{x)~1"'{x) + W(arn(x)e(/3)" y(a), 

where 

(i)(afJ) = - w(a/3) and F"a/3) = - F,-(/3a)' 

(11) 

(12) 

(13) 

(14) 

III. GENERALIZED GORDON DECOMPOSITION 
OFL 

The generalized Gordon decomposition' is a useful 
technique for separating the interaction density into a "con­
vective" (i.e., y matrix independent) part and an "internal" 
part. We will apply a partial form of this technique to the 
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Lagrangian density (1). Equation (1) may be rewritten as 

L = eliyV(x)a"¢ - eS(CTAp) F(CTAp) + eP(¢), (I 5) 

where F(CTAp) = e(o-) 'F v(Ap) and the Dirac spin density SCTAp) is 
given by 

(16) 

The equation of motion for the Dirac field is from Eq. (l), 

y''(x)[a" - *a(a{3)Fv(aI3)J¢ -!1J/; + A- (1iJ/;)J/; = O. (17) 

Substituting Eq. (17) and its adjoint into Eq. (16), multiply­
ing by F(UAP) and using y(P) y(v) = 8(Pv) + a(Pv), we obtain 

S(CTAp)F =S'(CTAp)F _ (~JJ)-;;;r(Pa{3aAP)." 
(<TAp) (<TAp) 32'- 'f' 'f' 

X F (pa{3) F(CTAp) - (,
1

2
"fl)-;j;r (a{3jlaAp)J/;F (pa{3) F(a-Ap)' 

(18) 

where 

(19) 

and 

r(pa{3aAp) = ~) y(a) y({3) ya) y(A) y(Pl, (20) 

r(a{3 .. -p) = y(a) y({3) ••• y(P). (21) 

Applying the identity y(P)y(v) = 8(Pv) + a(w) to the last two 
terms in Eq. (18), we obtain' 

s(aAp)F(aAp) = S '(aAp)F(aAp) - (3'2I-L)IiJ/;[F(PA(T)F(JAP) 

- F(P) (P)F(A) 1 + 2 (aAp)F 
\il) (Ap) (aAp)' (22) 

where 2 contains all the terms -;j;rJ/;F with an explicit y ma­
trix dependence. 

IV. SYMMETRY BREAKING AND THE 
LINEARIZED EINSTEIN EQUATIONS 

The Lorentz in variance of (1) is spontaneously broken 
by imposing the condition 

(23) 

where a is a constant local spinor. Calculating 

a:c;) I 1ft ~. <do) = 0, (24) 

we have from Egs. (10), (23), and (24), 

(25) 
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Using Eqs. (15) and (22) and expressing the Lagrangian in 
terms of fields J/;' = J/; - a possessing a zero vacuum expec­
tation value, Eq. (1) becomes 

L =LI/J' +LF+Lb (26) 

where 

(27) 

L ' = (e13U )(F(pAa)F - F(P) (A IF(a) ) - leJJ'/ A-
f (O'Ap) \il) (aA) 2 ,- , 

(28) 

with L j denoting the remaining terms.9 To interpret LF we 
linearize the gauge field Fwith 

(29) 

Keeping terms bilinear in the derivatives of h!w and neglect­
ing the cosmologicallike term {Ji'l A- )(1 + h ), we have from 
Eq. (28), 

Lh = (1/32A- )(ifh apaA ha-p + 2aAha
l
,h AIL 

where h = h ~. Taking the variation of Eq. (30) yields 

8L h = (1/1M )[02h a{3 _ (aAiPh 11A + aAaoh aA) 

8ha {3 

(30) 

(31 ) 

Equation (31) is the usual linearized Einstein gravitational 
field equation.!O 
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The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is 
considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of 
Zorn-Weyl matrices. Associated with a pair of real null vectors we define two-component spin or fields 
over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in 
terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining 
a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the 
imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero 
test body is considered. The Zorn-Weyl algebra associated with this generalized formalism has elements 
belonging to the full octonion algebra. 

1. INTRODUCTION 

In most applications of Cayley algebras to relativity 
theory a modification of the algebraic structure is re­
quired so as to make it compatible with the indefinite 
metric structure of the spacetime. Such modification 
can be obtained by using a suitable redefinition of the 
algebra over the complex field. In this case the algebra 
loses its division property and becomes a split algebrao 
A well-known example is given by the associative sub­
algebra of complex quaternions (or biquaternions, or 
split quaternions) or the Cayley algebra in special rela­
tivity, where a Weyl representation by 2x2 complex 
matrices is used. 1 

Recently the split quaternion subalgebra of the Zorn 
algebra has been applied to the Maxwell and Yang- Mills 
fields in special relativity. 2 Further applications to 
particle physics are also known in the literature. 3-5 The 
purpose of this paper is to investigate the application of 
the Zorn algebra to the study of the relativistic wave 
equations in curved space. It is found that by using the 
conventional tetrad formalism, which connects the 
tangent space to the pseudo-Riemannian spacetime, it is 
possible to construct an algebraic tetrad structure be­
longing to a split quaternion subalgebra of the octonion 
algebra, where the algebra of octonions is here repere­
sented by a modified version of the Zorn matrices. 6 

It follows that the role played by the second-rank 
Hermitian matrices of the two-component spinor formal­
ism are taken over by four Zorn- Weyl matrices which 
are associated to each local Weyl representation in the 
curved space. Since the "internal" symmetry group is 
the local SL2 (C) we have two different Weyl representa­
tions, which define two sets (a l H". (a == 1,2) of the above 
matrices. The analogy between the (alii". and the second­
rank Hermitian matrices again indicates that the present 
formalism is equivalent to a local quaternion subalgebra 
of the full Cayley algebra. This property follows from 
the fact that the (a W jJ. are really 4 x 4 matrices as com­
pared with the 2 x 2 matrices a"., T".. We also show that 
this local quaternion tetrad written as Zorn- Weyl 
matrices acts as projection operators which associate 
to each geometrical object (tensor or spinor) a well de-

fined Zorn-Weyl matrix. The flat spacetime limit is 
then easily obtained and coincides with known results. 

Our present Zorn- Weyl representation of octonions 
(and of quaternions) may also be thought of as a 4 x 4 
matrix (Similarly as a (-matrix). Such matrices, and 
their nonassociative law of product were already con­
sidered in the literature. 5 However, we mention that for 
our covariant treatment involving the "internal" group 
SL2(C) such analogy is not relevant. Indeed, it is not 
possible to associate to each (a W". a y- matrix since for 
each value of a we have only a type of Weyl basis, and 
as is known a Y-matrix contains the two-Weyl basis. Due 
to this we interpret the (a)1i jJ. as Zorn matrices referred 
to a Weyl baSis, the nonassociative product being de­
fined locally by introducing "scalar" and "wedge" pro­
ducts of the quaternion basis. 

In the following sections we consider the definition of 
the differential operator in flat spaces and determine 
the Maxwell equations in the Zorn- Weyl formalism for 
the Lorentz gauge. Then we determine the Zorn- Weyl 
covariant derivative and apply the formalism for the 
relativistic spin-~ wave equation in curved space. 

Finally the Zorn- Weyl formalism is extended for the 
case of complex tetrads which generate a Hermitian 
second-rank tensor field that plays the role of a gener­
alized "metric," The symmetric (or real) part of this 
tensor describes gravitation according to general rela­
tivity and the antisymmetric (or imaginary) part de­
scribes the electromagnetic potentials in the Lorentz 
gauge. It is shown that the algebraic structure of the 
complex tetrad contains elements belonging to the 
split octonion algebra. The covariant differential prop­
erties are extended to this formalism, and as an appli­
cation the problem of the motion of a charged spin-zero 
test body in this generalized geometry is considered. 

The conventions and notations which will be used 
throughout this paper are the following: The four-dimen­
sional space of general relativity is assumed to have 
metric signature +2. Greek indices running from 1 to 
4 denote tensor degrees of freedom. Latin indices in­
dicate spacelike degrees of freedom and run from 1 to 
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3. Bracketed indices are used to indicale letrad indices. 
Capital dotted, or undotted, italic indices are reserved 
for two component spinoI' degrees of freedom and run 
from 1 to 2. Finally, boldface roman indices are used 
for algebraic elements, running from 1-7 for the capi­
tal indices and from 1-3 for the other indices. Summa­
tion convention is used throughout and applied to all 
kinds of indices. 

2. THE SPLIT CAYLEY ALGEBRA IN THE ZORN 
REPRESENTATION 

Let {CA} be a basis in a seven- dimensional real vec­
tor space with an inner product. The real Cayley alge­
bra, or octonion algebra, 0 is the linear algebra con­
structed in the above space, with the product operation 
defined by 

(2.1) 

where ('Aii"~ is totally antisymmetric and satisfies 
E;U;V = 1 when A, B, C assume the values (I, 2, 3), (5, I, 6), 
(6, ~,4), (4,3,5), (6,7,3), (4,7, fl, and (5,7,2). For all 
other cases EU'1: vanishes. The identity element of the 
algebra is c~. 

It follows immediately from (2.1) that if the indices 
vary on each one of the seven above triads (A, 11, C) a 
quaternion subalgebra is obtained. Thus, the real 
Cayley algebra contains seven quaternion subalgebras. 
In the basis {rD' e7;} a general real Cayley number is 
expressed by A =x~e~ + xj!ej!, x;;, Xx EO R. The multiplica­
tion table implies that the product operation is in gen­
eral nonassociative. Furthermore it follows that a 
real Cayley algebra is a division algebra. 

Now we consider the algebra of complex Cayley num­
bers Ol<r which may be taken as the set of elements of 
the form 

(2.2) 

The complex conjugation applied to the components 
zo, z"A gives a new Cayley number, A * = zteo + z~e7;, 
and this operation commutes with the Cayley number 
conjugation (.4)*= W). In particular consider the fol­
lowing complex Cayley numbers 

11;; = ~(eo + ie'T) , Iq = ~(ei + ie1+3) 

and their complex conjugates. From the multiplication 
table (2.1) it follows that the above set of complex 
Cayley numbers together with their complex conjugates 
form a basis for O/<r. The product between these basis 
elements is given by equations 

and their complex conjugates. 

A general complex Cayley number in this basis as­
sumes the form 

(2.3) 

where the coefficients a, b, XI, and Yl are in general 
complex numbers. In particular they can be real, with 
A still a complex Cayley number. 

In order to introduce a representation of the complex 
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Cayley algebra we consider an application 2 from f)IC 
assuming values on lhe sel M 2x2 / H of 2x:2 matrices de­
fined over the quaternion field ll. Such application is 
defined by 

(
eo 0) 

2(11;) = ° ° ' 0), Z(uI) =(0 0), 
Co ci ° 

(2.4) 

(
0 - C") 

2(u;) = ° 0' . 

Defining the sum of two such matrices and multiplica­
tion by ([ in the usual way, it follows that the applica­
tion Z is linear in (Jlc and from (2.3) and (2.4) we have 

(

ac-

z(A) == 1'OC~ , , 
-X""') (a -X) 1"1 

- , 
be~ V b 

(2.5) 

where we have denoted Xll'i by x, the same for y. 

The set of matrices of the form (2.5) may define a 
representation of Olc in ,'vI2x2 / H provided a product 
between such matrices is defined in such a way that the 
application Z is a homomorphism. In this case the 
matrices (2.5) are called Zorn matrices. 6 

In order to introduce the definition of the Zorn pro­
duct for matrices of the form (2.5) we define the scalar 
and wedge product of quaternions as 

ei * e] = - ~ (qe] + ejei) = 6ije~, 
Cj .~ c] = ~ (eICj - CjeI) = EiTi/~1i' 

(2.6) 

(2.7) 

The Zorn product between Zorn matrices is now de­
fined in such a way that it reproduces the multiplica­
tion table of the complex Cayley basis 

Z(A El) = Z(A)!.)Z(B) 

( 

ae - X *u' 

= ey + Ow + x .~ z 

- az - dx - V t, 11') 

bd - y *z 
(2.8) 

for 

Z(A)=(a -X), Z(B)=(e -z). 
v 0 u' d 

The unit element of the resulting Zorn matrix algebra 

is 

1= (
eo 0)= Z(ut) + Z(uo)' (2.9) 

° e­o 

As can be seen, a complex octonion like (2.3) re­
duces, in general, to a complex quaternion when 
a = 0, X = y. This quaternion belongs to the quaternion 
subalgebra (1,2,3) of the octonion algebra. The Zorn 
matrix associated to this quaternion is 

(
a -X) 

Z(A)= x a • 
(2.10) 
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ThC' coniu~ation operation induces on the complex 
basis the transformation 116, 1fi --"i" Thus, a gen­
eral complex Cayley number B such as (2.3) which in 
the Zorn representation reads as (2.5), transforms 
under conjugation to 

(

b x) 
Z(B) =: • 

- y a 

The norm of this octonion is given by 

Z(B13) == Z(B) ~Z(13) = (ab + xm)ll. 

Here we are interested in the situation where the 
octinion }, reduces to a quaternion of the form (2.10). 
In this case the norm of this quaternion in the Zorn 
representation will be (a2 + XIXI)ll. If we take a as an 
imaginary number, a = ixo, and xii, xi as reals, it fol­
lows that 

(2.11) 

Therefore, the Zorn matrix (2.10) with a == ixo may 
be thought as representing a 4-vector in Minkowski 
spacetime (in this case the algebraic indices become 
world indices), Likewise given an general octonion 
like (2.5) with a*- 0, x*- y but with a, b imaginary num­
bers, a == ixo, b = iyo, and all xo, xI, Yo, Yi reals, we can 
associate to this octonion a pair of 4-vectors in 
Minkowski spacetime. From now on we will consider 
only this particular type of octonions and quaternions 
and their Zorn matrices. The corresponding quaternion 
subalgebra of the complex Cayley algebra given by the 
set of matrices of the form (2.10), with the law of 
product given by (2.8), and with norm given by (2.11) 
is a split algebra. This corresponds to the property 
that the Minkowski spacetime contains isotropic vectors. 
Similarly we have a split octonion algebra which cor­
responds to the property that the Minkowski spacetime 
contains pairs of orthogonal 4-vectors. 

3. EXTENSION OF THE METHOD TO CURVED 
SPACETIMES IN THE TETRAD REPRESENTATION 

In this section we apply the previous algebraic meth­
ods to a curved four-dimensional spacetime. Such a 
type of formalism is an extension of previous works 
which apply these algebraic methods to special rela­
tivity.2 The formalism which will be developed in this 
section corresponds to the use of only a part of the 
Cayley algebra, namely the quaternion subalgebra of 
the complex Cayley algebra. As in the previous section 
we will use this algebra with reference to the Zorn ma­
trices defined in a quaternion basis o In applications to 
relativity it is of interest to use the quaternion basis in 
ter ms of the three Pauli matrices and the 2 x 2 identity 
matrix, that is, in terms of a Weyl representation of 
the quaternion algebra. 7 From the algebraic pOint of 
view this Weyl representation is obtained by the applica­
tion W: H/C - A12x2 / c which may be defined either by 

W(co) = °ao, W(C7) = °a7' 

or by 

W(c;;) =oao, W(cl) = (+)oa1• 
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(3.1) 

(3.2) 

The symbols "ai, °ao denote the Pauli matrices and the 
2 x 2 identity matrix, respectively. In the first case 
they satisfy the usual law of multiplication of the Pauli 
matrices together with the 2 x 2 identity matrix, and in 
the second case they satisi y the same law of product 
as the eo, cI ' namely, 

wh) W(ej) = - 0-/7 W(e;:;) + E17k H~e~), 
(3.3) 

wh) W(e;;) = W(co) W(el) = W(c;). 

We will use the second alternative. It should be ob­
served that the Zorn representation of the quaternion 
algebra treated on the last section is distinct from the 
usual Weyl representation of quaternions. However, 
since the Zorn matrices associated to quaternions are 
defined over the quaternion field, a combined Zorn 
- Weyl representation of quaternions can be obtained 
by conSidering the Weyl representation of elements of 
the Zorn matrices. Denoting the resulting composition 
by ZW, we have for a Zorn matrix like (2.5) for 
a = ix~, which gives the Zorn representation of the 
split quaternion subalgebra of the complex Cayley alge­
bra. 

(

w(a) - W(x)) (iXOW(CO) 
ZW(A) = = 

W(x) W(a) Xi W(eo) 

which, from (3.2) takes the form 

(3.4) 

Presently we have to adapt this notation to our prob­
lem of a curved spacetime with a Riemannian structure, 
For this purpose we consider only the local properties 
of this spacetime translated in terms of the Zorn- Weyl 
algebra. With this in mind we consider the local tangent 
space at each point of the Riemannian spacetime, and 
the set of four local tetrad vectors hOi =:: (ho.),,). All 
algebraic quantities, with indices 0, l,T, etc o now be­
come quantities defined on the local tangent space with 
indices (0), (i), 0), etc. The metric glLv is related to 
the Minkowski metric 7)ail by means of the local tetrad 
field 

glLv =h~a)h~il)7)a8' 

The matrices oa(e), °a(i)' ail a j have degrees of free­
dom given by the indices K and ;-VI which run from 1 to 
2, both indices taken as contravariant indices. The 
matrices denoted by T have both indices as covariant 
indices, also of the type KJI,1. The matrix denoted by } is 
the 2 x 2 identity matrix of the form (o~). In the local 
tangent space which here is taken with signature + 2 
we can define three types of identity matrices: °a(o), 
°T(O), and I. The matrix °T(O) is defined by °T(o) =EOato)E 

=[ and is numerically identical to the identity 2:< 2 
matrix, but has covariant indices of the type KM. Here 
E is the matrix 

Since local indices are raised and lowered 
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respectively by 1]aB and 1]",B, we have va(o) = - I. The 
covariant matrix product is defined only between 
matrices of the type a and T. This implies that the 
algebraic formulas defining the quaternion structure 
like (3.3), and the formulas defining the ZW represen­
tation of quaternions have to be translated in this 
covariant notation. With this in mind we define the 
following Weyl representations on the local tangent 
space, which are associated to SL2 (C): 

W] (C(i) =~oa( 0, Wj (c(O» =oa(o) , 
1 (3.5) 

In the limit where we consider only the action of 
SU2(C) on the spinor degrees of freedom they degenerate 
in the representation given by (3.2) for the spacelike 
degrees of freedom, Wj«('(j»- n'2(C(i»' Besides this we 
also define 

TV3ho» =1= (1i~). 

It can be shown that the covariant law of product for 
the Weyl representations (3.5) has the form 

Wj (e(il) Wz (e(j) = - o(j)(}) W3 (c(0)+ E(n (j)(k) W! (C(k) )W2 «('(0»' 

(3.6) 

These formulas presently substitute the formulas 
(3.3), 

(3.7) 

Given the Zorn matrix associated to a quaternion we 
can write it in the Weyl representation of the type Wj as 

(

iC(O)Wi(C(O» -(l(i)w!(e(i») 
ZWj (.4) = , (3.8) 

a(O Wj (c(;) ia(o) Wj (e(o» 

For the same quaternion, or in general for any other 
quaternion, we can write the ZW matrix of the type Wz 
by replacing the subscripts 1 by 2. 

On the remainder of this section we will use these 
matrices in place of the matrices (3.4). 

The product of these matrices is defined similarly 
as before [see Eq. (2. loll' 

(3.9) 

where 

a = 1i == - (l(o)b(o) W3(c(o» - (l(ilb(jl W! (ew) *Wz (e(j) 

(3 = - y = - (ia(o)b(i) + ia(i)b(o) W! (C(O) 1V2(c(o» 

- (l(i)b(n W! (e(o) 1\ W2 (e(n)' 

From (3.6) we define by analogy with (2.6) and (2.7), 

W!(e(o) ,. W2 (e(j) =- kS(j,j)(Wj(ew)Wz(c(j))) 

= 1\0(j) W3(c(o»' 

ll'j(CU»''\ W 2 (c(j) =~E(i.j)(Wj(e<n) WZ«('(j)) 

926 

=~E<il(j)(k)[Wl(C(k» W 2(e(O» 

+ Wj(c( 0,) WZ(e(k»] 
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(3.10) 

where 

=E(;)(j)(k) W1k(o» W2 (C(k» 

=f(il{j)(k) Wj(C(k» W2!e(O», 

'')(i,nTu)(}) and EU,j)T(i)(J)' 

for any 1\i)(j) mean 

(3. 11) 

SU,i) T(i)(j) =T(j)(j) + T(j)u), Eu,nT(i)(j) =T(i)(j) - T(jH;)' 

Of fundamental importance are the ZW matrices 
associated to the tetrad field, which are defined by 

(i)}i" =ZWj(H,,) 

(3. 12) 

(3.13) 

From these definitions it follows that the metric of 
the Riemannian spacetime is given in terms of the ZW 
matrices (3.12) and (3.13) as 

2g"v ZW3k(o» 

= ZWj (H,,) (., ZWzW) + ZWj (Hv) r.' ZTl'2(H,,), (3.14) 

where 

(W3 (e(O» 0 \ 

ZW3(e(O»)= \ 0 W3(C(O»)) =ll. 

The world indices labeling the several elements of the 
algebraic quantities given by (3.12) and (3.13) are 
raised by the metric field gl-'v. The process of raising 
(lowering) world indices is presently equivalent to a 
sum of terms representing the multiplication of Zorn­
Weyl scalars, the metric components, by Zorn-W eyl 
matrices which display free world indices, 

(i)/1" =gl-'V (j)Hv, (2)11'" =gl-'V (2)l1 v ' 

This process is extended to any other ZW matrix pos­
sessing free world indices. 

4. THE ZORN-WEYL DIFFERENTIAL OPERATOR 
IN FLAT SPACETIME 

We define a flat spacetime Zorn-Weyl differential 
operator in the quaternion representation as 

(

iTVa(Co) 00 - Wa(ej) OjJ 
Da= ~V( .):>. _'W():I =ZW,,(il,,), • c, (J, / .• Co "0 

(4.1) 

where a takes the values 1 or 2, Here 00' (] j denote the 
usual partial derivatives. The operator (4.1) acts on a 
Zorn-Weyl matrix as D.(A) =Da r.,A. It follows that 

D j (. Dz = Dj p, D2 = Dz r., D j = Dz (. D j = r:; • H. 

where 

C =1)"'B Go< 'iJ~, 1)",8 = diag(- 1, + 1, + 1, + 1). 

(4.2) 

1£ AI-' is the electromagnetic potential its associated 
Zorn-Weyl matrix is given by A. = ZWa(AI-')' Using 
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(4.1) it is possible to show that the Maxwell equations 
in the Lorentz gauge assume the form' 

(4.3) 

where J a = ZWaU,,) are the two Zorn-Weyl representa­
tions of the current 4-vector. 

5. ZORN-WEYL MATRICES ASSOCIATED TO 
GEOMETRICAL OBJECTS 

The Zorn-W eyl matrices associated to the four 
vectors of the tetrad H" = (h" (Ol, h" (1), h,,(2l' h" (3l) are 
given by (alII" =ZWa(H"L Then the Zorn-Weyl matrices 
associated to a vector B" are defined by 

(al B = (alIt B" = (al;1" (' UB" 0 (5.1) 

Algebraic Zorn-W eyl obj ects may also be associated to 
tensors, spinors, and mixed geometrical objects. To 
B u'" a tensor of rank two, we can associate the Zorn­
Weyl matrices 

(alC A = (aliI" B(Al'" a = 1, 2, (5.2) 

where B(Al" =lz~)'lBufL' 

It is also possible to associate with B u" a further 
Zorn-W eyl matrix given by 

C = «°/1"7 mJ(")B"v' (5.3) 

If B"v is symmetric the expression (5.3) becomes 
C =g"'v B "V' [. If B"v is antisymmetric C contains only 
nondiagonal "matrix elements." 

Now we consider the problem of associating ZW 
matrices to spinoI' fields in curved spaces. This 
correspondence is obtained by recalling that two­
component spinors are related to tensors through well­
known formulas. Here we are mainly interested in two­
component spinoI' fields of the type XA, wA, since we 
want to obtain the Dirac equation for a massive spin-~ 
particle in terms of the Zorn algebra. With this in mind 
we consider a pair of real null vectors V,,(x) and W,,(x). 
Then 

v,,(x)=M:B(x)XA(x)xIi(x), (5.4) 

Tv" (x) = ~a:~ (x)w A (x)w~ (x) = iaAA~ (x)WA(X)WB (x), (5.5) . . 
where a~xl =h"u,l (x)oa("lAB. In matrix notation we have 

X=(XA)=G~), Xt =(xA)=(xix2), a" =(a~ll)=a~. 
Similarly we denote 

T" =E' a!f . E=- (at Ali) = T~, 0 = (w A
) = (:~), 

. " 

ot = (w A
) = (wI, w2

). 

Raising (lowering) of spinor indices is obtained by 
the use of the spinors EAB, EAB, as usual, l/JA=EAKl/JK, 
l/J A = l/JKEKA• Now Eq. (5.5) can be written as W" = iotp"O, 
where p" = (0 "Ali) = P~. Since W" is a real vector field, 

W,t= w,,=ioT pifrl.*=- irl.TT"O*. 

Similarly Eq. (5.4) gives 

Therefore, we get the Zorn-Weyl matrices associated 
to the spinor X and 0: 
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{alB={al/!""v,,=~{al!(" (." [Xta"x. 

{ale = (al)1" W,,=_1( al//" 0. [OTT"rI.*. 

(5.6) 

(5.7) 

Zorn-Weyl matrices associated with higher rank 
spinor fields may also be constructed. For example, 
if ¢.MCD· is a spinor associated to a second rank tensor 
field, 

B"v(x) = :}aAB (x)aCD(x)¢ABcD (x). 

Then Zorn-Weyl matrices of the type (5.2) or (5.3) 
may be obtained. Finally we may also construct 
Zorn-Weyl matrices associated to mixed spin-tensor 
objects. For example, for the spin-tensor field w~(x), 
the associated Zorn.,..Weyl matrices are 

(5.8) 

6. THE COVARIANT ZORN-WEYL DIFFERENTIAL 
OPERATOR AND FIELD EQUATIONS 

Now we consider the problem of forming higher order 
tensors, spinors, or mixed objects by taking covariant 
derivatives in the Zorn-W eyl formulation of these 
objects. For that purpose we introduce an affine con­
nection and define the differential operator 

(6.1) 

and, using (5.1), its associated Zorn-Weyl covariant 
differential operators are constructed as 

(6.2) 

The definition of r" will depend on the space where (am 
operates. We can write r" = (r" o;il) where the indices 
cr, 13 are to be taken as world indices, or spinor indices. 
Thus if (a>jo operates on a Zorn-Weyl matrix associated 
to a world vector, then r" ail" is given by the Christoffel 
symbols W" {:l}. On the other hand, if {a>jo operates on a 
ZOEn-Weyl matrix associated with a spinor field the 
r" "il are the components of the s pinor connection. We 
may also consider {am acting on Zorn-Weyl matrices 
which are associated with mixed objects displaying 
vector and spinoI' indices, in this case r" o;il is a more 
complicated object where the indices ii, 7J take on the 
values of spinor and tensor indices. In this case 
(r" aii) are represented by a sum of terms involving 
the Christoffel symbols and the spinor affinities. In 
Eq. (6.1) 1 denotes the identity element with the same 
index structure as the term in r". For example, 
conSidering the mixed object if! ~ of (5.8) we have 

[) WA= (oAopa _{ P}oA+r A OP\,I,D 
'.Lv Dv" /LV D "Dvj'fp' 

Therefore, in this case 1 is represented by o~o~ and 

(riit3)-(_{ p} oA+r A op). 
" /LV D "D v 

Here r" AD represents the spinor affinity associated to 
local unimodular transformations of the spinor indices. 
In the flat space limit, in Cartesian coor~'nates, 

al 
hffl) - o~, h,,(fl) -1)"fj, and r" - 0, so that - Do. Now 
using the covariant operator (6.2) we may construct 
covariant wave equations involving tensors spinors or 
mixed objects. As a first example consider the 
expression 

WID 8 (2) B = (Ofj"" [)" 0 (2)Hv Bv = {OR" (:1 (2)f( [)"Bv' (6.3) 
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where Bv(x) is an arbitrary vector field. Using the 
properties 

/)'" h'tv) = 0, f)", 11= 0 (6.4) 

and assuming that BjJ. =Av (the electromagnetic potential) 
in (6.3), then (1)15 CO' (2) B gives the Zorn-Weyl matrix 
associated to the electromagnetic field FjJ. v in curved 
spacetime. A straightforward calculation shows that in 
the flat limit this expression reduces to the expression 
151 pA2 of (4.3). Now consider the Zorn covariant de­
rivative of a real null vector associated to the spinor 
X lsee Eq. (5.6)]. Denoting 

A=(2)IDC',(1)J:j (6.5) 

and using unities such that c = n = 1 and usual spinor 
connection condition iJ", a~ = 0, we have that the diagonal 
matrix elements in (6.5) are given by ~ (xi "a"x 
+ xta"x;,,) 11. 

Defining for any Zorn- Weyl matrix 

s(a)(N)=(alN+ (a)N=trCalN (w,,(Co·CO») 0 \ 
\ Wa(C(O»)} ' 

we have for (6.5) 

S(2)ID '" (0:8) = (xi"a"x + Xta"'X;c')ll. (6.6) 

Similarly for the matrix (5.7) we have 

(6.7) 

IntroduCing 

L=(SjnT 'X+S2Xt ·n*)11., !<=(S3Xtn*+S4nT'X)Il, (6.B) 

where s1> S2, s3, and S4 are constant numbers to be deter­
mined, we find 

S«2)ID 0 (j}:8) + L = {[xt.",a'" + SjnT]X 

+xt[a"x;" + S2n*]} 11 , 

S«2)ID (01 wc) +K = {nT[_ r"nt" + S4XJ 

+ [- n.T" T" + s3lJn*}Il. 

(6.9) 

(6.10) 

For the choice sl = S2 = - m, s3 = s4 = m, the terms be­
tween brackets in the right-hand side of (6.9) and (6.10) 
give the left-hand side of the Dirac equation written in 
terms of two-component spinors. 8 Here m is the rest 
mass of the spin-1 particle. According to our method 
we may present the Dirac equation in the Zorn algebra 
on a curved space as 

5 «2}ID 0 (1)B) - 2m Re(n T. X)ZW 3(C(O») = 0, 
(6.11) 

5 «2)]]) 0 (OC) + 2m Re(n T
• X)ZW 3(C(O») = O. 

Note that from the right-hand side of (6.9) and (6.10) 
the Dirac equation is written as y'" zP; '" - im1jJ = 0, for 

yo~C'A -':"'}(:o i~, w~(:}(~J 
From our previous definitions it follows that 

Y(", Ye} = - 2g",e·1. 

(6.12) 

It is also possible to derive a direct analog of the 
left-hand side of the Dirac equation without the problem 
presented by (6. 11) which is quadratic in the spinor X, 
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n. For obtaining such direct analogy we recall the de­
finition (5.8) anf! rewrite the relations (5.6) and (5.7) 
as (a) B= XA (al/)1A, (ale = wA (alN A, where 

(al/)1A =~ (alII'" a",AB XB = ~ (al/ijJ. d, (6.13) 

(a}N = 1 (al}ljJ. a* • wE = l{ al}I'" 7J A 2 ",BA 2 ",A' (6.14) 

These expressions are linear in the spinors X and 12, 
and a straightforward calculation gives 

S( 2lID(!) (1)717.4.) =avABXB;vl1. (6.15) 

Similarly 

5«2lID ~ (O!VA ) = *~AW~", L (6.16) 

Define (lA=-mwAIl, ]A=mxAIl. Then, from (6.15) 
and (6.16) we have 

S(<2lID G) (ll/rP) + PAl + {JA = [a"AB XB;v - IIiWA I, (6. 17) 

(6.18) 

Therefore, the Dirac equation in the Zorn algebra may 
also be directly obtained from (6,17) and (6. IB) as 

5«2 lID c (llAyA) + pA = 0, S«2}ID:;)(j>NA ) + 7 A =0. 
(6.19) 

Now we derive the Zorn-Weyl version of the Klein­
Gordon equation. Defining the spinor operators (or 
Cartan matrices associated with the covariant deriva-

" . 
tive) atA/)jJ. and if CB [)"', we can form the ZWelements 

~(2) ZW ( ) * f) (l)cll ZW ( )--"'cB OCA = 3 C(Ol aeA "', 0 = 3 C(O) u /)jJ.' 

From (6.15) we find 

O(1)A1i 0 5«2 lID Q <ilNA) = It 0 a"'All a~AW~v;jJ.' 

We have 

where Pv", is the curvature 2-spinor. Similarly 

tiC + lpt. R 
W;IJ;~==2W(;V;~) Z vtLRW • 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

Substitution of (6.22) into (6.20) and (6.23) into (6.21) 
gives 

Wl G: S«2lID Gi (1)lnA, == - ZW3(C(ollxc;,,;v,t" 

o(IlAB Q 5 «2)ID Q (1)NA) = - ZW3 (C(O})wB ;",;vg "V 

- {ZW3(C(Ol)P~"'RL:"VBtj, 
where 

""",vBe _ *a~ ifAB _ *a': u ",AB o - CA CA' 

From (6. 1B) it follows that 

~0(2) nl It f'" A 2 11 cA (') r = - maCAW;", = m XC. 

Similarly from (6.17) and (6.19) 

~(1)AB --"'All 2!l o (') T A = m It u XA; jJ. = m 11 W- • 
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Then, the Klein- Gordon equation for each component 
of A and ~* has the form 

(6.26) 

o(1)AB I~ {)«2)]J)(-\U>NA) + TA } 

11{ [J ,13 I""vli. p c. R+ 2 B} 0 = - ,W - 'I 0 C v" R W rn w = , 
(6.27) 

where III represents the covariant D' Alembert operator. 
The equations (6.26) and (6.27) in the limit of flat space 
reduce to the correct Klein- Gordon equation, for the 
signature (+2), in special relativity. 

7. SYMMETRIC-ANTISYMMETRIC THEORY IN A 
COMPLEX TETRAD FORMALISM 

As was seen in the previous sections, the geometry 
of the four-dimensional Riemannian space, described 
locally by the tetrad field, is algebraically described as 
a split quaternion subalgebra of the Cayley algebra. In 
this section we look for a generalization of this geom­
etry in such a way that part of its algebraic description 
is contained in the full Cayley algebra. With this in mind 
we consider a general second-rank tensor field G"v(x,,) 
given in terms of a complex tetrad as 

Here r(I.6 indicates the Minkowski tensor with signature 
(+2). The matrix G = (G IlV ) is Hermitian, G*v" = G"v. 
The symmetric and antisymmetric parts of this matrix 
are given by 

G("V) = ~ (GIL v + GV") =Re(G"V), 
(7.2) 

G["vl =~(G"v _ GV") =iIm(GIlV ). 

Denoting the matrices associated with the symmetric 
and antisymmetric parts of GIJ,V by f{ and if, we have 
G = f{ + ito The matrices f{ and f are supposed to be non­
singular, and the matrix f{ is used for raising four­
dimensional indices (and f{ -t for lowering these indices), 

A"ooo=G(/LV)Av 
000, A"o"=G(IJ,V)Avo.o, G("V)G(va)=o~. 

The use of c'~mplex tetrads is known in the literature, 9 

and our present formalism giving the Hermitian tensor 
G"v in terms of a complex tetrad is a condensed notation 
for a formalism due to Smith. to 

From (7. 1) we have 

G"v =h/L(ct)h;!(6)Tj
ot

6, h,,(ot) =G(/Lp)h(ot). (7.3) 

In matrix notation this takes the form K= (G"v), 
K=f{-t +ig-tofog-1 =Kt. 

Associated with the field of complex tetrads we define 
in each Zorn- Weyl basis the set of four split octonion 
elements (for each of the two values of a) 

(a)K" C'h~O) Wa(e(o» -hti:) Wa(e(k») 

= h~k) Wa(e(k» ihto) Wa(e(O» 
(7.4) 

which may be written as (a)K" = ZWa(K"), where 

K" =ih~o)uto) +ih(o) u(o) +h~k)U(k) +hrt; uti,). 

In the limit Im(h~",» - 0 the Cayley numbers K" de-
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generate in elements of the split quaternion subalgebra 
of the oclonion algebra. A straightforward calculation 
gives 

ZWt (K(") c;, ZW2 (R'V» = G("v) ZW3(c(O», 

where for any quantities A", B" 

A (" BV
) =i(A" BV +AvB"). 

(7.5) 

Therefore, the ZW elements (a)K" are associated to the 
symmetric part of the Hermitian tensor G"v. 

It is also possible to introduce ZW elements belong­
ing to the split quaternion subalgebra associated to the 
complex tetrad, 

Since these obj ects are 4 x 4 matrices we may introduce 
their Hermitian conjugates 

(a) L t" 
(

- ihto. W!(c(O» h(,:' W~(c(s» ) 

= -lzt:)W!(c(S» -ihto.W:(c(O» 

In this equation we have to use that W:(c(O» = Wa(e(o» 
and W:(c(S» = - Wa(c(S». Defining for any ZW element 
the operation s«a1 ,\1) = (a).l1 = (a1M, we find by a direct 
calculation 

5«1) L [" 8 (2) L tvl) = - 2d"vl ZW3(c(o)L 

This is a relation involving product in the ZW algebra 
which generates the antisymmetric part of G"v. 

In the formalism presently considered the real part 
of G"v plays the role of metric of a Riemannian geom­
etry with affinity r ~6 = r t", (the Christoffel symbols). 
Thus, only one kind of covariant differentiation is used, 
namely the usual covariant differentiation used in gene­
ral relativity. Therefore, all previous conventions re­
garding covariant differentiation in the ZW algebra apply 
here. The antisymmetric part of the Hermitian tensor 
G"v is related to the electromagnetic potentials by the 
definition 1 0 

(7 06) 

where A is a constant. The potentials A" satisfy the 
covariant Lorentz condition A~" = - AR"vd"vl = 0, where 
R"v =R~v'" is the Ricci tensor of the Riemannian 
geometry. 

The operator of covariant differentiation in the ZW 
algebra is here defined similarly as before by 

(a)ID = (a)K" f)" • 

As an application of the present formalism we con­
sider the motion of a charged spin- zero massive test 
body under the action of gravitation and electromag­
netism, described by the corresponding covariant 
Klein-Gordon equation. We take unities such that 
c = Ii = 1. The equation of motion takes the form 

( G("V) ~ ~ + m2),y =0 (7.7) 
Dx" Dr ' 

(7.8) 
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Using the notation P,,>rr = (l!i)j),,>rr, Eq. (7.7) lakes the 
form (in the Lorentz gauge) 

C;(uvl P"Pv1' - 2XG~:;")P" i/! = - (/172 + X2 ('2G~~v) G[~ <»)1', 
(7.9) 

Writing (alB=(alK"p"i/! we have 

(1)]])0' (2l B = (1) K" [)" \:;; (2l/\ v PA' = i(1)K" e, (2 l/\ "PuPA). 

From (7. J) we get 

(7.10) 

A similar operation may be extended for the vector 
field 

D1' _" ;<>, DY!" -Pu~ - XeG[I>") ~. 

Defining 

(alII = (alK U ~ =1 (alID _ (,(a)A 

DxU i ' 

we have 

Then, 

(alR _ (a)//U DJ' 
- (\ DxU ' 

=2G("V) 'll'~ ~w DY!" DxV , • 

Therefore, the Klein- Gordon equation takes the sim­
pler form 

JI «On l? (2lR) + 2m 2 It 'I/J = O. 

The first term on the left-hand side of this equation 
is the Zorn- Weyl gauge invariant covariant 

''D'Alembertian'' (divided by a factor i). 

8. CONCLUSION 

In the Zorn algebra formulation presented in the 
previous sections the spacetime remains four-dimen­
sional. Therefore, the Zorn- Weyl differential operat­
or is written in Sec. 7 

(olID = (a)Ku[) I> , 

has octonion coefficients (aW" but the covariant dif­
ferential operator [) /.L acts on coordinates of the four­
dimensional spacetime. This is in part related to the 
fact that exist four octonions (alK" for each of the two 
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values of the "Weyl index" (a). It should be possible 
to think of an operator which involves four extra co­
ordinates as 

ID=(alA"D(al", a=1,2, 

such that 

ill ("ID = '0 r.Jj(" (,' (b)Kvj)auf)bv, 
a, b 
a"b 

This operator would be called a generalized "D' Alem-
bertian." However, it can not be interpreted in a usual 
way since there are no coordinates x(alu in the conven­
tional relativistic formalism. One possible interpreta­
tion should be to take x(a)/.L = ia)(Ju, where (1)0"' = «(JUAB), 
(
2l a u = (ad). Such a formalism is quite different than 

the conventional relatvistic theory, since here" coordin­
ates" are the field quantities (a)au (x) of the usual theory, 
and the transition of this formalism to the conventional 
theory is not straightforward, Since such a generaliza­
tion is not directly reducible to the conventional relativ­
istic theory, we have not considered this extension in 
the present paper. 

Finally it is worth noticing that in the example given 
in Sec. 7, where an octonion algebra appears, the 
physical interpretation of the extra four components of 
the complex tetrad, or the octonion, is to incorporate 
the electromagnetic interaction on a massive charged 
test body moving in gravitational and electromagnetic 
fields. Thus it can be said that, in our present formal­
ism, the effect of intrOduction of octonions (complex 
tetrads) is to absorb the electromagnetic interaction of 
the test particle, 
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In this work the SU(2) Yang-Mills equations are studied in compactified Minkowski space. The manifold 
is identified with that of the Lie group U(1) X SU(2) and a classification is made of all SU(2) principal 
bundles over this base space in terms of homotopy classes of mappings f:S 3---;5 3 Invariance of gauge 
fields under transformation groups is defined in terms of bundle mappings and the case of invariance under 
SU(2) translatiom is shown to imply a trivial bundle structure. All solutions to the field equations 
invariant under U( 1) X SU(2) translations are obtained as well as all (anti·) self-dual solutions invariant 
under SU(2) translations. 

1. INTRODUCTION 

The interpretation of classical gauge fields as connec­
tion forms on principal fibre bundles has led to a deepened 
understanding of the underlying geometric and topological 
structure. I

-
4 Solutions to the SU(2) Yang-Mills equations in 

Euclidean space have been extensively studied in the recent 
literature and particular attention has been paid to those 
which arise as a pullback of some solution on the space S 4 
under a compactification mapping. A complete algebraic 
geometric classification has been given by Atiyah et aU for 
the self-dual Yang-Mills fields of this type, and numerous 
families of explicit solutions have been obtained. 6

-
1O 

The Yang-Mills system in Minkowski space has re­
ceived much less attention, partly because of the more diffi­
cult problems associated with hyperbolic differential equa­
tions. No systematic classification has been attempted, 
although certain particular solutions with interesting prop­
erties have been obtained. 11-19 Again, a compactification of 
the space is useful on the one hand in order to have a global 
realization of certain group actions leaving the field equa­
tions invariant20 and is necessary on the other hand in order 
to give a meaningful interpretation to such topological invar­
iants as the Chern class (instanton) number. A well-known 
procedure2

D-23 leads to a homogeneous space of the Min­
kowskian conformal group [locally isomorphic to 0(4,2)] 
factorized by the isotropy group at the origin of Minkowski 
space. The resulting manifold, referred to as the conform ally 
compactified Minkowski space, is most easily realized as the 
projective cone of null vectors in lR6 under a quadratic form 
of signature (2,4) and is diffeomorphic to (S I X S 3)/Z2' the 
manifold of the Lie group U(2). For simplicity, we shall 
mainly be working with the twofold covering space S I X S 3, 

identifiable as the manifold of the group U(1)XSU(2), 

alResearch supported in part by the National Research Council of Canada. 

which may alternatively be regarded as the compactification 
of the universal covering space lR X S 3. 

A simplifying assumption which has proved useful in 
the determination of particular solutions to the gauge field 
equations has been the requirement that these be invariant 
under some relatively large transformation group, in par­
ticular, subgroups of the conformal group of space-time. 
For the case of ordinary tensor fields, such a characteriza­
tion is unambiguous and the form of such fields may be de­
termined in a straightforward fashion. 23 The notion of in­
variance of a gauge field, however, has been somewhat 
loosely treated in the literature, since in certain individual 
cases a seemingly arbitrary gauge transformation which ac­
companies the group action must first be picked. 6

•
7,14 An at­

tempt has been made by Bergmann and Flaherty24 to shar­
pen this notion of invariance at the level of vector bundles. 
This was limited, however to infinitesimal in variance under 
one-dimensional Lie groups and involved the replacement of 
the finite gauge transformation by a seemingly equally arbi­
trary infinitesimal one. In fact, the precise definition of in­
variance, valid for finite group actions of any dimension, is 
easily interpreted at the level of connection forms on the 
principal bundle and will be given in Sec. 3. 

In Sec. 2 a summary is given regarding the coordinate 
systems and reference frames used in the subsequent calcula­
tions and the relevant transformation groups. Of particular 
interest will be the action of U(l) X SU(2) on itself by left or 
right translations. A convenient set of coframes is provided 
by the canonical left or right invariant forms of Maurer­
Cartan. The corresponding metric under which these frames 
are orthonormal is the natural 0(2) X 0(4) invariant one, 
conformal to the Minkowskian metric. In Sec. 3, the condi­
tions for in variance of gauge fields under a transformation 
group are studied, the "arbitrary" gauge transformations in­
terpreted as transition functions between local sections in 
the principal bundle and a criterion given (Proposition 3.1) 
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for when these transformations may be eliminated by a suit­
able choice of sections. The construction of all possible 
SU(2) bundles over S I XS) and their classification by homo­
topy classes of mapsf: S '---*SU(2) is given (Proposition 3.2) 
and the Chern class number is shown to be equal to the de­
gree of/(Proposition 3.3). It is proved (Proposition 3.4) that 
no nontrivial bundle exists which admits an SU(2) group 
action projecting onto left or right translation in S I X S J, and 
moreover (Proposition 3.5), that the existence on the base 
manifold of a local connection form (gauge field) which is 
invariant under SU(2) translations and which satisfies the 
Yang-Mills equations is sufficient to imply a trivial bundle 
structure. Thus, all SU(2) invariant solutions have vanishing 
instanton number. In Sec. 4, we consider those gauge fields 
which are invariant under left or right translations by 
U(l) X SU(2). Since the group acts transitively, the fields are 
determined through in variance by their value at anyone 
point, and the field equations reduce to a set of algebraic ones 
which may be solved. Among the solutions are certain new 
ones which are essentially complex, in the sense that no 
gauge transformation may cast them into a real form. An 
interpretation of these necessarily involves a complexifica­
tion of the Lie algebra and hence an extension of the struc­
ture group to SL(2,C). The details of such a complexification 
are not analyzed here; instead, we limit ourselves to deriving 
all the U(l) X SU(2) invariant complex solutions to the field 
equations regarded as forms on the base manifold. In Sec. 5, 
all self-dual and anti-self-dual fields invariant under SU(2) 
translations are obtained. The analysis for both Sec. 4 and 5 
involves the canonical forms of complex symmetric 3 X 3 
matrices. The results of these sections are summarized in 
Propositions (4.2) and (5.1 )-(5.3). Finally, in Sec. 6, there is 
a brief discussion of gauge fields invariant under the group 
SO(4) formed from left and right SU(2) translations and the 
implementation of cyclic boundary conditions. 

2. THE MANIFOLD AND GROUP ACTIONS 

Let us identify each point in the space S I xs 1 with an 
element (e"",v) of the group U(l) X SU(2). Introducing six­
dimensional coordinates as 

(2.1) 
u~ + u~ = u~ + ui + uj + u~ = I 

(when i appears as a coefficient it means v-=1), where rJ, 

are the Pauli matrices, the points [(uQ)a ~ a ... sER6j consti­
tute an orbit under 0(2) X 0(4) on the cone 

C S = {(1()ER6 IT/~ - 17i -T/i -T/j -T/~ + 17; = a}. 
(2.2) 

[Raising and lowering of six-dimensional indices is always to 
be understood as defined by the metric diag ( + I, - 1, 
-- I, - 1, - 1, + I).] Since this orbit intersects each rayon 
C' in two points (ua

) and ( - uCl
), the projective cone may be 

identified with the space (S I xS J)1Z2' At the group level, this 
may be realized by the homomorphismj: U­
(I)XSU(2)-U(2) defined by 

j: (eill',v)--+u_e - ,r/'vEU(2) (2.3) 
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which has the two element kernel! (1,1),( - I, - 1) j. We 
may note however that while S I xS J is thus identified as a 
twofold covering of (S I X S l)/Z2! the two spaces are actually 
diffeomorphic under the identification 

U(2) 3pv+-+(P',vp )EU(I) X SU(2), 

where PEU(1); v, vpESU(2) and 

",--{ pOJ 

(2.4) 

Note also that although (2.4) does not define a group isomor­
phism, it does preserve the action ofleft translation under 
SU(2) and a similar diffeomorphism may be defined which 
preserves right translation. 

The compactification of Minkowski space M may be 
realized by identifying the point with Cartesian coordinates 

(XI')'L ~ 0 ..... 3 with the Hermitian matrix, 

h=X" rJ,L (rJo-I) (2.5) 

and using the Cayley transform'l 

C: h->u = (l - ih )(1 + ih tIEU(2). (2.6) 

In terms of coordinate components, this gives the usual 
relations: 

xl' 
U'l = ±­

r 
u4 = 

I + x' +--
- 2r 

I - x, 
u5 = + ---

- 2r ' 
(2.7) 

where r = [xii + HI - X2)']I!' and x' = xii - x~ - x~ - x~, 
and their (singular) inverse 

U,L X,L= __ _ 
U' + u' 

(2.8) 

We have the following natural group actions on S I X S 1: 

Left and right translations under SU(2): 

SU(2)L L",:(e'r/',v)_(e'r/"wv), 

SU(2)R R",:(eil!',v)_(e'';',vw), 

where 

w= (
a + ib 

-c + id 

C+iJ . ESU(2), 
a-lb 

with a2 + b 2 + c' + d' = 1. 

Left and right translations under U(1): 

L", (eil/',v) = R", (eitl',v)_(e'(';' + '" ),v). 

Left action of the product SU(2)L X SU(2)R 

L ( ,r/, ) (N' I-I) I SU(2) 
(11',11"): e ,v - e ,wvw , W,W E . 

(2.9a) 

(2.9b) 

(2.10) 

(2.11) 

(2.12) 

The diagonal SU(2) subgroup [SU(2)L ® SU(2h]D [which is 
conjugation of the SU(2) group on itself]: 

(2.13) 

From (2.1), (2.7), and (2.9)-(2.11) we see that left translation 
by (e'¢,w) and right translations by (e - '¢,w- I

) are conjugate 
to each other under the map 

v :(UO U' U' u1 u' US) J P7' , , , , , 

(2.14) 

corresponding to space-time inversion in Minkowski space. 
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The product group SU(2h ® SU(2h in this representation 
may be identified with the group SO(4) acting on the 
(ut,u 2,u"u4

) subspace, [More specifically, we have a homo­
morphism: SU(2)I. ® SU(2h-SO(4) of which the two-ele­
ment kernel I (1,1),( - 1, - 1) l acts as the identity,] Fur­
thermore, U(I) translations on S I may be identified with the 
action of the group SO(2) in the (UO,u') subspace, The diag­
onal subgroup [SU(2)I. ® SU(2)R]D acts on the (u 1,u2,u 1

) 

subspace and may be identified (again, factorizing first by 
the kernel) as the SO(3) subgroup defining proper rotations 
in Minkowski space. 

Define a basis I till for the u(1) E9 su(2) Lie algebra as 

to = iI, 
a 

t
l
· = -.!.., i = 1,2,3, 

2i 
(2.15) 

[to,t,l = 0, [t"tf ] = Eljktk· 

A corresponding basis for the cotangent space 
T *(S I X S 1) is provided by the canonical (Maurer-Cartan) 
left-invariant forms" on U(I)xSU(2): 

WI. = v-1dv + idJ/i = W~Ji + w~to, 
where 

w2 = - 277~/3uadu/3, a,/3 = 1,2,3,4, 

w~ = dJ/i = u'duo - uOdu'. 

The symbol77~f3 is the one defined by 't Hooft,26 

'Y1~ = cijk 
'/1) 'C • 

(2.16) 

(2.17a) 

(2.17b) 

(2.18) 

The canonical forms satisfy the Maurer-Cartan structure 
equations: 

dw~ + !Eijkw'L!\w2 = 0, 

dw~ = o. 
(2.19a) 

(2.19b) 

Similarly, we may define a basis of right invariant forms wR 

which are related to the left-invariant ones by space-time 
inversion, 

(2.20) 

In terms of the above forms, we may express the natural 
0(2) X 0(4) invariant Lorentzian metric for S I X S 1 as 

g = dU6 - dui - du~ - du~ - du~ + du~ 

(2.21) 

which, is conformal to the Minkowski metric gm in M. The 

sets I w?,!w~ l and I w~,!w~ l define fields of orthonormal 
(nonhoionomic) coframes for S I X S 1. The corresponding 
volume element is thus 

dfl IOAIA2A3 IOAIA2A3 
= gUJL 1\ WI. 1\ WI. "WI. = gUJR /\WR /\WR I\WR, 

(2,22) 

which, under the pullback to M gives 1/T" times the Min­
kowskian volume element. 
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The dual * F of a 2-form Fis unchanged under a confor­
mal change of metric, and may be simply expressed in terms 
of the basis for A 2 T *(S I X S 1) provided by 
the above coframes. In view of their orthonormality, we have 

(2.23a) 

and 

(2.23b) 

(where uJ' represents either oIi or uJ~.) 

The change of relative sign in (2.23) is due to the Lor­
entzian type of metric which also implies that an eigenvector 
of the * operator may only have eigenvalue ± i since 

**F= - F. (2.24) 

3. THE PRINCIPAL BUNDLE AND INVARIANT 
CONNECTIONS 

We shall now investigate the restrictions that invari­
ance conditions for a connection form place on the bundle on 
which the connection is defined. Let H be a Lie group, s;> its 
Lie algebra, I Unl an open covering of a manifold M and wa 
an S;>-valued I-form on Ua. Let G be a Lie transformation 
group acting on M on the left, 

/g:M-M, gEG (3.1) 

and suppose that the Ua are G invariant, 

/gUaC U", 'if gEG. (3.2) 

The condition that/;w" be gauge equivalent to Wa is 

/;W" = Adpa- 1(g,p)Wa + Pa- l(g,p)d~a(g,p), 

PEUa , 'if gEG, (3.3) 

where 

Pa: G XU,,-H (3.4) 

defines a local gauge transformation and satisfies, for consis­
tency of the composition law in G, 

Pa(g',p)p,,(g,fg'(P» = Pa(gg',p)· (3.5) 

Furthermore, if the local forms Wez are related by 

wa = Ad(k';/1 I)Wf3 + k ar/dkaf3 on UanU/3 

for some gauge function 

ka/3 : UanU rH 

we must have, for consistency 

and 

(3.6) 

(3.7) 

(3.8) 

Using the function ka/3 as transition functions, we can con­
struct a principal Hbundle 9 (M,H) over M which is locally 
trivial over each Um 

Ta: ,0/ I u,,-UaXH, (3.10) 

where the maps T a defining the trivialization satisfy 

TrfT'a-I(p,h) = (p,ka/3(p)h), 'if pEUa nU/3' hER. (3.11) 
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A G-action] on ;y' projecting to the action! on M may then 
be defined by 

(3.12) 

which is a consistent definition by virtue ofEq. (3.8). A con­
nection won .y' may now be defined by 

W, (p.II) = T;,(Adh '1«(U) + h -ldh), (3.13) 

where h -ldh is the Maurer-Cartan from on T(H) 
C T (Vcr X H). Equation (3.6) shows that this definition is 
unambiguous and Eq. (3.3) implies that the connection form 
w is G invariant under the action]: ::1' ---+ .'Y) . Thus the infor­
mation in Eqs. (3.3)-(3.9) is equivalent to the existence of a 
principal H bundle with an action of G as bundle transforma­
tions, together with a G-invariant connection. The local con­
nection forms are the pullbacks of (u under the sections (J a 

given by 

(3.14) 

and the functions P a(g,p) are just the transition functions 
relating (J" and its image under G, 

(3.15) 

When determining the local forms Wa corresponding to 
a G-invariant connection, it is helpful to know whether a 
suitable choice of sections p" may be made such that the 
functions p" take the simplest possible form. In particular, 
we may inquire whether a choice exists for which thepa take 
the identity element in G as their only value. The following 
proposition gives the conditions for this to hold. 

Proposition 3.1: If for each Va there is a smooth cross 
section Sa of the orbits of Gin M such that 

(i) G XS,,---+Va has constant rank, and 

(ii) for all sESa and gEG, (the isotropy group of Gat s), 
we havepa(g,s) = e, then there exists a G-invariant section 

A • A A*_ 

(Jer of::I' I u and a form Wa = (Jaw which is gauge equivalent 

to w" and satisfies 

(3.16) 

Proof By the implicit function theorem, for all PEV", 
there is an open set VC Va containingp and smooth 
functions: 

such that 

!K".<q)(S"",(q» = q, qEV. 

The map 

ha.l' : q---+p"(ga.iq),s,,.,,(q» 

defines a smooth function ha.v : V---+H and it is immediate 
that for qEV,IIV" 

p"(ga.,Jq),s,,.v,(q» = p"(ga.,,(q),sa.,,,(q»· 

Thus, we have a smooth function 

and may verify directly that the section defined by 
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(JJp) = T" I (p,h,,(p» 

is G invariant, that is, 
_ I - A 

Ig O(7aOr~::=::: aCt' 

implying, by Eq. (3.15) that 

satisfies (3.16). 

A particular case for which the proposition applies is 
when the group action satisfies (i) and is free; that is, the 
isotropy group at all points is the identity element. This cer­
tainly holds for any closed subgroup of a Lie group acting by 
left or right translations, which will be our main concern in 
Sec. 4 and 5. 

We now turn to the classification of principal SU(2) 
bundles over S I X S J. Corresponding to any smooth map 
l: S '-SU(2), we may define such a bundle by considering 
the space 

E = (O,..:2.)XS 'XSU(2), 
2 

(3.17) 

regarded as the trivial SU(2) bundle over the product of the 

open interval (O,~) with S" and factorizing by the equiv­

alence relation 

(t,p,h) ~ (! + t,pJ(P)h ), 
f 

'lttE(O,~), pES" hESU(2). 

(3.18) 

Let Efdenote the quotient of E by this relation, regarded as a 
principal bundle over S' X S '. 

Proposition 3.2: Any SU(2) bundle overS 'XS J isequiv­
alent to Effor some! The bundles Efand Eg are isomorphic 
if and only if/is homotopic to g. 

The proof involves certain ideas in the homotopy the­
ory of fibre bundles which may be found in any standard 
text,'l.2S to which the reader is referred for further 
background. 

Proof First note that by using the covering of S l by 
contractible neighborhoods of the hemispheres, we find that 
for any Lie group H, the isomorphism class of a principal H 
bundle over S l is determined by a homotopy class in 1T2(H). 
Since 1T,(SU(2» = 0, any SU(2) bundle over S J is trivial. 

Further, (O,~) xS l being homotopy equivalent to S J, the 

same triviality holds true for any SU(2) bundle over (0,2.) 
2 

X S J. Given an SU(2) bundle B over S I X S 3, let 1T* B be the 

pullback of B to (O,~) xs 3 under the map 1T : (O,f) 

xS J_S' xS 1 defined by 

1T(t,p) = (e2m"p). (3.19) 

Letting;' : (1T* B )---+B denote the corresponding bundle map, 
an isomorphism dJ : E---+1T* B may be chosen under which 

;'c/J (t,p,h) = ;'c/J (I + t,pJ(P)h), 'It tE(O,~) (3.20) 

for some smooth map!: S '---+SU(2). Generally any isomor­
phism ri: E_1T*B defines a homotopy ofmaps/,(p), tE(O,~), 
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but may be composed with a suitable automorphism which 
replaces these by a fixedf(p) in the same class. The map 
;¢ : E-+B, in view of (3.20), passes to the quotient under the 
equivalence (3.18), thereby defining an isomorphism 
J:ErB. 

Suppose now thatJ,g-+SU(2) are homotopic by a ho­

motopy h, satisfying hI g,tE(O,!) and hI f for tE(1,~). 
Then the automorphism of E, 

(t,p,h )-+(t,p,h ,- 1(P)h ), 

takes points which are equivalent underfinto points which 
are equivalent under g and hence determines an isomor­
phism Ef<;?fEg. Conversely, to prove that if Efis isomorphic 
to Eg thenfis homotopic to g, we apply Hopfs theorem, 
stating that two mapsJ,g : S n -+s n are homotopic if and only 
if they have the same degree. Suppose there exists an isomor­
phism (T : ErEg. Then there is an automorphism;' of E 
which takes f equivalent points into g equivalent ones. 
Writing 

;'(t,p,h) = (t,p,(TI(p)h ) 

we see that 

g(p)(T,(p) = (TI + ,(p)f(p) 

and therefore 

degg + deg(T, = degf + deg(T1 + I 

which follows most simply by replacingJ, g, (TI' and (TI + I by 
the appropriate power map p-+pn,pESU(2) of degree n, to 
which they are homotopic. Since (T, and (T I + I are homotopic, 
their degrees are equal and hence so are degfand degg, im­
plyingf and g are homotopic. Next we prove: 

Proposition 3.3: The second Chern class number of Ef 
equals the degree off; that is, 

C2 = - _1_ ( B (fl Afl) = degf, 
161T2 Js' xs' 

(3.21) 

where fl is the curvature of any connection w on Ef pulled 
back to S ' X S J through any choice of local sections over an 
open covering and B is the Killing form: 

B (X, Y) = Tr adX ad Y, X, YEsu(2). (3.22) 

Proof Any connection on E may be written as 

W("P,h) = h -'dh + Adh -'OJ(,.P)' (3.23) 

where h -'dh is the Maurer-Cartan form on SU(2) and OJ(t.p) is 
3 -an su(2)-valued I-form on (O,-)XS'. In order that OJ define a 
2 

connection on Ep we must have 

OJ(t,p) = AdJ-'OJ(I + '.p) + f-'dJ, V tE(O,!). (3.24) 

If ¢ is chosen as a Coo real-valued function on (O,~) with 
2 

values ¢ 1 on (O,!) and ¢ _0 on (1,~), then 
2 

(3.25) 

satisfies (3.24). The curvature?i corresponding to this 
choice of connection on the open set (0,1) X S ' in S ' X S 3 

[where (0,1) is regarded as S ' minus a point], pulled back by 
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the section CT(t,p)-+(t,p,e) is: 

fl = dOJ + ![OJ,OJ] 

= ,pdt Af-'df + !(¢ 2 - ¢ )[f-'dfF'df], 

B ({J A fl ) = !,p (¢ 2 - ¢ )dt A B (f-'df A [f-'df J-'df))· 

(3.26) 

In the notation of the preceding section, we have 

B (h -'dh A [h -'dh,h -'dh ]) = - 12OJ1 AOJi AOJi· 

The S' integral in (3.21) gives 

! t,p (¢ 2 - ¢ )dt = ! f (¢ 2 - ¢ )d¢ = ..:...-. Jo I 12 

(3.27) 

(3.28) 

Letf-'dJ;, =AI,p' + A2•pOJ 2 + A3•pOJ' for pES' and define a 
linear transformation Ap by Ait) = Ai•p' then by (3.27) and 
(3.28) 

lB(flA{J) = -l,(detA)OJ1AOJiAOJi 

- 161T2 degf (3.29) 

The last equality follows from Brouwer's degree theorem. 29 

The following proposition shows that it is impossible to in­
troduce a left SU(2) action on a principal SU(2) bundle over 
S' X S 'which projects onto the left-translations (2.9a) on the 
base unless the bundle is trivial. 

Proposition 3.4: Efadmits a left SU(2) action compatible 
with the action Lit,p) = (t,gp) fg,pESU(2)] if and only if 
degf= O. 

P,-oof Let ig repres~nt the action of gESP(2) on E.t 
Then Lg induces a map Lg on E. If we write Lit,p,h ) 
= (t,gp,p,(p,g)h ), then we must have 

PI + ,(g,p)f(p) = f(gp)p, (g,p). (3.30) 

Fix a point po. Then the map g-+f(gpo) has the same degree as 
I The two maps g-+p, (g,po) and g-+p I + , (g,po) being homo­
topic have equal degrees. Since the degrees are additive un­
der group multiplication, (3.30) implies that degf = O. 

Even if we ignore the possibility of a group action on the 
bundle Ef , an invariance condition interpreted entirely on 
the base imposes strong restrictions onl If the local connec­
tion form of a connection on Ef pulled back to the base is 
invariant under left SU(2) translations, it may be expressed 
as 

OJ("p) = APJL + B, dt, (3.31) 

where A ,EEnd(su(2», B,ESU(2) and OJ L is the S, part of the 
Maurer-Cartan form iii L on S ' X S, [identified with 
U(1) X SU(2)]. A differential equation for OJ, such as the 
Yang-Mills equation, imposes certain conditions on A, and 
B" which then imply a trivial bundle structure. 

Proposition 3.5: Suppose OJ is the local connection form 
of a connection on Ef which satisfies L tv = OJ for all 
gESU(2), and hence has the form (3.31). If OJ satisfies a differ­
ential equation of the type 

A, (n) = F (t,A ,,A , (' ', ... ,A, (n - I),B"B, (' ', ... ,B, (rn» (3.32) 

such that F is smooth and F (t,O,O, ... ,O) = 0, then degf = O. 
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Proof Assuming degf*O, we shall arrive at a contradic­
tion. The condition (3.24) for the connection to be consis­
tently defined on £} takes the form: 

Ad/IA I f t«(I)L) + /Idj = At(wl ), 

Ad/IB, I t = B" tE(O,!). 

(3.33a) 

(3.33b) 

Since degf*O, the image of/covers SU(2) and we conclude 
from (3.33b) that B, I IEcenter su(2) = 101 and hence 
B, I 1= BI =0. 

Taking the exterior derivative of(3.33a) at point p, sub­
stituting, using the Maurer-Cartan equations and translat­
ing to the origin c we obtain 

Ad/I(P)(A I [(I)V(LI,) - [AlwvAI(UL J), 

(3.34) 

Also, by repeated application of the exterior derivative we 
find 

Adj'IAII"I(I)L = A"I"I(lj,.. n = 1,2 .... , 

and conclude that A II") = A,,("I = 0. 

(3.35) 

Due to the uniqueness of solution of (3.32) under these 
boundary conditions, AI must therefore be constant. Substi­
tuting An = A I in Eq. (3.33a) at t = 0, we have 

j-Idj= AI«(v,,) - Adj'l(wd 

Since 

det{I - Adj") = 0 

the argument at the end of Proposition 3.3 shows dcgf = 0, 
contradicting the hypothesis. 

4. THE FIELD EQUATIONS AND U(1)XSU(2) 
INVARIANT SOLUTIONS 

The Yang-Mills potential (I) is defined, subject to a 
choice of section in the principal SU(2) bundle over S' xS " 
asansu(2)-valued l-formonS I xs 1. The corresponding field 
is the curvature 2-form, 

F = dw + ![w,w] 

and the field equations are 

D*F= d*F + [(I),*F] = 0, 

(4.1) 

(4.2) 

where the dual *Fis taken with respect to the metric (2.21). 
In view ofEq. (2.24), the Lorentzian analog of the (anti) self­
dual equations is 

*F= "FiF, (4.3) 

implying that such fields are necessarily complex. 

We shall be interested in determining solutions to (4.2) 
and (4.3) that are invariant under the group actions defined 
in Sec. 2. Since left and right translations by U(I) X SU(2) or 
SU(2) satisfy the conditions of Proposition 3.1, we may with­
out loss of generality choose the value of the function p" as 
the identity, giving the simple requirements 
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(4.4a) 
or 

R ;(V = (LI (4.4b) 

\igEU(l) X SU(2) or SU(2). 

Consider now the gauge potentials w satisfying (4.4a). 
These may be characterized most easily in terms of the left­
invariant canonical form (v,., 

(4.5) 

where the components A ~ and B' will be constant for 
U(1) X SU(2)L invariant forms and, more generally, func­
tions of the S I angle if; for SU(2)cinvariant ones. For right­
invariant gauge fields, satisfying (4.4b), we simply replace 
(I) I. in (4.5) by (U R' However, since the field equations are 
invariant under the space-time inversion "PI' we may ob­
tain all right-invariant solutions from the left-invariant ones 
by making the replacements: 

A> • - A;C - 1/;), B '(IjJ)--. - B '( - 1/;), 
(4.6) 

It is therefore sufficient to consider the left-invariant case 
(4.5) only. The field strength may be conveniently expressed 
in terms of the basis (uj' A (I) ~~ for A 2T *(S I X S 1) as: 

F= [!F;Ju'/A(v~)ti' 

where 

and 

(4.7) 

(4.8a) 

(4.8b) 

The components of * F are easily obtained using (2.23). The 
field equations (4.2), expressed in components, take the form 

I d 'A ' dB /II dA " 
k I. A" B/II __ k +2A' "2 dtjJ' + 2€II"tI dl/; k + Eim " dl/J k 

- 3 4 iliA 11 + 2(A ' A ',A' - A i,A ',A , ) cimll€ klU/ '"' p q /.;, 11 f11 n 11 /... 

and 

dA k . 

E Af __ ' -A 'A "'Bill +A inA /liB' = ° 
Ijk , dUJ P , I' 

while (4.3) becomes 

dA " . I fA k . AJ,A ') - 0 -- 'F2IA, + EUk(B ,± IE'!>"r'" Ii - • 

dl/J 

(4,9a) 

(4.9b) 

(4.10) 

We shaH be considering complex solutions to these 
equations, hence w takes values in the complexified gauge 
algebra su(2) ® IC = sl(2,1C). 

For the U(1) X SU(2)L invariant case the derivative 
terms in (4.9) vanish, leaving a third degree set of algebraic 
equations which we may solve completely. In doing this, it 
will be helpful to make use of the fact that these equations are 
invariant not only under the complex gauge 
transformations: 

(4.lla) 
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B i -..R '}1J 

V(R ')ESO(3,C), 

(4. 11 b) 

but also under the following transformations, corresponding 
to right-SU(2) translations: 

A ik-..A jRJk, 

B'_Bi, 

V(R i)ESO(3,C). 

(4.12a) 

(4. 12b) 

Let AEsI(2,C) ® sl(2,C)* denote the sl(2,C) endomorphism 
whose components in the! ti ® t; I basis are A ')' and B the 
sl(2,C) element with components B i. Multiplying (4.9a) by 
A Jk and summing over k, we obtain the matrix equation 

X(l + trX)=t= 3(detX)II2Jl - X' + HB®XB - B 'X) 

= 0, (4.13a) 

where 

X=AA T 

and 

while (4.9b) may be written 

XB = (trX)B. 

(4.14) 

(4.15) 

(4.13b) 

The gauge in variance condition (4.11) now becomes the in­
variance of (4.13) under the transformations: 

X_RXR T, B_RB, (4.16) 

where R is the SO(3,C) matrix with components R ~. It is 
possible to solve (4.13) by using these transformations to 
standardize the forms of X and B. The result may be summa­
rized as follows: 

Lemma 4.1 : Up to a gauge transformation (4.16), the 
solutions of (4.13) are: 

(i) B = ° and X has one of the forms: 

X = .u Jl, .u = t or I, 

X= 
(

-I 

X= 
(

-1 

-1 

-1 

iy 

-y 

° 

(4. 17a) 

(4. 17b) 

(4.17c) 

y~o. 

(4.18) 

(iii) X = ° and B is arbitrary. (4.19) 

Proof: (i) If B = 0, then X satisfies the polynomial 
equation 

X' - X (1 + trX) =t= 3detX 1121 = 0. (4.20) 

Since this is of degree 2, X must have one of the following 
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Jordan forms: 

° It 

° 

o 
It 

° 
In either case, there is a two-dimensional subspace of eigen­
vectors with equal eigenvalues, and hence X has at least one 
eigenvector of nonzero length. It follows that by a transfor­
mation of the type (4.16), X may be cast in the form 

(

x+y 

X= ~ 
iy 

x-y 

° Substitution in (4.20) yields the equations: 

x(1 + x + z ± 3z I12
) = 0, 

y(l+z)=O, 

z(l + 2x) ± 3xz I12 = 0, 

whose solution leads to the expressions (4.17) or X = 0. If 
H::j=O, applying the LHS of (4. 13a) to it and using (4.13b) 
gives 

TrX = ± 3(detX)l!' (4.21a) 

while taking the trace of (4.13a) gives 

TrX + (TrX)' - TrX' = =t=9(detX)II2. (4.21b) 

(ii) If B '~O, B may be rotated into the form (O,O,b ) by 
the transformation (4.16). Equation (4.13b) then implies 
that X may, after a suitable rotation in the (1,2) subspace, be 
put in one of the forms: 

x~G ~Y ~, 
TrX = z, TrX' = z', detX = ° 

if it has only one eigenvector of nonzero length, or 

-Y ) 
z 

trX = z, TrX' = z' + 2y2, detX = - y 2z 

otherwise. In either case, substitution in (4.21) yields z = ° 
and hence Eq. (4. 13a) becomes 

X (1 - tb ') = X', 

implying that either X, B are of the form (4.18) or X = 0. 

(iii) If B' = 0, B~O it may be rotated into the form 
(l,i,Q) by the transformation (4.16). Equation (4. 13b) then 
implies that X is of the form 

C+Y iy 

~J X= ~ x-y 

iz -x 

TrX=x, TrX' = 3x', detX= _x3 • 

Substitution in (4.21) yields x = ° and hence Eq. (4. 13a) 
becomes 

X=X', 

implying y = z = 0 and hence X = o. 
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Using the results of this lemma, we may obtain all con­
stant [U(I) X SU(2) invariant] solutions to (4.9), the result 
being: 

Proposition 4.2: Up to a constant gauge transformation, 
the U(l) X SU(2) invariant solutions to (4.9) are of the form: 

I. A = a Q9 y, B = (3, 

where a, (3Esl(2,C), YEsI(2,rC)* satisfy 

a·(3 = 0, (32 = 4 

and either 

a' = 0 or y' = 0 

(4.22) 

(4.23a) 

(4.23b) 

[the inner product on sl(2,rC) and sl(2,C)* being defined rela­

tive to I t, I and I t ~ I as orthonormal bases]. 

II. A-{ \D, B = 0, RESO(3,rC). 

3r' (4.24) 

III. A = All, B = 0, (4.25) 

where A = ! or 1. 

IV. A = 0, B arbitrary (4.26) 

Proof Consider first case (iii) of the lemma. Since X 
vanishes, Eq. (4.14) implies that the lengths and inner pro­
ducts of the rows of A vanish. It follows that they are all 
proportional to a single zero length vector y: 

A = a Q9 y, y' = 0, aEsl(2,rC), YEsl(2,rC)*. 

Substitution in (4. 9a) gives 

a( 1 - !B 2) + !B (a·B) = 0 if A::;z!=O. 

Taking the inner product with B, we obtain 

a·B=O 

and hence B' = 4 or A = O. In either case, Eq. (4.9b) is also 
satisfied, yielding solutions of type I or IV. 

Turning next to case (ii) of the lemma, Eqs. (4.14) and 
(4.18) imply that, up to a suitable transformations of type 
(4.11) and (4.12), A and B have the form: 

o 
iEC 

iEd 

a' = y::;z!=O, E = ± 1, C and d arbitrary. 

Substituti~n i~to Eq. (4.9a) shows that C = d = 0, and there­
fore A = a Q9 y, where 

a = tl + it" y = at ;. 

applying the transformations (4.11) and (4.12), we obtain, in 
general: 

A = a Q9 y, B = (3, 

where a,(3Esl(2,q, YEsl(2,rC)* satisfy: 

a·(3=O, a'=O, (3'=4, 

corresponding to the other case of solution 1. 

Solution II follows directly from the case (4. 17b) of the 
lemma while solution III follows from (4. 17a). A rotation of 
type (4.12) need not be included in parametrizing the latter 
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case, since it becomes equivalent to a gauge transformation 
(4.11). The last case (4.17c) corresponds, up to transforma­
tion (4.12), toA of the form 

which does not satisfy Eq, (4,9a). This exhausts all the cases 
of Lemma 4,1 and therefore case I-IV represent all 
U(I)xSU(2) invariant solutions of Eqs, (4,9), 

Denoting the T *(S 3) part of ;;j Las (U v we may write the 
gauge potential (U and field F corresponding to the solutions 
(4.22) as 

(tJ = a(y,(tJ /) + (3(UY. (4,27) 
and 

F= - !a(y,[(U[,(Ud) + [a,(3 ](y,(tJL)I\(U~. (4.28) 

The condition (4.23) imply, in the case a 2 = 0 that 

[a,(3] = ± 2ia (4.29) 

and hence (4.28) is an (anti) self-dual field; the only one, in 
fact, among those listed in Proposition (4.2). Furthermore, 
s1I1ce 

a' = !([a,(3])' and a·[a,(3] = 0 (4.30) 

the integrands B (F 1\ F) and B (F 1\ *F) defining, respec­
tively, the class number and the action integral both vanish. 

The gauge potential and field for solutions (4.24) may, 
up to a suitable gauge transformation, be expressed as 

(tJ = (3 - i)a(a*'()L) + i(Uv 

F= 2i[(Uu(UE.l + 2(1- i)~(~*'[(UV(UL D, 
(4.31 ) 

(4.32) 

where ~Esl(2,q is any unit vector and ~*Esl(2,q* its dual, 
defined by the inner product on sl(2,C). The action integral 

(4.33) 

takes the value 641T2/g', while the Chern number, consistent 
with Proposition (3.5) again vanishes. The case R = :n. of 
solution (4.24) has been found independently by Howe and 
Tucker. 19 Solution (4.25) with A = ! is the SOC 4) X SO(2) 
invariant one studied by de Alfaro et al., 11,1] while the case 
A = 1 of(4,25) and solution (4.26) represent pure gauge po­
tentials corresponding to vanishing fields. 

5. SELF-DUAL SU(2)L -INVARIANT SOLUTIONS 

The self-duality equation (4.10) for SU(2)L -invariant 
fields may be cast in a simple vectorial form by identifying 
the three sl(2,q elements lA, l whose components are the 
columns of the matrix A. In terms of these and the sl(2,q 
vector B, the gauge potential (4.5) is 

(u = AfV~ + B(U7. 

and Eq. (4.10) becomes 

A,~2iA, + [B,A,l ± iEuk [Aj,Ak 1 = O. 

Defining new sl(2,q vectors IAJ, B by 

A, - A,e ± 2'rI', B ± 2iBe ± 2it/" 
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and using three-dimensional cross products to replace the 
Lie brackets, we have 

- . + 2i1/1 - - --Ai ± Ie - [2B XAi - Eijl~jXAk I = 0. (5.4) 

Finally, changing variables to 

(5.5) 

we obtain the equation 

A; + B XAi = !Eij~jXAk' (5.6) 

where A ; denotes the derivative of Ai with respect to w. 

The solutions to (5.6) may be systematically found by 
separately considering the cases when the vectors [A;\ are 
colinear, when they span a (complex) two-dimensional space 
and when they are all linearly independent. In the latter case, 
we may further distinguish between three classes depending 
upon the eigenvectors of the complex symmetric matrix Y 
formed from the dot products 

Yij=A(Aj" (5.7) 

The results may be summarized as follows: 

Proposition 5.1: If the three vectors Ai satisfying Eq. 
(5.6) are colinear, then up to a gauge transformation they are 
constant and B vanishes. The gauge potential w is thus of the 
form 

w = e -'- 2iil'a (y,w L)' (5.8) 

where aEsl(2,C) and YEsl(2,C)* are arbitrary complex 
vectors. 

Proposition 5.2: If the vectors Ai span a complex two­
dimensional space, then up to a gauge transformation and a 
cyclic permutation of the labels (1,2,3), the most general so­
lution to (5.6) is of the form: 

A, =(3, 

A1 = i(a cose + (3 sine), B = i( - asine + (3cose ), 

(5.9) 

where a,(3EsI(2,C) are arbitrary noncolinear, complex vec­
tors and e is any complex number. 

Proposition 5.3: If the vectors Ai are linearly indepen­
dent, then three classes of solutions to Eq. (5.6) exist, de­
pending upon whether the matrix Yhas two (and hence 
three) eigenvectors of nonzero length, only one, or none at 
all. Denoting by A the matrix whose columns are AI, A" and 
A 1, then up to a gauge transformation, B vanishes and 

(i) If Y has three eigenvectors of nonzero length, 

where 

p = b ds(b (w - wo) 1m), 

q = b ns(b (w - wo) 1m), 

r = b cs(b (w - wo) 1m), 

(5.10) 

(5.11) 

ds, ns, and cs are lacobi-Glaisher functions,]O b, m, W"EC, 
and RESO(3,C) are arbitrary. 
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(ii) If Y has only one eigenvector of nonzero length, 

where 
a 

iq 

p-q 

° 
p=------

sinh [a(w - wo)] , 

bsinh[a(w - Wo)] 
q= 

a 

r= 
bcoth[a(w - wo)] 

a 

with a, b, WoEC, b=FO, and RESO(3,C). 

(iii) If Y has no eigenvectors of nonzero length, 

where 

p= 

iq 

p-q 
ir 

w- Wo 

q = - !(w - wo)[a'(w - wo)' - b ], 

r = - a(w - wo), 

with a, b, woE'C, a=FO, and RESO(3,C). 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

We may remark that Eqs. (5.12)-(5.13) with b = ° still 
define a solution, however this is a degenerate case of class (i) 
with only two distinct eigenvalues. Similarly, Eqs. (5.14) and 
(5.15) with a = ° define a degenerate case belonging to class 
(ii) with only one eigenvalue. The solutions (5.10)-(5.11) 
with R = 1 and Wo = 0, have previously been obtained by 
Howe and Tucker l9

; the others given here are all new. It is 
relevant to note that gauge transformations within the class 
of SU(2)-invariant solutions alter the vectors Ai only by a 
complex rotation and hence leave the matrix Y of inner pro­
ducts invariant. Therefore. the various classes of solutions 
given above are really distinct. The vector B, on the other 
hand, is transformed into Adg-I(B + gg-I) under a transfor­
mation which preserves the SU(2) symmetry (the gauge 
function g depending upon the S I angle l/J only) and hence 
can always be made to vanish by solving a linear, first-order 
differential equation for g. However, this does not always 
give rise to the simplest form for the solutions to the field 
equations. 

Proof of Proposition 5.1: Since the ,{'s are colin ear, Eq. 
(5.6) becomes 

A;+BxAi=O. 
Taking the inner product with A{ shows that the dot pro­
ducts (Ai,A{) are constant, and hence the til dependence is 
generated by a rotation. There exists therefore an SU(2)­
valued function g on S I such that 

Ai= Adga i , 

where a, are constant sl(2,C) elements which are colinear, 

aj=C,a. 
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Applying the gauge transformationg, Ai becomes a j and the 
field equation becomes 

/3Xa = 0, 

where /3 is the transformed value of B. Therefore, /3 is propor­
tional to a and we have 

0) = e t 2ilJ'(a(y,lUL ) + balU~), 
where YEsl(2,C)* has components Cj and b is some complex 
function on S '. Applying the gauge transformation defined 
by exp( - aSb d7/!) gives the expression (5.8). 

Proof of Proposition 5.2: Since the _{'s span a two-di­
mensional space, 

detA =A,.(A,xA]) = 0. 

In the gauge where B = 0, taking the inner product of 
(5.6) with A, again shows that the 7/! dependence is deter­
mined by a rotation acting upon fixed vectors a j • We apply, 
as above, the appropriate gauge transformation to make the 
A;'s take these constant values, which gives rise in general to 
a nonvanishing B. Within a permutation of indices, we may 
define: 

A, = a, A, = /3, AJ = aa + b/3, 

for some constant vectors a, /3 and numbers a, b. Substitu­
tion into Eq. (5.6) then shows that 

a' + b' = - 1 

and 

fj = ( - ba + a/3 ). 

function on S' satisfying 

g' = 2 detA. (5.19) 

Since the second term in (5.18) is unchanged by a rotation, 
we may always standardize Yby a constant rotation: 

A,~A;R, Y--R -'YR, (5.20) 

to one of the three forms: 

Y'il = c+ g
, b 2 +g, J (S.21a) 

r,+2b 2ib 
o ) y", = 2~b g2 - 2b o , b=t'=O, (5.21b) 

° g2 + a' 

C+b ib 2") Y']J = ib g, -b 2ia , a-=1'=O, (S.2Ic) 

2a 2ia gJ 

where a, bEC are arbitrary. (The squares are introduced to 
simplify the final result and do not imply any restrictions on 
the parameters involved since a, b are complex.) Substituting 
each of these in to (5. 17) and using 

detY = (detA)2 (5.22) 

gives rise to the three differential equations: 

(g;)' = 4g,(g, + a')(g, + b '), 

(g~)2 = 4gi(g, + a'), 

(g~)2 = 4g~. 

(5.23a) 

(5.23b) 

(S.23c) 

Therefore. defining Integrating, we obtain: 

a = i cose and b = i sine 

we obtain the result (5.9). 

Proof of Proposition 5.3: Preliminary to the proof, we 
remark that any complex, symmetric 3 X 3 matrix C may, 
after conjugation by a suitable complex rotation, be cast in 
one of three canonical forms: 

C'~C Y ) (5.16a) 

Cy iy 

D C''' = i~ x-y y=t'=O, 

° 
(5.16b) 

Cy iy 

~) C'" = i; x-y z=t'=O, 

iz 

(5.16c) 

corresponding, respectively, to three, one, or no eigenvectors 
of nonzero length. 

Now choosing a gauge in which B vanishes, taking the 
inner product of (5.6) with A, and symmetrizing in i,l gives 

Y'=2detA.ll. (5.17) 

Integrating this, we have 

Y=C+gl, (5.18) 

where C is a symmetric, constant matrix and g is a complex 
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g, = b 2 cs'(b (w - wo) I m) with m = 1 - a'lb', 

(5.24a) 

a' 
g,= -------------

sinh' [a(w - Wo) 1 
1 

g] = (w - Wo)' • 

where woEC is arbitrary. Since 

Y=A1j 

this just determines A up to a transformation, 

(5.24b) 

(5.24c) 

(5.25) 

(5.26) 

which is a gauge transformation only if R is constant on S' 
and detR = 1. (A non constant gauge transformation must 
also change the value of B.) Moreover, since a symmetriza­
tion was involved in passing from Eq. (5.6) to (5.17), not all 
A's satisfying Eq. (5.25) solve (5.6). However, if A is itself 
chosen to be symmetric, then (5.18) and (5.25) determine a 
solution of(5.6) (up to a sign), since A is invertible. Its eigen~ 
vectors in that case are the same as those of Y. Therefore, A 
will correspondingly take one of the three forms: 

(5.27a) 
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j"'~(iq 
iq 

~, p-q 

0 

(5.27b) 

j",~(~q 
iq :} p-q 

ir 

(5.27c) 

Solving (5.25) to determine p, q, r yields the expressions of 
Eqs. (5.11), (5.13), and (5.15) up to a sign, which is then 
determined by returning to Eq. (5.6). Applying a transfor­
mation of type (5.26) to these solutions and substituting in 
Eq. (5.6) shows that the rotation R must be constant and 
have determinant 1. This is therefore only a gauge transfor­
mation. However, the diagonalization of Y was achieved by 
applying the transformation (5.20) which leaves Eqs. (5.6) 
invariant. Therefore, the general solution is obtained by ap­
plying an arbitrary transformation of this type to the solu­
tions (5.27), thereby giving the results stated in Eqs. (5.10)­
(5.15) and completing our proof. 

Among the various solutions given above, the only one 
which is gauge equivalent to one in the previous section is 
(5.8) for the case when a' vanishes. In this case, there exists 
an elementp'Esl(2,C) satisfying Eq. (4.23a) and hence apply­
ing a gauge transformation defined by the transition func­
tion exp( ± it/!P') transforms solution (5.8) into the form 
(4.27). An interesting feature of all the solutions of this sec­
tion is that they are periodic in t/! with period 1T. This implies 
that the gauge fields are well defined as forms on (S I xS ')/l, 
and that the Chern class number (and hence also the action 
integral) vanishes (provided the integration constants are 
shown so that the solutions are regular), in consistency with 
the results of Sec. 3. 

As a further remark regarding rank I solutions of the 
type (5.8), we note that in this case the field equations (4.9) 
become linear. Therefore, any linear combination of the self­
dual and anti-self-dual solutions 

([J = a [cos2w(YI'(V L ) + sin2t/!(y"w L )], 

where aEsI(2,C), YI,y,EsI(2,C)* 

(5.28) 

is also a solution to (4.9), though not self-dual. In fact, it is 
easily verified that (5.28) is, up to a gauge transformation, 
the most general form for rank I solutions. 

6. DISCUSSION OF SO(4) INVARIANT 
SOLUTIONS 

Solutions to the field equations (4.2) (in lR xS ') have 
been obtained by Luscher 14 and SchechterlS under the re­
quirement of in variance under the group SO(4) formed from 
left and right SU(2) translations. In this case the isotropy 
group at the origin is not the identity but the group SO(3) 
identified locally with [SU(2)[. X SU(2) R ] D' The conditions 
of Proposition (3.1) are therefore not necessarily satisfied 
and there need not exist a G-invariant section in the principal 
bundle under which the gauge field represents a pullback of 
the connection form. It follows that the gauge function 
pjg,p) ofEq. (3.3) may not necessarily be reduced to the 
identity element by a gauge transformation. The choice 
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made in Refs. 14 and 15 corresponds to a gauge function 
which is constant on the manifold, taking as value the SU(2) R 

component of any SO(4) element. The resulting form is 
therefore necessarily an SU(2)-invariant scalar multiple of 
the left-invariant Maurer-Cartan form on S 3. It should be 
mentioned that such a choice for Pa is not the only one per­
missible. Left invariance could, for instance, be replaced by 
(inverse) right invariance. However, this merely amounts to 
making a gauge transformation with the map v : S 3_SU(2) 
defined by Eq. (2.1) as transition function. An inequivalent 
in variance criterion results from choosing the value of Per as 
the identity element; that is, considering gauge fields which 
are strictly invariant as forms on the manifold, not only up to 
a gauge transformation. However, the resulting forms are in 
T*(S I) and hence closed, giving a vanishing field. 

Up to gauge equivalence, these are actually the only 
possibilities. This follows from the results of Sec. 3 applied to 
the inclusion SU (2) L -SOC 4), which allow us to assume that 
p(g,p) = e for gESU(2)L' Furthermore, since SU(2)L and 
SU(2)R commute, it follows from the composition rule (3.5) 
that p(g,p) is independent of p for gESU(2h and therefore 
defines a homomorphism, 

p:SU(2h-SU(2) (6.1) 

into the gauge group. Since SU(2) is simple, this may only be 
an inner automorphism or the constant map onto the identi­
ty element. The former case is gauge equivalent to p(g) = g 
for gESU(2) R' the choice of Refs. 14 and 15. 

If one wishes to interpret the SOC 4) invariant solutions 
in (S I xS ')ll" rather than lR XS' (which is necessary to give 
meaning to the Chern class number), then suitable boundary 
conditions must be satisfied. In the notation of Sec. 3, we 
must have, in a neighborhood of the point t/! = 21T, 

([)(\ r I,p) = Adll lW(t,p) + If Idj" 

- E < t < E, t t/!/21T (6.2) 

for sufficiently small E, wherej, is a homotopy of maps 
j,:S '-SU(2) (which may be chosen as constant in t) belong­
ing to the same class as the mapjS '-SU(2) defining the 
bundle. Since, as shown in Proposition 3.5, the existence of 
an SU(2)-invariant connection implies that degfvanishes,j, 
may be chosen as the constant map onto the identity ele­
ment, in which case (6.2) simply becomes the condition that 
(V be periodic, 

(6.2') 

Over the space (S 1 XS')ll" moreover, the period for SU(2) 
invariant forms must be 1T rather than 2iT. This severely re­
stricts the permissible SO(4)-invariant solutions. In fact, the 
only such case for which the components in the Maurer­
Cartan basis are W dependent is the one studied by Rebbi,1O 

(v= ~ exp[ +i(t/'-wo)] (V" (6.3) 
2 cos(t/! - t/!o) . 

which arises as a degenerate case of the solutions of Refs. 14 
and IS analytically continued and is also a limiting case for 
each of the solutions (5.11 )-(5.15). 

Naturally, the constant SO(4)XSO(2) invariant solu­
tions of de Alfaro et al. 11 also satisfy the periodicity require-
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ment and therefore are well defined on the compact 
manifold. 

7. FURTHER DEVELOPMENTS 

In this paper we have been concerned with the charac­
terization of gauge fields invariant under transformation 
groups and in particular the solutions to the Yang-Mills 
equations which are invariant under SU(2) [and 
U(I)X SU(2)] translations. In order to obtain solutions with 
nonzero class number (and hence, in the self-dual case, non­
vanishing action integral), it is necessary, in view of Propos i­
tion 3.5 to abandon this in variance requirement. An alterna­
tive may be to consider solutions which are SO(3) invariant, 
a case which has been shown by Witten8 to lead in the Euclid­
ean case to multi-instanton solutions of any class number. 

Further developments relating to the present work also 
suggest themselves; for example: (i) extension of the methods 
of this paper to other gauge groups; (ii) a study, under the 
same in variance conditions, of the combined system of gauge 
fields coupled to scalars or spinors; (iii) an analysis of the 
present solutions pulled back to Minkowski space or contin­
ued into the Euclidean domain; (iv) determination of semi­
classical expansions about these solutions for quantum am­
plitudes. We plan to address ourselves to these and related 
questions in future articles. 
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The spectral properties of many-electron atomic 
Hamiltonians and the method of configuration interaction. 
II. Compactness proof associated with an infinite system of 
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The SchrOciinger equation for a two-electron atomic system is reduced to an infinite system of linear 
equations. The linear operator defined by this system of equations is then shown to be compact in a region 
of the complex energy plane which excludes the various bound state and multiparticle scattering cuts (i.e., 
the eseential spectrum of the Hamiltonian of the two-electron atomic system). This permits one to 
truncate the infinite system of equations with the assurance that the N energy eigenvalues obtained from 
the NX N truncated system will uniformly approximate the lowest N energy eigenvalues of the original 
infinite system. 

1. INTRODUCTION 

In the previous paper it was shown that the N energy 
eigenvalues and eigenvectors obtained from the truncated 
system of equations 

.V 

I (~nIHI~m)(<Pmlll/') =E(~nll/') 
In:..:....: I 

will not converge uniformly (as the size of the truncated 
matrix is increased), to the lowest N energy eigenvalues and 
eigenvectors of the original infinite system 

! (~nIHI~m)(~mlll/')=E(~nll/')· 
m = 1 

In this paper, an infinite system oflinear equations will 
be derived from the schrodinger equation of a two-electron 
atomic system which will precisely accomplish this. The ba­
sic idea behind this formulation is to derive an infinite system 
of linear equations which defines a compact linear operator 
in a suitable region of the complex energy plane. This en­
sures that the N energy eigenvalues obtained from the N X N 
truncated system of equations will uniformly approximate 
the lowest N energy eigenvalues of the original infinite sys­
tem I of this formulation. 

In Sec. 2 we derive from the schrodinger equation of a 
two-electron atomic system an infinite system oflinear equa­
tions. In Sec. 3 we show that the linear operator defined by 
this infinite system of equations is compact in a region of the 
complex energy plane which excludes the various multi par­
ticle or continuum cuts. These are 

(i) the bound state scattering cuts starting at the Hydro­
genic bound state energy En' n = 1,2, ... , and extending to 
+ 00. 

(ii) the multi particle cut starting at E = 0 and extend­
ing to + 00. 

The region of compactness, in our case, also excludes 
the "spurious" point (En, + En,l nl,n, = 1,2, .... We call 
these points spurious, as they do not belong to the essential 
spectrum of H. 

Finally, Sec. 4 states our conclusions. 

2. REDUCTION OF THE SCHRODINGER 
EQUATION TO AN INFINITE SYSTEM OF 
LINEAR EQUATIONS 

The <;chrodinger equation for a two-electron atomic 
system can be written 

H II/') = (HOI + H02 + J/rdll/') + E 11/'), (2.1) 

where rl , = If I - f,l, fl and f2 being the position operators of 
electrons 1 and 2, respectively, and HOI and H02 are the hy­
drogenic Hamiltonian operators associated with electrons 1 
and 2, which in the coordinate representation are given by 

HOi = - tv; - Z, ri = I fd, i = 1,2, (2.2) 
ri 

with 

(2.3) 

and 

(2.4) 

Here In) = I nlm) are the bound states of the hydro­
genic atom with corresponding energy eigenvalues 
E,,= -Z'/(2n'),and IKl!) = IkJ/1m) the continuum 
states, with corresponding energies E". In the coordinate re­
presentation the bound and continuum states can be written 
as' 

(rln) = (rlnlm) = Rn,(r)Y'm(e,dJ), (2.5) 

and 

(r I kif) = (r I klflm) = R,(kr)Y'm«(M), (2.6) 

where Y'm(e,~ ) are the usual spherical Harmonics, and 
Rn,(r), R,(kl) are the radial bound and continuum state ei­
genfunctions, respectively. 

Let:¥'1 and )II', be the space of states associated with 
electrons I and 2, respectively. The resolutions of the identi­
ty in these two spaces are given by 

X fI + I, 

I I I 
II,"':":: 1 /, ·-0 tn,-
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i = 1,2, (2.7) 

which can be written 

or in a still more abridged form as 

(2.7b) 

Here the sign (SL) is used to mean a summation over 
the discrete quantum numbers and an integration over the 
continuous set as appropriate. In the product space 
.:;V = J(1 ®/7"" the identity operator is given by 

III = 1111 ® III 2'" (2.8) 

so that the resolution of the identity Iu using (2.7a) is 

L Inl,n,)(nhn,1 + L(J L )lnl,ku2)(nhkuzl 
"I.n, ", k,f-' 

+ (J L) L IkHI,n,)(kul,n,1 
kill "! 

+(J ;;)(J ;;Jlk/fl,ku2>(klll,kH21 =I/f, (2.9) 

which can also be written in the abridged form 

(2.9a) 

It is not difficult to write down a resolution of the identi­
ty involving only symmetrized or antisymmetrized (spatial) 
states. The use of such states in our investigation would only 
introduce tedious complications without adding anything 
qualitatively new or different to the results regarding the 
spectrum of the Hamiltonian operator for two-electron 
atomic systems. 

Equation (2.1) can be inverted and written in the form 

I '/I> = (E - HOI - Ho,t l ~ I '/I>. (2.10) 
r l2 

Let! laha,)] denote a (complete) discrete basis belong­
ing to the domain of cWo The resolution of the identity with 
respect to this basis is 

(2.11 ) 

Taking the inner product on both sides of(2.1O) with respect 
to <aha,1 and using (2.11) we obtain the infinite system of 
equations 

(al,a,1 '/I> = L (aha,1 (E - HOI - Ha,t l 

0:;.0; 

x ~ la;,a;)(a;,a;1 '/I). (2.12) 
r l , 

In the next section we shall show that the operator 
(E - HOI - Ho,tl(l/rJl) is compact in a suitable region of 
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the complex energy plane excluding the essential spectrum 
of JY'. This permits one to truncate (2.12) with the assurance 
that the N energy eigenvalues obtained from the N X N trun­
cated matrix uniformly approximates the lowest N energy 
eigenvalues of the original infinite matrix. 

3. PROOF OF COMPACTNESS 

In this section it will be shown that the operator 

K(E) = (E - HOI - Ho,)-I ~. (3.1) 

defined by the system of equations (2.12) is compact in a 
region D E (to be specified later) of the complex energy plane. 
Let us first note that the domain of 1/r12 is a subset Dv of 
!R.' X 1R' = IR' defined by 

Dv = {(rl,r,) : (rl,r,)EIR', I r l - r,l ;;,d. (3.2) 

We have 

V(lrl-r,I)= 
r l , 

I. Fk (rl,r,)P" (COS(JI'), (3.3) 
,,~O 

where (JI' is the angle between r l and r, and 

1 ( r, )" 1 (rl )" F" (rl,r,) = - - (J (rl - r,) + - - (J (rl - r,), 
r l r l r, r, 

where (J (r) is the step function defined by 

B(r) = {
I, 

O. 
Next we define the sequence of potentials 

" V" = L F"(rl,r,)P,, (COS(JI'). 

" c () 

If now we can show that 

(i) the sequence of operators 

K I1(E) = (E - HOI - Ha,t l V" 

are compact whenever EED E and 

(ii) 11K - KI1II~O as n~oo 

(3.4) 

(3.5) 

(3.6) 

in the UnIform topology o/the operator norm, then the opera­
tor K (E) is compact for EED E' Conditions (i) and (ii) stated 
above for the compactness or K (E) are just the statement of 
the results) that if an operator K can be approximated uni­
formly in the norm by a sequence of compact operators, then 
the operator itself is compact. 

To demonstrate (i), it is sufficient to show that for some 
positive integer m, [Kn(E)] In belongs to the class of Hilbert­
Schmidt operators' for EEDE . In fact, we shall show that 
(K" (E»)' belongs to the Hilbert-Schmidt class for EED f :· 

To show that [Kn(E)]' is of the Hilbert-Schmidt type 
whenever EED/:., we must show that 

v, 1.2 

(3.7) 
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Using (2.9) we have 

(vhv,1 [Kn(E)]'IVi,v;) 

I I (v"v,1 (E - H o, - Ho,t' v" I D"D,) 

X (E - En, - E nY' (D"D, I Vn I vi,v;) 

+ (f t,., )~ (v"v, I (E - Ho, - Ho,t' Vn I kH "D,) 

X(E -- Ek, - EnJ'(kH "D,I Vn I v;,v;) 

x (v"v,1 (E - H o, - Ho,t' VIII kH "kH2) 

X(E - E k, - E kJ'(k H "k H2 1 Vnlv),v;). (3.8) 

We consider each of the four terms on the right-hand side 
of (3.8) and make the following observations: 

(i) I (E - Ell, - En}' I <const (3.9) 

for all values of E in the complex energy plane for which 
E=I=EIl , + En .. (nl>n, = 1,2,3, .... ) We denote this domain by 

Dr:" 

(ii) I (E - Ell, - EkY' I <const (3.10) 

in a domain DE 2 which consists of all points in the complex 
energy plane excluding those which make up the branch cuts 
starting at the points En, (n, = 1,2, ... ) and extending to 
+ 00. Note that because of the integration over k H2, the pole 

at En, is converted into a cut along the line [ - iEn, 1,00]. 
These are the so-called bound state scattering cuts. 5 

(iii) same as in (ii) with 

1 (E - Ek, - En}' 1 <const. 

(iv) 1 (E - Ek, - EkY'1 <const 

(3.11) 

(3.12) 

in a domain DE4 which consists of all the points in the com­
plex energy plane excluding those which make up the branch 
cut starting E = 0 and extending to + 00. 

Denoting by DE the intersections of the domain DE; 

(i = 1,2,3,4), that is, 

(3.13) 

it is clear that the inequalities (3.9)-(3.12) are simultaneous­
ly valid in the domain DE' We find it convenient to express 
this fact in the abridged form 

and 

945 

(3.14) 

Using the result (A 1) (proved in Appendix A) with 

(<P,I = (v"v, 1 (E - H o, - H o,)-' Vn 
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we find that 

1 (v"v,1 [Kn(E)]'lv;,v;) 1 

<const I (v"v, 1 (E - E", - El'J' V~ I vi,v;) I· 

Hence the compactness condition (3.7) remains satisfied if 

(f ~ )( f 2; )1 (v"v,I(E - E", - EvJ'V~lv;,v;) I' 
'\, v, 

= ( f ~ ) 1 (E - E", - E"J' I' 

(3.15) 

Noting (2.9), we can write (3.15) as the sum of four 
terms. Further, using the addition theorem of spherical 
harmonics 

" , 
I 

m = - { 

to sum over the m i' i = 1,2, one obtains 

I 1 (E - Ell, - EIlJ'12(41Tt2(2/, + 1)(2/, + 1) 
11,.1, 

x f d Jr , f d 'r,[R",1,(r,)R Il /(r,)]'[ V,,]4 

+ I n~' ! {ef k ~ dk, (2/, + 1)(2;, + 1) 
II, '. __ () " _- 0 Jo ( 41T) 

S d lr,s d i r , [Rn ,(r,)R,(k,r,) Fl Vn ]4 
X " 

1 E - Ell, - !k ~ I ' 

+ (Similar Term) 

+ ! ('l q dk, {X dk, (2/, + 1)(2;, + 1) 
, .~ (l Jo Jo (41T) 

S d lr,s d Jr,[R,(k,r,)R,,(k,r,)]'[ VJ4 

1 E - !k T - !k ~ I ' 
< 00, 

Denote the four terms on the left-hand side of this in­
equality by Ii' i = 1,2,3,4, respectively. For compactness, it 
is therefore sufficient to show that 

I, < 00, i = 1.2,3,4 for EED E . 

Using the inequality 

(kto Ck r <const kto cL 
twice, one obtains 

[ Vn4<constI [Fk(rl>r1)]'] [Pk (cose,,)]'. 
k - 0 

(3.17) 

Further, the angular integrations on the first termI, of(3.16) 
yields a constant independent of n i, 1;, so that 

I, <const I I (E - En, - E".t' 1'(2/, + 1 )(21, + 1) 
",,/, 
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(3.18) 

Substitution for Fk from (3.4) in the radial integral in 
(3.18) yields 

('" rf drl [Rn,lYI)]' 4,1+ 4 r' ~ dr, [R",/.(r,) )'rik Jo rl Jo 

x r rfdr l [R",1,(rl )]'ri
k 

Jo 
= (~ drl (I t 4k [R",1,(r l)rl ]' J.- [Rn/(rlt)rlt]' Jo J() r; 

where, to obtain the last step, the substitution (r,/r l ) = twas 
made in the first of the integrals on the left-hand side of 
(3.19) and the substitution (rjr,) = t in the second of the 
integrals. Noting that the two integrals on the right-hand 
side of (3.19) are precisely of the same type, the inequality 
(3.18) can now be written 

II <const I I (E - E", - E,,)'I 1'(2/1 + 1)(21, + 1) 
11.1, 

x f R (k l(nJI,n,I,), EED/i, 
1.,.0 

where 

R (kl(nJI,n,I,) = (UC dr t t 4k dt [R",1,(r)r] , 
Jo Jo 

x ~ [R"/(rt )rt ]'. 
r 

Similarly, one obtains 

I,~const I i (2/1 + 1)(2/, + 1) 
11,.1, I. {) 

I,<const I f (2/1 + 1)(21, + I) 
1/ • .1., II 0 

(3.20) 

(3.21 ) 

l
"fC [~" f)(kl(kl nl)] 

X k 21 dk
l 

I.. ()" , 11 2 , E- n (323) 
, CUr;' . 

1) I E - !k i-En, I' 
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where 

R (k)(nJI,k,I,) = (= dr t t 4k dt [R"",(r)r]' Jo )0 

X ~ I Ri(k,rt )rt I', 
r 

X ~ I R/(k,rt )rt I'· 
r 

(3.25) 

(3.26) 

Considering II first. the inequality (3.20) can be written 

II <const[ "~2 ';ill I (E - E" - E"JT(2/1 + 1)(2/, + 1) 

X i R (i.. )(nJI.n,/J 
I.~ 0 

x n 1 

+ ! I I I(E - E", - E,,),II'(2/, + I) 
fl, -" I 11 2 /, 1 

X i R (I. l(nIO.n,/J 
I. . () 

x, lIt 1 x.; 

+ I I I I(E-E" -E,J I I'(2/, + I) 
1/, -, 2 1: I 1/ I 

X i k (I. )(n)l.n,O) 
I. () 

+ i I (E - En - E,,),II' i R (I. l(n I0,I1,o)1 < ex. 
1 k {1 

EEDl:" (3.27) 

Use of the inequality (BI) (see Appendix B) on (3.21) 
yields 

R (k I(n )1,11,1,) 

< const (I t 4k dt (X dr I Rn,l,(r)r . R"/(rt)rt I 
(n 111,)111 )0 )0 r,/2 r,n I' 

Use of the Cauchy-Schwarz inequality in the form 

f" If(r)g(r)ldr«f" If(r)I'drY
I 2(lY Ig(r)I'drYI2 

(3.28) 

then gives 

R (k )(n)I.II,!,) 

~ const, (I t 41. dt( fCC dr [R",1,~r)rl' )112 
(II In,)I/, )() Jo r 

M.H, Choudhury 946 



                                                                                                                                    

Noting that6 

[R n,l, (rt )rt] 
,-J 

S
x [Rn I (r)r)' 

dr " o rl 
the substitution p = rt yields 

('" dr [Rn,l,(r)r]' =t' (00 dp [RnM)p), 

Jo rl Jo pl 

so that (3.29) reduces to 

R (k l(n J"n,i,) <,const(n InJ-'(U,t Jl2
• 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Again, use of the inequalities (B 1) and (B2) in (3.21) 
with II = 0 gives 

R (k l(nIO,n,I,) 

<, const t t 4k dt (OC dr 1 Rn,o(r)r . Rn,l,(rt )rt I. 
n;12niI2 Jo Jo r1l' r312 

Use of the Cauchy-Schwarz inequality (3.28) yields 

R (k l(n 10,n,I,) 

<, t 4k dt dr __ n, __ canst LI (LX [R o(r)r]') 112 

n;12ny2 0 0 r 

Use of(3.31) and the formula' 

(00 dr [Rnl(r)r]' = Z 
Jo r n' 

reduces (3.33) to 

R (k l(nIO,n,I,)<,constn
l
- 5/2n2- 2/ 2- 3/2. 

Similarly one finds that 

and 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Substituting the estimates (3.32), and (3.35)-(3.37) into 
(3.27) and using the fact that 

" I I 1-'I2<,constn l12, 
I~ I 

yields 

II <,const[ n~2 (n l n,tJ12 + 
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(3.38) 

n - 312 
2 

(3.39) 

for EElJE • 

It is clear that had we not split up (3.20) into four parts 
as in (3.27), the summation over I;, i = 1, 2, which starts 
from zero would have caused difficulties due to the use 
which we have made of the formulae (3.30) and (3.31). We 
next consider I, and I J• These are exactly similar and can be 
obtained, one from the other, by an interchange of the sub­
scripts 1 and 2. It will therefore be sufficient to consider I,. 

The consideration which prompted us to split (3.2) into 
four parts now leads us to split (3.22) into two parts and 
write it in the form 

(3.40) 

The inequality (Bl) applied to (3.25) followed by a use 
of the Cauchy-Schwarz inequality yields 

<, const t t 4k dt ( (OC dr _[R_n,_I,(_r)_r_]' )1/2 

nl/2 JI) Jo r' 

Using (3.30), this can be written in the form 

(k l canst [ 100 

] 112 R (nJ"k,I,)<, -0-- 1 RI(k,r) 14r dr . 
ni/i/2 0 

(3.41) 

Note that, since the radial function Rio (k,r) is finite at 
r = 0 and8 

Ri(k,r) ~ (2/1r)ll2(k,rt' 
r 'X 

x Sin( k,r - 1/,17' + TJI + ~ IOg2k,r). (3.42) 

with 

M.H. Choudhury 947 



                                                                                                                                    

we have 

(3.43) 

Use of the result (Cl) (see Appendix C) in (3.41) yields 

R (k l(nl/l,k,I,) 

< const [R (~)[2[ Uo )1/2, 
n~n/2 I 1 - U

o 
-(-1---u-

o
)-3 

Similarly, one finds that 

R (k I(n IO,k,I,) 

< c:;~ [RI.( 1k~~:n)n 

uoE[O,l]. 

Uo ) l/2, 

(1 - uo)' 

UoE[O, 1]. 

(3.44) 

(3.45) 

The estimates (3.44) and (3.45) when substituted into (3.40) 
yield 

1,<const[(1I~2/;"~11 nl--11 1 3/2+ IItl n l-
S12

) 

X [RI(~)[2[ U
O 3 )1/2 

1 - Uo (1 - Uo) 

x [ E - Ell, - 1k ~ [- 2) ]. (3.46) 

Note that IR, (k,uo/(l - Uo)) I' is bounded as a function 
of k, in the interval [0, 00 ). Let k 2mE[O, 00 ) be the value of k, at 
which IR, (k,uo/(l - u~)W attains its maximum value. We 
have 

('f kidk'[RI(~)[2[ U
o 

J )1/2 
J[) 1 - Uo (1 - Uo) 

[ ( 
k2mUO )[2[ Uo ]1/2 

<const R ,. --- l' 

1 - U o (1 - uo) 
for EEDf ;. 

Using the above inequality and (3.38), we find that (3.46) 
reduces to 

-~ 1 (k U ) 12 1,<const I (2/, + 1) R, ~ 
I _ (I 1 - Uo 

x [ __ U_o __ ]1/2 < 00, 
(1 - uo») 

where in the last step we have used the result (C3) 
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Finally we consider 14 , An application of the Cauchy­
Schwarz inequality (3.28) to the expression (3.26) followed 
by a change of variable p = rt in one of the integrals yields 

(k) [ (''' ]112 R (k 1/"k2/ 2)<const Jo rIR/,(k 1r)1 4 dr 

[ ('" ] 1/2 
X Jo I RI,(k,p) 14 dp . 

Using the result (Cl), this reduces to 

R (k )(k,/"k,I,)<const [RI,( 1 k~U:o ) [2 

XIR (~)12_U~o 
I, I _ U o (1 - uo)' 

Substitution of this estimate into the inequality (3.24) for 14 
yields 

14 <const ! (2/, + 1)(2/, + 1) ("" k ~ dk, ('" k ~ dk, 
I, () Jo Jo 

X I E -~k ~ - 1k ~ I' for EEDf:. (3.47) 

Transforming into polar coordinates k, = p cosO, 
k, = p sinO and noting thatp'/lE - ~'12 is bounded for 
EEDf .·, the double integral in (3.47) satisfies the inequality 

<const p R I . 0 0 1 y \ (pU cose ) 12 
() 1 -- Uo 

(3.48) 

where, the last step has been obtained by using the mean value 
theorem ofthe in tegral calculus applied to the integration over 
(J in the interval [0,17/2]. Using the result (C2) on the last 
integral in (3.48) and substituting the resulting estimate ofthe 
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double integral into (3.47), one obtains 

[ 

00 I ( UoVo cosOo ) 12] [.<const L (2/1 + 1) R 1, 1) 
I, ~ 0 (1 - uo)( - Vo 

x [ f (2/, + 1) I R1,( UoVo sinOo ) 12] 
I, ~O (1 - uo)(1 - yo) 

( 
UoVo ) EED X <00, E' 

[(1 - uo)(1 - vo)jl 
(3.49) 

the last step being made possible by the result (C3). 

This completes the proof of compactness, as desired, of 
the sequence of operators (3.6). To show that the operator 

K (E) = (E - HOI - Ho,t l V, EEDE (3.1) 

where V is given by (3.3) is compact, all we need to do is to 
show that 11K - Knll~O as n~oo. Noting that Vand Vn 
have domain Dvdefined by (3.2), we observe that 
(V - Vn ) E L OO(D v ), where the norm on the Banach space 
L 00 (D v) is defined by 

(3.50) 

Since II V - Vnll~ as n~oo 

and (E - HOI - Ho,)-I is a bounded operator for EEDE, we 
have 

Hence, the operator K (E) is compact for EED £" 

4. CONCLUSIONS 

We have shown that the linear operator defined by the 
infinite system of linear equations (2.12) is compact in a re­
gion of the complex energy plane which excludes 

(i) the bound state scattering cuts starting at the hydro­
genic bound state energies En' n = 1,2,. .. , and extending to 
+ 00. 

(ii) the multi particle cut starting at E = ° and extend­
ing to + 00. 

Our region of compactness also excludes the spurious 
points !En, + En,)' nl,n, = 1,2,.··. These points do not be­
long to the essential spectrum of H. 

The above results permit us to truncate the infinite sys­
tem of equations (2.12) with the assurance that the N energy 
eigenvalues obtained from the N X N truncated equations 
will uniformly converge to the lowest N eigenvalues of the 
original infinite system. Questions regarding the choice of 
the complete basis sets! lal,a,) I have been discussed in I. 
Here we merely remark that they must belong to the domain 
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of H and be discrete. One could, for instance, choose a Har­
tree-Fock (RHF) basis set for! laha,) I. 

APPENDIX A 
We prove the result that if I <PI), I <P,)EJY and (<PI I <P,) 

*0, then 

where C is a positive constant. 

Proof Let 

Re[(E - E", - E,,)-I] = L (E,vhv,), (A2a) 
and 

Im[(E-Ev, _Ev}l] =M(E,Vl'V,). (A2b) 

We have, using (3.14) 

I L (E;v1, v,) I < I (E - E", - Ev)-1 I <A 

where A is a positive constant. Similarly 

IM(E;vhv,)I<A for EED£" 

for EEDE, 
(A3) 

(A4) 

If I <PI) = I <P,) = I <P) say, then using (A3) we have 

(f L )(<P IVhV,)L(E;Vl,V,)(Vl,V,I<P) 
v, 

«f L )(<P Iv 1,v,)(VhV,I<P)IL(E;vhv,)1 
v, 

<A (f L )(<P I V1,V,) (vl,v,1 <P) 
v, 

= (<P I <P), EEDE. 

We can therefore choose a real constant Al which may be 
either positive or negative and for which 

(f L )(<P Ivhv,)L(E;vhv,)(vl,v,I<P) 
v, 

Similarly, one obtains 

(f ~ )(<P Ivhv,)M(E;vI',v,)(vhv,I<P) 

=A,(<PI<P), EEDE. 

Using I <PI + <P,) in (AS) instead of I <P ) we get 

(AS) 

(A6) 

(f ~ )[(<PIIVhV,)(VI,v,I<PI) + (<P,lvl,v,)(vhv,I<P) 

+ (<Pllvhv,)(vl,v,I<P,) + (<P,lvl,v,) 

X (vhv,1 <PI)]L (E;vhv,) 

=AI[(<PII<PI) + (<P,I<P,) + (<PII<P,) + (<P,I<PI)], 

which by (AS) implies that 

EEDE, 

(f ~ )[(<PIIVhV,)(VI,V21<P,) + (<P,lvhv,)(vl,v,I<PI)] 
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This can be written in the form 

= Al Re[ (<1>11 <1>2)], EEDE· 

Similarly, using (A6) one obtains 

Re[(f I )(<1>1 IVhV2)(VI,V21 <1>JM(E;Vh V2)] 
v, 

(A7) 

(AS) 

In a similar manner, using 1<1>1 - i<1>2) instead of 1<1» in 
(AS) and (A6) one obtains 

Im[(f ~ )(<1>1 IVI,V2)(VhV21 <1>2)L (E;VI,V2)] 

(A9) 

and 

Im[(f I )(<1>1 IV1,V2) (VI,V2 I <1>2)M(E;VI,V2)] 
v, 

=A,Im[(<1>II<1>,)], EEDE . (AlO) 

respectively. Also, (A 7) and (A9) together imply that 

(f ~ )(<1>1 IVhV2)(VhV21<1>2)L (E;vI'v,) 

= AI(<1>11 <1>,), EEDE . 

Similarly, (AS) and (AlO) imply that 

(f ~ )(<1>1 I VI,V2) (VhV2 I <1>2)M(E;VI'V2) 

=A,(<1>1 I <1>,), EEDE · 

We have, using (All) and (A12) 

\(f ~ )(<1>II Vl,V,)(Vhv,I<1>2)(E-E", -E"TI 
<I(f ~ )(<1>1 Iv h v,)(V1,V21<1>2)L (E;VI,V2) I 

(All) 

(A12) 

+ I(f ~ )(ct>l IVI,V2)(V1,v21 <1>,)M(E;VI,V2) I 

= I(IAII + IA,I)II(ct>11ct>2)1 =CI(<1>11<1>2)1· 

This completes the proof. 

APPENDIX B 

It will be shown that 

(Bl) 

and 

const 
J RnO(r) J < --, 

n312 
(B2) 

where 

[( 
2Z )3 (n -/- I)! ]1!2( 2Zr )! 

Rnk)= - --
n 2n(n + I)! n 
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XL 2! + I (2Zr)e - Zrln. 
n-!-I 

n 

The following recurrence relations will be used9
: 

(B3) 

xL ~ + I(X) = (n + a + l)L ~(x) - (n + l)L ~ + I(X), (B4) 

L ~ - I(X) = L ~(x) - L ~ _ /x), 

xL ~ + I(X) = aL ~(x) - (n + l)L ~:;: lex), 

n 

I L ~(x) = L ~ + I(X), L g(x) = 1. 
rn =0 

(BS) 

(B6) 

(B7) 

The third of these relations is obtained from the first two. 
Also, the following inequality will be required 10: 

(BS) 

The inequality (Bl) will be proved by induction. From (B3), 
we have for / = 0 

Rno(r) = (Z I n J)1I2( 2~r )L ~ _ I( 2~r )e - Zrln. 

Using (B4), we find that (B9) yields the inequality 

JRno<r)rl «Z In)II'[ ILn _ I( 2~r )e - Zrln I 

(B9) 

where, the last step is obtained by using the inequality (BS). 
Assume now that the statement is true for /: 

const 
IRnk)rl < --. 

nil' 

The statement will be proved for / + 1. Now 

_ [ Z (n - / - 2)! ] 1/2( 2Zr )! + 2 
R 1 I(r)r- - --

n, + 2 ( / 1)' n n+ +. n 

XL 2! + 3 (2Zr)e - Zrln. 
n -1- 2 

n 

Using (B6) and (B7), we have 

( 2~r )L ~lt / _ 2( 2~r ) 

=_(n_/_I)L~!t!l 1(2~r) 

Hence (B 11) satisfies the inequality 

IRn.l+ l(r)rJ 

< I [ Z (n - / - 2)! ] 1!2 (n _ / _ 1)( 2Zr )1 + I 
n 2 (n + / + I)! n 
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X L21+1 (2Zr )e-zrlnl n-/-I n 

n - /- 1 I [ Z (n - 1- 2)! ] 112( 2Zr )/ + 1 
+ (21 + 2) L 2" ( I 1)1 

s= 1 n n + +. n 

XL 2/ + 1 ( 2Zr )e - Zrln I 
(n - s) -/- 1 n (BI2) 

(B13) 

Consider the first term on the right-hand side of the 
inequality (B12). Using the hypothesis (BlO) we have 

1/1 r = [ (n - 1- 1) ] 1/21 [ Z (n -I - I)! ] 1/2 
n/() (n+I+I) n2 (n+/)! 

( 
2Zr )1 + 1 L 2/ + I (2Zr)e - Zrln 1 X n-I- I 
n n 

[ 
(n -I-I) ]1/2 const < , 
(n + 1+ 1) n'l2 

which implies 

ITI () const 
'Y n' r < . 

n'/2 
(B14) 

We now deal with the second term in (B12). We can write 

<P,,/r) 
n- / - 1 [ (n - s)2(n - I - s) ... (n - 1- 2) ] 1/2 

= (21 + 1) S~2 n2(n _ s + 1+ I) ... (n + I + 1) 

[
(n-1Y 1 ]112 

+ 21+ 2 
( ) n2 (n+l)(n+l+l) 

(B1S) 

where k n •s = (n - s)ln. Note that ° < k n .s < 1 so that O<knl 
< 00. Since 

I Rn s.,(kn.,r)kn.,r I < ( cons;'12 ' 
n -s 

We find from (B1S) that <P"tCr) satisfies the inequality 
,,-,- I 

<P n,(r)<constn- 1 L (n - S)-'12 
.\'=1 

n-I 
<constn- 1 L s-112<constn- 1/2 , 

5=1 
(BI6) 

where we have used (3.38) to obtain the last step. Noting(B 14) 
and (B 16), the result follows. 

To obtain (B2), we have, using (B7), 

I RnO(r) I «Z In')lI2(2Z In) :t ~ 1 Lm( 2:r )e - ZrI"1 

951 

«Z In l )'12(2Z In)(n - 1), by use of (B8) 

const 
<-)-12-' 

n 
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which is the required result. 

APPENDIX C 

Finally, we prove the following results involving the 
radial functions for the continuum states of the hydrogen 
atom: 

I'" pIR,,(pr,WIR,,(pr2W dp 

= 1 R/,( /~'Vo ) 12 1 R,,( 1 V~2VO ) 12 (1 ~o vo») , (C2) 

VoE[O, 1], 

I (21 + 1)IR/kr)1 2< 00. (C3) 
1-0 

To prove (CI), we transform the infinite integral into 
one over the finite interval [0,1] by the change of variable 

u = rl(l + r), so that r = ul(l - u). (C4) 

This gives 

r" IRI(kr) 14 dr = (IR,( ~) /4 U 3 du Jo Jo 1 - u (l - u) 

= L !t(u) du, say. (CS) 

Note that!t (0) = 0. Also using (3.42) we have 

!t(l) = lim )R/( ~))4 U 
II .1 I - u (I - U)1 

lim ( ~)2 __ u_ 
11.1 1T (l - U)l 

sin'(kul(l - u) - !l1T + 17, + (Z Ik) log[2kul(l - u) 
X-------------------------------------

[kul(l - u)]' 

lim (211T)2(l - u) sin'(··.) = 0, 
II .1 k'u 1 

so that!t(u) is defined at u = 0 and u = 1. 

We can therefore apply the mean value theorem of the 
integral calculus to the finite integral on the right hand side 
of (CS) to obtain 

(X IR,(kr I4 dr= IR'(~)14 U
O 

l' uoE[O,I]. Jo I - Uo (1 - uo) 

The result (C2) is obtained in exactly the same manner 
as (CI). Note that" R,(kr)-O as k-O and that the asymp­
totic form of R I (kr) for large k is of the same form as that for 
large r [see (3.42)]. 
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To prove (C3), we have l2 

t/t(r,B) = eb
/

2kr(l - iZ Ik )eikZ 

XF1( - iZ Ik, l;ikr(1 - cosB» 

f (21 + I) exp[i(1J1 + !hr)] R1(kr)P1(cosB) 
1=0 

so that 

LT / t/t(r,B ) /2 sinB dB 

f (21 + 1 )(21' + I) 
/,1'=0 
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Using the orthogonality relations for the Legendre polynomi­
als we obtain immediately 

[~O (21 + 1) / R[(krW = iTT I t/t(r,B W sinB dB < 00· 

'N. Dunford and J. Schwartz, Linear Operators (Interscience, New York, 
1963), Part II, p. 1091. 

'H.A. Bethe and EE. Salpeter, Quantum Mechanics a/One and Two-elec­
tron Atoms (Springer-Verlag, Berlin, 1957), Chap. I. 

'J. Dieudonne, Foundations 0/ Modern Analysis (Academic, New York, 
1960), p. 314. 

'R. Schatten, Norm Ideals o/Completely Continuous Operators (Springer­
Verlag, Berlin, 1960), p. 18. 
'c. Lovelace, Three particle systems and unstable particles in Strong Inter­
actions and High Energy Physics (Oliver and Boyd, Edinburgh and Lon­
don, 1964), R.G. Moorhourse, Ed. 

"See Ref. 2, p. 17. 
'See Ref. 2, p. 17. 
'N. F Matt and H.S. W. Massey, The theory 0/ Atomic Collisions (Oxford U. 
P .. 1949), 2nd ed., p. 46. 

"Higher Transcendental Functions, Bateman Manuscript Project (Erdelyi, 
Ed. (McGraw-Hill. New York, 1953), Vol. II, pp. 190, 192. 

'''See Ref. 9. p. 205. 
"L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, Lon­

don, 1965), 2nd ed., p. 122. 
"See Ref. 8, p. 46. 

M.H. Choudhury 852 



                                                                                                                                    

Geometry of spacetime founded on spacelike metric 
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The first part of this paper contains new mathematical techniques for describing a spacetime anisotropy as 
suggested by the violation of parity conservation. Geometric measures of spacetime involve both the 
laboratory doing them and the events upon which these measures are done. The time form c and the 
spacelike length yare the basic issues of those measures. Both depend on events and also on the timelike 
direction of the laboratory. Relativity tells that the field y - c @c depends, on the contrary, on events 
only; in this sense, relativistic spacetime is isotropic. If y and c do not have that property, the manifold 
where the observable geometry takes place must be the set of timelike directions. The geometric structure 
of this manifold given by c and y is studied in detail. The second part of the paper contains the study of a 
line of thought opposite to chronogeometry: Building the geometry from lengths instead of times. The 
datum is y; through the conditions of stationary spacelike volume and of stationary proper time, a class 
of time forms and a gauge are obtained under some weak restrictions. Newtonian and relativistic spacelike 
metrics fulfill these restrictions. Standard connections are induced; they define the absolute derivative of 
physical fields and the geometric structure of the manifold of timelike directions. The paper ends with 
some comments about the remaining problem: to suggest and justify field equations. 

I. MATHEMATICAL TECHNIQUES FOR 
SPACETIME PHYSICS 
1. INTRODUCTION 

We will consider spacetime as an n-dimensional differ­
entiable manifold M, whose underlying set is the set of 
events. We call timelike the non vanishing vectors tangent to 
the possible world line of particles. Let .7 M be the set of 
timelike vectors. Then, if xEff M and a > 0, we have 
aXEff M. Also we admit that ff M is an open subset of 
TAM, 1T6:T AM-M being the tangent bundle over M. In 
ordinary language, this assumption corresponds to the fol­
lowing experimental fact: Given a particle, it is possible to 
have particles whose relative movement (with respect to the ~ 
former) has arbitrary direction. We put iT:YM-M, where 
iT = 1T6IffM, and suppose ff m = iT'l(m) to be nonempty for 
each mEM. 

We emphasize that ,r;-M is not related here to a Lorentz 
metric, because we are looking for a wider mathematical 
ground than the relativistic one. 

Any physical quantity must be measured from some 
laboratory, and every physical experiment must be devised 
referring it to several instruments. These instruments consti­
tute the laboratory, and they are built by particles following 
their respective world lines. Let U be the spacetime neigh­
borhood where the experiment takes place. Then, we can 
provide a rough description of the laboratory as a cross sec­
tion rof iT on U, where rm stands for the tangent to the world 
line of the particle (belonging to the involved instruments) at 
mEU. Thus, one could expect the result to be a function ofr 
and other parameters. Obviously, this happens in practice: 
for example, the Doppler effect of a signal received in earth 
from a satellite. 

However, this experiment and others like it are too far 
from our geometric goal. So, we shall fix our attention upon 
the measurement of geometric features of spacetime: (a) time 
elapsed between two events, as measured by clocks (labora-

tories) following different world lines connecting both 
events; (b) spacelike distance between two events as mea­
sured by different meter sticks (laboratories), such that both 
events occur on each meter stick. In both cases, the resulting 
quantity depends on the laboratory, i.e., on the local cross 
section of iT attached to each clock or meter stick. 

The wondrous thing would be that one could find, from 
that type of measures, a magnitude depending on events of 
spacetime only, and not also or r. If this did occur, we could 
say that spacetime geometry was isotropic, since it did not 
depend on the timelike directions of the laboratories measur­
ing it. Einstein's standard relativity is, of course, the best 
example. 

But spacetime is not isotropic in its mass or charge dis­
tribution, at least on local scale. Moreover, the violation of 
parity conservation suggests an anisotropic spacetime at the 
microscopic level, as it has been explained by Horvath. I So, 
one could regard general relativity as a first approximation 
that neglects anisotropy, and consider the manifold o/time· 
like directions as the proper ground/or the measurable space­
time geometry. We say directions instead of vectors because r 
and ar do represent the same laboratory if a:M_lR is a posi­
tive function. Thus, the true manifold must be .'TM, the quo­
tient of ,r;-M under the equivalence relation given by 
homotheties. 

Now, what could one expect to find out as measurable 
quantities? Of course, the same we are obtaining until now, 
that is, ordinary numbers, vectors, or tensors. Thus, our 
physical fields will be maps from ,TM to lR (scalar fields), or 
to T~M (tensor fields). 

The goal of Part I is to develop a suitable mathematical 
formalism for the treatment of these "mixed" fields also de­
pending on directions. It provides a common geometric 
framework for the study and comparison of different space· 
time theories (Newtonian and relativistic for instance). As 
far as I am aware, it constitutes a new mathematical tech­
nique; however, for the sake of brevity, we shall restrict our-
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selves to the concepts we will directly use in spacetime the­
ory; the risk of such restriction is to conceal somewhat the 
mathematical reasons for giving certain definitions. Any­
way, our paper (Montesinos2

) could serve as an introduction 
to those techniques. 

Through Part II, my own physical theory is developed 
under the formalism of Part 1. The fundamental field will be 
the spacelike metric. From it, we build simultaneity and, 
partially, time length; in this sense, my theory is somewhat 
new, since it no longer takes time or light signals as funda­
mental. It could be looked at as the opposite veiwpoint of 
chronogeometry. 

Besides this Introduction, Part I has nine sections. In 
Sec. 2. we briefly describe the notation and some mathemat­
ical notations which we will use. 

As for Sec. 3, let .'7 M be the quotient manifold of Y M 
under the equivalence relation given by positive homo the­
ties. If 1T:.'7M-M is the induced projection, then the mani­
fold of time like directions, .'7M, becomes an open submani­
fold of the sphere bundle over M. Physical fields are maps as 
h:.'TM-T';M, satisfying 1T~oh = 1T, where 1T~:T';M-M is 
the tangent tensor bundle of type (r,s). This condition tells us 
that a physical field assigns to each timelike directiOll r m a 
tensor lying in the tensor space tangent to Mat m, the event 
where that timelike direction lies. We can consider physical 
fields as included in the algebra of Finsler tensor fields over 
Y M because there is a one-to-one correspondence with ho­
mogeneous degree zero Finsler fields. 

This material serves for describing the basic geometric 
features of spacetime, namely the time function], the time 
form c, and the spacelike metric r (Sec. 4). We discuss the 
physical meaning of these fields and give two examples, 
Newtonian and relativistic spacetimes, clearing up the wide 
range of spacetime models where this scheme applies. 

The mixed nature of physical fields makes a direct treat­
ment difficult. So, we shall submit it to the techniques for 
usual fields over ,'jt.-M. Besides the physical motivations for my 
viewpoints, that is the main objective of this part. Thus, in Sec. 
5 we define horizontal and vertical homomorphisms from 
the module of physical vector fields to that of ordinary vec­
tor fields over .'7 M. 

In Sec. 6, these homomorphisms are extended to be 
graded tensor algebra homomorphisms (lifts) from llM, the 
algebra of physical fields, to V,'jt.-M, the algebra of ordinary 
tensor fields over .'7 M. Each lift has a unique lowering that 
is its transpose map. We define crossed pairs oflift lowerings. 
They induce the horizontal and vertical projectors. The 
main result of this section tells that a pair of horizontal and 
vertical homomorphisms, in the sense of Sec. 5, do define a 
unique pair of crossed lifts. 

In Sec. 7 we define and interpret several types of con­
nections we will use later, namely horizontal and vertical 
connections on llM, physical connections, and thej-connec­
tion D, an important mathematical tool. We interpret 
17 = Dc as the rate of time retardation when the relative 
speed increases. This field plays an important role in the 
existence problem for connections. 
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Section 8 is devoted to the definition, explanation, exis­
tence, and uniqueness of horizontal and vertical torsionless 
metric connections. They have a suggestive meaning: The 
vertical connection measures the absolute directional depen­
dence of physical fields; the horizontal one, the absolute 
along spacetime dependence. 

In Sec. 9, we lift the pair of these horizontal and vertical 
connections for having a unique physical connection. It de­
fines the absolute dependence of physical fields along the 
time manifold. This connection is also lifted for having the 
linear connection D, that yields the final geometric structure 
of the time manifold itself. These results are briefly resumed 
in the conclusion (Sec. 10). 

2. NOTATION 

M, n-dimensional Hausdorff second countable real C 00 

manifold, briefly manifold. It stands for spacetime. 

1T;: T :M-M, tangent tensor bundle over M of type (r,s); 
M m' tangent space at mEM. 

vgM, the ring of Coo real functions on M; V';M, the 
VgM -module of C 00 cross sections of ff,; VM = Ell V';M, 
tensor R algebra, graded by the indexes (r,s). 

Y M, the set of timelike vectors, is an open submanifold 
of T bM; if:?t-M _M is defined by if = 1Tb I Y M . We suppose 
that O<t:.Y m = if-l(m)=I=0 for every mEM. In addition, we re­
quire that if xEY M, then aXEY M for every 0 < aER. 

Since § M is itself a manifold, we use V;Y M and 
VrM to denote the module of ordinary tensor fields of type 
(r,s) over YM, and the respective graded tensor R algebra. 

if gM = vgy M, the ring of real C 00 functions on Y M; 

if ';M is the if gM module of Finsler tensor fields of type 
(r,s), that is Coo maps ii:YM-T';M satisfying 
rr;oii = if; ifM = Ell if ';M, graded tensor R alge~ra of 
Finsler fields. We say that a Finsler tensor field h is homo­
geneous of degree aER if ii qx = qa ii x for every 0 < qER and 
xEYM. That property will be denoted h (a). 

u:YM-TbM, the canonic Finsler vector field, is de­
fined as the inclusion. Hence, u is h (1). 

i:ifbM-VbYM, the vertical injection. That is, if 
uEMm and XEY m' then iX<v) is the tangent at t = 0 to the 
curve (T:t-x + ut. Since Y M is open in T bM, then Y m is 
open in M m; therefore, for some E> 0 that curve lie~n 
.7 c,r M if - E < t < E. Thus, (T(t ) is a curve on .'7 M, 
wh:nce its tangent ix(V) at t = 0 is a vector belonging to 
(§ M >x . Hence, if v:Y M-T bM is a Finsler vector field, we 

define iVEVbYM by means of (iv>x = iX<vx)· 

<s,v), the contraction of the I-form s (belonging to 
V~M, V~§M, if~M, etc.) with the vector field v (belong­
ing to vbM, Vb,7M, ifbM, etc., respectively). 

3. THE TIME MANIFOLD. PHYSICAL FIELDS 

On Y M we define an equivalence relation ~ by means 
ofX~yifif(X) = if(y)andx = ayfor some a > O. Let.7Mbe 
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the set of equivalence classes, and p:JJ-Ai---+,VM the natural 
projection, which applies an element XEV Minto its class px. 
Then, ,'TM can be given a unique differentiable manifold 
structure makingp a submersion. We will call !TM, with 
that structure, the time manifold. It represents the manifold 
of time like directions. The map 1T:Sr M---+M, where 1TOp = ir, 
defines the time bundle. Note that a cross section r of 17' on 
ueM can be looked at as a laboratory whose instruments 
have at mEU a particle with speed r",. 

Let IJ 3M be the ring of C xc real functions on Y M. We 
use II rM to denote the set of physicalfields of type (r,s), i.e., 
C x m~ps h:.'TM-T')/ satisfying 1T~oh = 17'. Then, iffor 
example vEll6M, its value vr." at r",E'jrm = 1T- 1(m) is a vector 

of M m , the tangent space to M at m. Thus, IT .~M becomes a 
II i;M-module, and we can build the graded tensor algebra 
ITM of physical fields. 

If hEll ,)/, we put eah = hop::r;-M---+T')1. Then 
1T~oeoh = 1T~ohop = 1TOp = ir; therefore, eah is a Finsler ten­
sor field of type (r,s). Since peaX') = px for every a > 0 a~ 
xE7M, we conclude that ea his h (0). Hence, eo :IJM-ITM 
is a graded lR algebra homomorphism mapping IJ M onto the 
graded subalgebra of h (0) Finsler tensor fields. Con_versely-, 
if hEilM is h (0), it defines eb hEllM by means of ebhop = h. 
Thus, eboea = id on JIM, and euoeb = id on the subalgebra of 
h (0) Finsler tensor fields. So we have bridge between Finsler 
techniques and those we present here. 

4. SPACE AND TIME FORMS 

Spacetime geometry involves two main concepts, spa­
celike and timelike length, and a link between them: syn­
chronization. This last is the troubling point because since 
Einstein's relativity, light signals came in. The trouble is: 
timelike length defines by itself a synchronization, as we 
shall see at once; spacelike length also does that (see Part II). 
So, what do light signals do in all this matter? This question 
is purposely bold, but I think it is not merely rhetorical. It 
aims to raise doubts about the role light signals must play on 
spacetime geometry, and to make more plausible the view­
point of this paper. In fact, my methodological way is the 
following: to look at space and timelike length as the basic 
(related between them or not) geometric data of spacetime, 
and to consider gravitational or electromagnetic phenomena 
(light signals among them) as desirable dynamical issues 
from the static (geometric) description. So, in this paper light 
signals do not play any direct role among the basic geometric 
features of spacetime. Of course, electromagnetic signals are 
the best practical tool for the study of spacetime in several 
areas. I simply say they are unnecessary for our theoretical 
purposes. 

Let us consider time length first. As it has been pointed 
out by chronogeometry, time length must be defined by a 
h (1) functionjEilgM, such that if u:[a,b ]-M is the world 
line of an atomic clock, then S':J oflt is the time measured by 
that clock between u(a) andu(b ). Thefunctionjmustbeh (1) 
for time elapsed could be invariant under parametrization 
changes of 0'. We will calljthe time function. 

A synchronization is given by a timeform, that is a field 
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cEII7M such that <c,u> is ever2:'where nonzero (we always 
will put c = ea c). Briefly, if xE'7 M, then the hyperplane of 
Mm spanned by the vectors vEM m sa~isfyi.ng < ~ x ,V>, = 0 ~e­
fines the simultaneity relative to the tImehke dlrectlOnpx. 
Note that <c,u>x = <cpx,X>7'=O becausexsta~ds for a ~angent 
to the world line of the particle defining the simultaneity cpx ; 
since that line is timelike, different events on it cannot be 
simultaneous. Note also that if c is multiplied by any non­
vanishing function qEI1)01 , then qc defines the same simul­
taneity than c. 

Let us relatejand c. Ifjand c are given, then c can be 
multiplied by some function qEllgM such that _ 
<ea (qc),u> =}, since it is enough to take q = eb if /<c,u». 
Thus, an arbitrary given time function can be defined on this 
way from an arbitrary simultaneity. The choice ofa "length" 
for a simultaneity c (the multiplication by q) fixes a time 
scale on each synchronized laboratory. That is, if rm is a 
timelike direction at m, then cr". stratifies on equitime hyper­
planes the affine tangent space Mm. Thus, if vEMm , then 
<c,.,V) stands for the time shift between the tail and the head 
events determining v. This time shift depends on the inclina­
tion (synchronization) of cr.,,' and also depends on the sepa­
ration of equitime hyperplanes (the lenght of cr). Now, if 
u:[a,b ]-M is a world line and r:M-Y M is a laboratory, 
then S~<croaiJ>dt is the time inverted by the particle 0' from 
u(a) to u(b ), as measured by the laboratory r:, If r is the 
particle itself, that is rOO' = p&, and <c,u> = f, then 
S~<crorT,&>dt = S~(C,U>flt = slj'oflt. In other words, the con­
dition (c,u> = jmeans that we have picked for the synchro­
nized laboratories the same time scale which measures proper 
times by means of J 

Let us consider the inverse problem: Given}, find out a 
time form c such that <c,u> = J A solution is the element of 
IJ ~M defined through < c,V) = iv(j) for every vEil bM. In fact 
we have <c,u> = iu(j) = jbecausejis h (1); also c is h (0) 
because u is h (1). Therefore, eb C = c is a solution. Now, if 
bEIl?M satisfies (ea b,u> = 0, then c + b is another solu­
tion. But only the first one has a decisive property: The si­
multaneity if furnishes corresponds to that of infinitely slow 
clock transport. In fact, we will see in Part II Sec. 4 that this 
correspondence is characterized by the property iv«c-

,u» = (c,V) for every villlN. So, we can say that a time 
function j gives raise to a unique compatible time form c, the 
one satisfying <c,u> =}, iv«c,u» = (c,V). Due to this, in 
the following we will use time forms instead of time 
functions. 

As for space like length, it is given by a field yEIl~M, 
symmetric, of signature (0, + ,.'" + ), and such that y(u,) 
= 0, where y = ea y Along Part II we will justify this asser­
tion and see in what manner y defines a time form. So, we 
shall then reach another puzzling point: the compatibility of 
the time forms obtained from time functions or from space­
like metrics (11.1). Until then, we will leave this question and 
go on to describe two typical examples under this formalism. 

Let gE V~M be a Lorentz metric. Then it defines the 
time form c = - g(u, )/( - g(U,U»1/2 where g = gOiT, and 
the spacelike metric y = g0 1T + C ® c. This is the relativistic 
model. 
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As for a generalized Newtonian spacetime (locally abso­
lute time and length), let M admit a symmetric field gE V~M 
of signature (0, + , ... , + ), and a field bE V?M , everywhere 
nonzero, such that ifO=f'=vEMm and <bm,V) = 0, then 
gm (V,V)O. Thus, b defines the local absolute time and g the 
local absolute length. We put 
,;;-M = ! xmET bM:<bm,xm)=f'=O j. Then, the time form is giv­
en by c = b011' and the spacelike metric by 

_ q(u,u) _ _ ij(u, ) ® c c ® ij(u, ) 
eay=q+ c®c- - , 

<c,u)' <c,u) <c,u) 

where ij = gO iT. 

See also Ref. 3. 

5. VERTICAL AND HORIZONTAL 
HOMOMORPHISMS 

A vector field VE V b.'j.-M is said to be vertical if 
v(a011') = 0 for every aEVgM. That is, vertical vector fields 
are tangent to the fibres 11'-I(m). The set of vertical vector 
fields is a Vg,'j.-M -module, locally (n - I)-dimensional, for 
it is the annihilator of the Vg.~-M -module spanned by the 
elements d (a0 11')E V7,(T M, and this last module is clearly n­
dimensional [take for example a = xi, where! x') is a coordi­
nate system on UeM, and note that .'TM is (2n - 1)­
dimensional] . 

Suppose that a time form c is given. Then, it defines in a 
natural way a homomorphism):17 bM--. V b.'it-M such that 
its image,)(17 bM), equals the module of vertical vector 
fields (in this sense we say that) is a vertical homomorphism). 
In face, let vEJ7 bM; then v = eavElI bM, and <c,u)iv is a ver­
tical field of V b,?j-M. By its own definition, «c,u)iV)ax is the 
tangent, at t = 0, to the curve t--->-ax + <cax,aX)tvax' Now, 
because the factor <cax,aX) = a<cx'X)'P projects all these 
curves (varying the number a) upon the same curve 
p(x + <cpx,X)tvpx)' whose tangent at t = 0 defines)pX<vpx)' 
Thus, we put (jv)px = )px<vpx). Hence we have 
(jv)op = p.0c<c,u)ieav), where p. stands for the derived map 
of p. If aEJ7gM = VgSZM, then)v(a) defines a derivation 
along the fibres; that is,jv measures the dependence offunc­
tions on directions, not on events of spacetime. We have that 
ker) is spanned by k = eb(ul<c,u», becausep.oiu = O. 

Now, let A:I1 bM--. Yb.VM be a homomorphism. Then 
we say it is horizontal if (AvMa011') = vr(ii) for every rEY-M 
and aE vgM. The definition tells that A is injective. Note that 
our condition is equivalent to <d (a011').Av) = «d(f)011',V). 
Let us give an interpretation of A. We have that the elements 
vEJ7 bM can be locally written as vi(a laXio11'), where 
viElI gM and {x j 1 is a coordinate system on U eM. Since A 
is I7gM -linear, we shall only give the interpretation of A 
upon associated fields, that is such as V011', with VE V bM .. A 
horizontal homomorphism A is an assignment of a field 
A VE V bSZ M to the field v = V011' such that Av projects upon v 
under the map 11' • . In other words, integral curves of A v are 
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projectecd by 11' on integral curves of v. Or roughly speaking, 
a horizontal homomorphism is an interpretation of derivatives 
along M as derivatives along .'T M. 

6. LIFTS AND LOWERINGS 
Our purpose is now to extend a pair of vertical and 

horizontal homomorphisms to vertical and horizontal lifts 
for arbitrary fields of lIM. 

The mapA:IIM--->-VY.-Mis called a horizontal (vertical) 
lift if: (a) A 117 bM is horizontal (vertical) homomorphism; 
(b) A is a type preserving graded lR algebra homomorphism; 
(c) if v is in annihilator ofker A III?M and sElI?M, then 
<As,Av) = <s,v); and ifs is in annihilator ofker A III bM and 
VEIl cW, then <As,Av) = <s,v). 

Note that if A is horizontal, then A III bM is injective; 
thus every sEI7?M belongs to the annihilator ofker A I II bM 
; hence, if A is horizontal, condition (c) tells us that 
<As,Av) = <s,v) for every s,v. Note also that for every lift we 
have that Aa = a if aElI gM. 

The lowering B of a lift A is its transpose map 
B: VTM--.IIM. In other words, B is the graded lR algebra 
homomorphism such that Ba = a, <Bs,v) = <s, Av), 
<s,Bv) = <As,v). 

If A is horizontal, then <s,BAv) = <As,Av)-
= <s,v) = <BAs,v), whenceBA = id. If A is vertical we have 
BAB = B,ABA = A. In fact, ifvEJ7 bM and SE V?,;t-M , then 
<s,ABAv) = <Bs,BAv). But if zEkerA 117 bM, then 
<Bs,z) = <s,Az) = O. Hence Bs belongs to the annihilator of 
ker A 117 bM. Therefore, <Bs,BAv) = <ABs,Av)-
= <Bs,v) = <s,Av). Since s is arbitrary we have ABA = A on 

II bM; in the same way ABA = A on 17 ?M; therefore, this 
relation holds on the whole 17M. The proof for BAB = B is 
similar. 

The mapsA,B have a local character, as is easily proved 
as customary. This means that if Vr = wr, then (Av)r = (Aw)r 
and so on. 

The following definition will be useful for our purposes. 
Let A I be horizontal, A2 vertical, and B I , B2 their respective 
lowerings. Then we say they form a crossed lift pair if 
BIA, = B,A I = 0 on 17';M for (r,s)=f'=(O,O) (on I7gM, these 
homomorphisms are always the identity), and AIBI + A,B,­
= id on Vb,'TM and on V?SZM. 

Then we shall put H = AlB" V = A,B,. Thus we have 
W = H, V' = Y, HY = VH = Oon V",'j.-M with 
(r,s)=f'=(O,O), Thus, H and V project fields of V7 M into their 
horizontal and vertical components. These components sum 
the given field ifit is a vector field or a I-form because then 
H+ V=id. 

Now we reach the fundamental result of this section: 

Theorem: Given the vertical and horizontal homomor­
phisms) and A, they define a unique crossed lift pair AI, B I, 
A2, B, satisfying A 1117 bM = A, A,III bM = j, <c,B,v) = 0 
for every vEvb.7M. Moreover, then BII VbSrM = 11' •. 

Angel Montesinos 956 



                                                                                                                                    

Proof First we prove j(ll AM) Ell A (ll AM) = V b.'7 M. 

In fact, if V = jv = Aw, then for every aEVgM we have 
via01T) = (jv)r(a01T) = 0 = (AwMa01T) = wr(a). Hence 
Wr = 0 and Vr = O. Thus, the intersection of those submo­
dules is zero. Now, A is injective and the imageofj equals the 
submodule of vertical vector fields. Therefore, the maps 
A r, jr defined at each I'E.'7Mby A,vr = (Av),., j,vr = (jv)r 
have rank nand n - I, respectively. Hence 
jr(M rrr) Ell Ar(M rrr) = (.'7M)r because (5t M)r is (2n - I)-di­
mensional. Now, it is a simple matter to extend this direct 
sum globally for having our first claim. As a consequence, if 
vEvbSt.-M, it can be written in a unique manner as 

v = Av, + jv" where v"v,Ell AM and (c,v,) = 0 (note that 
ker j is spanned by k, and (c,k) = I). We put 
<A ,s,v) = <s,v,), <A,s,v) = (s,v,). These maps, together 
with A andj, in fact define the whole lifts A ,,A, satisfying our 
requirements. The proof is rather mechanical and is left to 
the reader. As for the assertion B,I Vb.'7M = 1T., we have 
<s,B,v) = <A,s,v) = (s,v,) ifv = Av, + jv,. Then 
1T.V = 1T.oAv, + 1T.ojV, = 1T. oAv, = v, as we have seen inour 
interpretation of horizontal homomorphisms. Therefore, 
B,v = 1T. O V. 

Note that if vEfJAM, it can be written as 
v = (v - <c,v)k) + <c,v)k. Thus, A,v = j(v - (c,v)k) and 
<s,B,A,v) = <A,s,A,v) = (A,sJ(v - (c,v)k» 
= (s,v - <c,v)k) because (c,v - (c,v)k) = O. Hence, B,A, 

is the identity on annihilator of c. On a similar way, B,A, is 
the identity on the annihilator of k. 

7. CONNECTIONS 

The map \1:(v,h)Ell AM XllM~\1" hEllM is called a 
horizontal (vertical) connection on llM if: (a) \1" :llM~llM 
is a derivation of degree zero on the graded IR algebra llM; 

(b)\1"a = Av(a),A:ll AM~V6.'7M being a horizontal (ver­
tical) homomorphism andaEllgM; (c) it isllgM -linear in v, 
that is \1 at' + bw = a\1" + b \1 w; (d) if sEll~M and wEll AM, 
then \1,,(s,w) = (\1I~'W) + (s,\1vw). 

The map.d: (w,h )EVbYM xllM~.d,.hEllM is called 
a physical connection if: (a).d w is a derivation of degree zero 
on llM; (b).d~ = w(a) for aEllgM; (c) it is VgSrM -linear 
in w; (d) .dw<s,v) = (.dwS,v) + (s,.dwv). 

From a geometric and physical viewpoint, physical 
connections are more natural than connections on llM, but 
these are easier to handle. We will use them as a tool for 
finding physical metric connections. However, both types 
have a physical significance. The meaning of physical con­
nections is that they give the covariant derivatives of phys­
ical fields along the directions w, that is, along curves on 
.'7 M; in other words, when we move from a point m at which 
the laboratory has direction r m' to a point m' where the labo­
ratory has direction r m', in such a manner than the points r m 

and r m' of .'7 M are detached between them by the vector w 
(roughly speaking). 

Now, as another useful tool, we build thej connection 
D, which is a vertical connection on nM. It is defined by 
D,p = jv(a) if aEllgM, and DJh01T) = 0 if hEVM. It is not 
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difficult to prove the consistency of this definition. We have: 

Theorem: If c is a time form such that iii«c,V» = (c,V) 
(see Sec. 4), then (Dkc,w) = (Dwc,k) = 0, and 

(D"c,w) = (Dwc,v) for v,wEll AM. 
Proof Since these expressions are ngM -linear in v,w, 

we can suppose that they are associated fields, that is 
Dv = Dw = O. Thus, (Dkc,w) = Dk(c,w) - (C,DkW) 
= Dk(c,w) = jk «c,w» = 0 becausejk = O. Now 

(Dw(c,v»op = (c,u)iw(iii«c,u») = (c,u)iii(iw«c,u») be­
cause v, w are associated fields and iv, iw are ordinary deriva­
tives (in the same sense used in IR n) on the fibres of ii. Hence 
0= Du,(c,v) - Dv<c,w) = (Du,c,v) - <D"c,w). Therefore, 
<Du,c,k) = (Dkc,w) = O. 

This theorem tells us that 1] = Dc defines a symmetric 
element of II ~M such that 1](k, ) = O. This field gives the 
rate of time retardation when the relative speed increases. In 
fact, let a{t ) be the world line of a particle, and r a cross 
section of 1T, that is a laboratory. If &(t) is the tangent to a, we 
can roughly think of &(t ) as a vector joining two events in the 
world line, namely a(t) and a(t ) + &(t). Then 
T r = (c rOa(1 )'&(t » is the time interval, measured by the syn­
chronized laboratory r, for the track of that particle between 
a(t }anda{t) + &(t). Thus, if a remains fixed, this time inter­
val depends on ronly. Thus, D"Tris the rate of variation of Tr 
with respect to s, at s = 0, when we take laboratories 
p(r + <Croa(I),'>Sij) measuring it (see Sec. 5), where we sup­
pose pr = roa(t) and v = Vroa(I)' That is, DuTr is the rate of 
variation of Tr when the speed of the laboratory changes 
towards the v direction. But DuTr = «Dvc)roa(I),ir(t» 
= 1]roa(t )(v,&(t »). If vis a positive multiple of ir(t), this 

means we are approaching the laboratory speed to that of the 
particle because < c roa(1 ),,> (proper time) is supposed to be 
positive. Then, if 1] roa(1 )(&(t ),o-(t») < 0, we have that clocks 
relatively retard with respect to each other when their rela­
tive speed increases (as a thinking guide, bear in mind special 
relativity). 

In relativity we have y + 1] = O. In Newtonian space­
time 1] = O. 

8. METRIC CONNECTIONS 

If '\1,'\1 are horizontal and vertical connections on 
llM, respectively, then we have that 
'T(v,w) = '\1uW-'\1wv-B.[A,v,AIW] and 
'T(v,w) = B,A,('\1uw - '\1wv - B,[A,v,A,w]) are llgM­
bilinear operators, where A "B,,A2,B2 is the crossed lift pair 
defined through the Theorem in Sec. 6 from the homomor­
phisms associated to these connections. These operators de­
fine elements' T, 2 TEll iM , called the horizontal and vertical 
torsion, respectively . 

Thus, we say that '\1 ('\1) is a horizontal (vertical) met­
ric connection if '\1c = 0, I\1Y = 0, IT = 0 ('\1 c = 0, 
2\1Y = 0, 2T = 0). 

Then, since y(k, ) = 0, we have that '\1 uy(k ,) 
= ('\1 uy)(k, ) + y('\1 uk, ) = y('\1 uk, ) = O. Hence, 1\1 ~ 

must be a multiple of k; but (e,k) = 1 and '\1c = O. There­
fore, l\1k = 0, and in the same way we can prove 2\1k = O. 
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The problem of existence for horizontal metric connec­
tions is rather difficult; in Appendix A is proved that if the 
signature o/r is (0, + , ... , + ), the signature 0/71 is 
(0, - , ... , - ) and c satisfies iv«c,ii» = <c,V), then there is a 
unique horizontal metric connection on 11M. The root of the 
difficulty is that we do not know a priori the horizontal ho­
momorphism associated with that connection. It must be 
determined from our requirements together with the action 
of 1'\1 upon vector fields. 

Now, the increasing half-lifes of particles has been veri­
fied for many speeds and directions. Thus, we have an ex­
perimental reason for taking (0, - , ... , - ) as the signature of 
71. Assuming this for granted, there is a unique horizontal 
metric connection. In Newtonian spacetime, 71 = 0 and that 
connection, ifit exists, is not unique; the existence condition 
is that bbe an exact I-form. This means a universal absolute 
time. The proof of that assertion is too long for bringing it 
here. 

The physical meaning of '\1 is the following: It defines 
the absolute derivative o/physicalfields along spacetime (cf. 
the interpretation of homomorphisms given in Sec. 5)/rom a 
laboratory whose particles are each other at relative rest (at 
the limit when these particles are close to the event where the 
derivative is taken). The reason for this last remark is that 
l'\Ik = 0, and k could be looked at, in some respects, as the 
laboratory field. An account for this interpretation is given 
in Ref. 4. 

As for the vertical metric connection, it defines the ab­
solute derivative offields along the fibres of 17", having rand c 
as an absolute measure for the directional dependence of 
fields. That vertical metric connection also is uniquely deter­
mined, and given by 

'\1"w = D"w + 19-I«D,g)(w, ) + (D"g)(v, ) - (Dg)(v,w), ) 

- g(v,w)k - <c,w>v, 

where we have put g = r - c ® c (see Appendix B). 

9. LIFTING CONNECTIONS 

If Ll is a physical connection and A,B is a lift lowering, 
then \1"w = LlA"w defines a connection on JIM. The follow­
ing assertion justifies our use of connections on JIM: 

Given the horizontal and vertical metric connections 1\1, 
'\1 there is a unique physical connection Ll giving 1\1 and '\1 
through the above process. It is metric in the sense that Llc = 0 
and Llr = O. 

For if Ll satisfies that condition, then 
Llj1 = Ll H j1 + Llvwh = 1\1 B,wh + '\1 B,j1 for every hEllM, 
WEV6,;TM. Now it is a trivial matter to prove this formula 
effectively gets a physical connection. Moreover Ll r = 0 and 
Llc = 0 because '\1 y = 1\1 Y = 0 and I\1C = '\1c = O. Also 
we have Llk = O. 

The formula giving Ll is rather striking: It manifests 
itself our way to get it. It splits in two terms, corresponding 
to the horizontal and vertical components ofw, that is, of the 
tangent to the curve on YM along which we compute the 
derivative. Thus, it does not require a more detailed 
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explanation. 

Unfortunately, physical connections are awkward to 
handle because of their mixed nature. Due to this, we shall 
lift Ll for having an ordinary linear connection on v''7M. 
The process is the following. 

Let AI, BI be the horizontal lift lowering given by the 
metric connections 1\1, '\1. Then, ifD is a linear connection 
on V,',[M, we have that Llwh = BID~lh defines a physical 
connection. We shaIl demand that Ll should be the physical 
metric connection we have just defined. 

As for A" B" the formula B,D~,h does not define a 
physical connection because B,A, is not the identity. But 
BA,B, = B" whence the preceding formula defines a phys­
ical connection on B,(VYM) that is a subalgebra of JIM. 
But our physical metric connection also is a connection on 
this subalgebra, because B,(V 6,(TM) is the annihilator of c, 
and B,( VY,(TM) is the annihilator of k. For if <s,k > = 0, 
then <Ll~,k > = - <s,Llwk > = 0; also, if <c,v> = 0, then 
<c,Llwv> = o. So we shall demand that Ll~2h = B2D~2B,h 
for every hE v''}.-M. In addition, we demand that the parallel 
displacement given by D should apply horizontal vectors 
into horizontal vectors; in other words, that DH = O. 

Theorem: There is a unique linear connection D on 
V,TM such that 
Llwh = BID~lh, Ll~,h = B2D~,B2h,DH = O. 

Proof Note first that H linearly applies V;YM into 
V;.TM; hence, each restriction HI V;YM can be looked at 
as a tensor field of type (r + s,r + s); in this sense, DH has a 
definite meaning. If D is the required connection, then 
Dwv = + DwHv + Dw Vv = DWH2V + Dw V2v 
= HDwHv + VDw Vv because H + V = id on V 6S;:-M and 

as a consequence DV = O. Thus Dwv 
=AIBID~IBlv +A2B2D~2B,v =AILl~lv +A2Ll~2V. 

Hence, if such a linear connection exists, it is unique and 
given by the above formula (valid for elements of V6YM 

and V?'TM; for other tensor types, the expression is more 
complicated). Now it is a trivial exercise to prove that formu­
la fulfill our demands. 

10. GEOMETRY ON THE TIME BUNDLE 
We look at rand c as the primordial geometric features 

of spacetime. From them, we build unique vertical and hori­
zontal metric connections, and they define the physical met­
ric connection, which describes the absolute derivative of 
physical fields along the time manifold. Also we have the 
linear connection D that could be regarded as getting the 
geometry o/the time bundle itself; in fact, the torsion ofD, its 
curvature and Ricci fields, Bianchi identities, etc., can now 
be computed as customary. Thus, our goal has been reached: 
we have translated the problem of spacetime geometry to the 
geometry of the time manifold, the manifold where the ob­
servable physics takes place. This lifting process has the ad­
vantage of recovering the usual techniques of differential 
geometry. 

However, to tell the truth, I have some doubts about 
this process, in the following sense. One could also say that 71 
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measures the increasing relative energy when the relative 
speed increases, because time retardation and relative energy 
are directly related in relativity and quantum mechanics. 
Therefore, 17 would stand for the vertical potential in the 
manner as in relativity g stands for the gravitational (hori­
zontal) potentiaL Then, this symmetry lends some strength 
to the definition of vertical metric connections through 
2\7C = 0, 2\717 = 0, 2T = o. On this assumption the lifting 
process for connections becomes the same because we also 
have that 17(k, ) = 0; but then..::1y and..::117 are in general 
different from zero. Thus, what is the appropriate field, yor 
17, to be used for defining a metric on the fibres of 1T? Relativ­
ity is not an aid because then y + 17 = 0, whence the choice 
does not matter. But in Newtonian spacetime, 17 = 0; thus, 
no vertical distance among velocities?, no relative energy?, 
no inertia? These strange outcomes and the nonmetric char­
acter of..::1 compel me to prefer y instead 17. 

Disregarding these doubts, I believe this process is not 
merely a desperate issue from an unnecessarily puzzled star­
point; on the contrary, it seems to me more natural than the 
relativistic one, because it allows a step by step construction 
of different models of spacetime, clearing up the different 
options one must take for having different theories. 

II. SPACELIKE LENGTH AND SPACETIME 
1. INTRODUCTION 

Until now, we have considered as independent data the 
time form and the spacelike metric. But are they indepen­
dent magnitudes? In relativity the answer is no, because then 
y + Dc = y + 17 = 0, and there is experimental evidence fa­
voring some link between y and 17-the Michelson-Morley 
experiment for instance. 

Let us accept that link, but suppose thatjis a general 
time function, perhaps not a relativistic one. Fromjwe build 
c and Dc = 17. Suppose the signature of 17 is everywhere 
(0, - , ... , - ). Increasing half-lifes is the experimental sup­
port for this assumption. Then, it seems a suggestive attitude 
to postulate that the relation between y and 17 is the same as 
the relativistic one, i.e., y + 17 = O. In other words, we are 
defining the spacelike metric as y = - Dc. From this point, 
we could apply the techniques of Part I for reaching a geome­
try of the time manifold. That would be the track of a pure 
chronogeometry: to reject meters, adopt clocks and build 
lengths from times. Classical chronogeometry in additon 
postulates that 17 + c ® C = g0 1T, with gE V~M , that is we can 
mix these magnitUdes for having a Lorentz metric. 

So far I do not know examples of the opposite view­
point: to reject clocks, adopt meters, and build times from 
lengths. My own position is the construction of a very gener­
al spacetime geometry from the datum of a spacelike metric. 
At least Ijudge this task convenient, as complementary with 
respect to chronogeometry. Moreover, I find some physical 
arguments favoring my position. First, 17 and y have very 
different physical meanings: 17 stands for the rate of time 
retardation, and y for spacelike length as measured by me­
tersticks; thus, the relation y + 17 = 0 seems rather acciden­
taL Second, I think of time as a more dynamic feature than 
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spacelike length, whence also a more secondary datum from 
our methodological viewpoint (see Part I, Sec. 4); I believe 
that is in the same line of thought as the way in which super­
space theories are going; that is, spacelike length carries in­
formation about time, but can we say that time carries infor­
mation about space? Third, Pythagoras' theorem, on which 
our theory leans, has always been verified at the macroscopic 
level, and always supposed at the microscopic one. 

Thus, our departure point is a spacelike metric, that is a 
field rElfiM, symmetric, of signature (0, + , ... , + ), and 
such that y(u, ) = O. This field describes Pythagoras' theo­
rem at each laboratory (Sec. 2). 

The key point of the paper is Sec. 3. On it, we define a 
simultaneity from y through the criterion of stationary spa­
celike volume. It is a generalization of the oldest definition of 
simultaneity, that given by a person saying: "I cannot be in 
two places at the same time!" He signifies that he cannot 
reduce the distance (relative to him) between two events 
happening at different places if they are simultaneous. We 
will take volume instead of distance, but the basic point is the 
same: to take spacelike measures instead of interchanging 
signals for defining the simultaneity. The criterion of space­
like volume gives a time form c under a multiplicative 
function. 

Each choice of that function defines a time function; we 
demand that time function to be consistent with the time 
form by means of infinitely slow clock transport (Sec. 4). 
However, this requirement does not entirely determine the 
time form; the equivalence among these consistent time 
forms gives raise to a gauge (Sec. 5). 

In Sec. 6 we characterize our geometric model of space 
time in terms of a nonsingular symmetric field gEll ~M. 
Some examples are shown. 

Gauge invariance makes the definitions of metric con­
nections on llM more difficult. Along the study ofthis prob­
lem, a field ¢>EIftM arises (Sec. 7). It determines the hori­
zontal metric connection, and perhaps could be interpreted 
as the electromagnetic potential. 

In Sec. 8 we apply the techniques of Part I for lifting 
connections, and so reach a physical metric connection 
which is gauge invariant, and a linear connection on VSZ"M 
giving the geometry of the time bundle. 

Section 9 contains some comments about our results. 

2. PYTHAGOREAN SPACELIKE METRIC 

For a better understanding, we will translate back and 
forth our constructive process from the special to the general 
case, in a similar manner to that of special and general 
relativity. 

In the special case, spacetime is considered as the four­
dimensional affine space. Geometric features of spacetime, 
that is y or c, are supposed to be independent of events; they 
could perhaps depend on laboratory directions. As in special 
relativity or classical mechanics, if no forces act upon a parti­
cle, its world line is straight. An inertial laboratory is now a 
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set of solidary particles, i.e., whose world lines are parallel 
straight lines. Any nonzero vector tangent to them must be 
timelike by definition. So, each laboratory is characterized 
by a timelike vector x or by any non vanishing multiple of it. 
Let us consider ourselves traveling with the laboratory X. 
Given an arbitrary event, it appears located at a well defined 
point of our laboratory. In spacetime language, location is 
the world line of the particle of our laboratory whose history 
contains the given event. Events which happened at the same 
point of our laboratory must have the same location, no mat­
ter the time elapsed among them. If two events are given, we 
can measure the distance between their locations by means 
of a meter stick at rest in our laboratory. Obviously, this is the 
ordinary method of spacelike length measurements among 
events: The bottle carrying the help message was foundfour 
thousand miles away from the wreckage···. 

The resulting quantity depends on the vector y joining 
both events (4-vector of spacetime). But it is clear that it also 
depends on the selected laboratory, that is on X. Now, we 
assume that Pythagoras' theorem holds at each laboratory. 
In other words, the spacelike length of y at x is given by 
yx<Y,f), where Yx is a quadratic form that depends on x, but 
not (in the special case) on the events of spacetime. Obvious 
properties of this field y:x-yxare: (a)rJax, ) = ° for every 
aElR, because ax stands for the vector joining two events 
having the same location at the laboratory x; (b)rx = Yaxfor 
a > ° since x and ax stand for the same laboratory (hence we 
say that r is homogeneous of degree zero); (c) y.x(jl,f) > ° if Y 
is not a mUltiple of X. 

By a standard generalization, in the general case a labo­
ratory will be a local cross section of 1T:ffM_M, the time 
bundle, and y will become a symmetric element of n ~M , of 
signature (0, + , ... , + ), and satisfying y(u, ) = 0, that is 
y(u, h = yx(x, ) = ° (see Part I, Sec. 4). 

3. SIMULTANEITY FROM SPACELIKE METRIC 

Our problem is now the discovery of a simultaneity 
linked to the spacelike metric y. The process is performed in 
two steps: imposing both the condition of stationary space­
like volume and that of infinitely slow clock transport syn­
chronization. In terms of Part I, we look for time forms 
privileged with respect to y; let us discuss what kind ofprivi­
lege it is. 

At this point it is interesting to remark that the preced­
ing description of y is by no means restricted to a particular 
class; thus, since we are looking for a generalization, it would 
be desirable that our definition of privileged time forms 
could be consistently applicable to Newtonian or relativistic 
spacelike metrics, considered as simple and extreme 
examples. 

In classical Newtonian spacetime or in special relativity 
we can verify without difficulty the following argument (we 
are in the special case), whose rigorous proof is the theorem 
in Sec. 6. Let A, B, C, D be four events determining a hyper­
plane. If x is a laboratory, we can measure by means of Yx 
the volume of the tetrahedron determined by the locations of 
these events in the laboratory x (or x locations). Let V (X) be 
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that volume. We call V(X) the spacelike volume of the 
(A,B,C,D )-x locations. If the field x-yx is smooth and 
A,B,C,D remain fixed, then V:x-V(X) is a differentiable 
function; let dVbe its differential. Suppose that dV vanishes 
at some laboratory xo, i.e., (dVh" = 0. This means that the 
spacelike volume of the (A,B,C,D )-x locations is stationary 
at xo. If this occurs, then in Newtonian mechanics the four 
events are pairwise absolutely simultaneous. In special rela­
tivity, we conclude that the hyperplane A,B,C,D is spacelike 
and that Xo is orthogonal to that hyperplane; or, equivalently, 
the four events are pairwise simultaneous as viewed from the 
laboratory xo. Moreover, in both spacetime theories, given 
the timelike vector xo, there is a unique hyperplane whose 
spacelike volume is stationary at xo,in the above sense (strict­
ly speaking, a distribution of parallel hyperplanes). Thus we 
can say that such a hyperplane is privileged at Xo with respect 
to y, since the laboratory and its corresponding stationary 
spacelike volume hyperplane are related by simultaneity. 

The same idea serves us for defining priviledged time 
forms from the spacekike metric, though it should not be 
Newtonian or relativistic. Suppose that c is a I-form deter­
mining a distribution of parallel hyperplanes (we keep in the 
special case). Choose one of them, say, H. As before, let 
A,B,C,D be four fixed events determining H. Let V (X) be the 
spacelike volume of the (A,B,C,D )-x locations, as measured 
by means of YX' Suppose (dVh" = 0; obviously this condi­
tion does not depend on the chosen four events belonging to 
the fixed H. Thus, we say the spacelike volume of H is sta­
tionary at xo, and that the events belonging to H are by defini­
tion pairwise simultaneous with respect to the laboratory xo. 

Our basic requirement upon y is: Consider the subset of 
timelike vectors for each of them, x, there is one unique (up 
to a multiplicative nonzero constant) I-form bx whose asso­
ciated hyperplanes are of stationary space like volume at x, 
and such that <bx':x>oi=O. Then, this subset is supposed to be 
nonempty and open, and it constitutes our final set oftimelike 
vectors. Our additional demand is: there is a representant Cx 
of each (abxl a""O such that the field c:x-cx is smooth and 
homogeneous of degree zero. This last field is called privi­
leged ~imeform, and it defines the synchronization associat­
ed to y. 

In the general case this question becomes rather techni­
cal; a detailed account is given in Ref. 4. A brief sketch is the 
following. Let 2 C M be a hypersurface of M, and B a com­
pact regular domain of 2, contained in the domain of some 
chart of 2. Let (fa l be the coordinate vector fields of this 
chart, and (sa l the dual base. Let r be a cross section of if 
such that r m is not tangent to 2 for mu. Then, y = yopor is 
a positive definite quadratic form when it acts upon T ~ . 
Thus, y defines a volume form on 2. Hence, the volume of B 
given by that volume form can be interpreted as the spacelike 
volume of B, as measured from the laboratory r.1t is given by 
V (1) = S B 1 yifa/P) II12s 1/\ ... /\ Sn- 1, where 1 1 stands for de­
terminant. If B remains fixed, this integral defines a func­
tional on the field r. Let us put y = yop andja =]aoif. By 
applying usual variational techniques, we find that V (1) is 
stationary at rifwe have (i6)"",(1Y(/aJp ) I) = ° for every mER 

and vEiibM. 
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This is a point-by-point condition, and it does not de­
pend on the choice of Ila j. In other terms, it only depends 
on the inclination of.2 at each point. Thus, we can build, at 
each mEM the set Tm c:7 In of vectors as x m , for each of 
them there is unique n-l-dimensional subspace 11,1 J of M m , 

not containing xm ' such that (iV)x.,,(lrlfa!rJ)I) = 0 for every 
iiEII &M (note that iii is a derivation along the fibres of ii). 
Our abstract model of spacetime, the time-elements space 
(TES), consists ofa manifold M, a time bundle 1T:.'J.-M-M, a 
spacelike metric field r such that p(Tm) = 1T- 1(m) for every 
mEM, and an element cEll?M such that cr", determines the 
unique subspace of Mm of stationary spacelike volume at 
r",E1T- 1(m). We call c a privileged time form, and cr", the si­
multaneity associated to rm' 

4. CLOCK TRANSPORT SYNCHRONIZATION 

If c is a privileged time form, then qc also is a privileged 
time form, whenever qEllgM is everywhere nonvanishing. 
Thus, the choice of q defines the time function <ea(qc),it), 
that is the time length scale at each laboratory. Now, can this 
function q be arbitrarily picked without contradiction? 

Let us return to the special case. If x is a laboratory, we 
will call the x clock an apparatus, at rest in x, which com­
putes time intervals among events of its history by means of 
E,. Equivalently, <cx,X) is the time interval measured by thex 
clock between two events of its history, detached each other 
by the vector X. 

Consider two laboratories, x and x'. Suppose the x' 
clock lying at the spacelike origin of x', passes, at some event, 
next to the x-clock of the origin of X. At that event, both 
clocks are set to zero. Suppose that all x clocks are synchro­
nized among them by the condition of stationary spacelike 
volume, that is, through cx' Now, does that x' clock point to 
the same hour as the x clocks it is passing by? There are few 
chances for getting this agreement by a suitable choice of q. 
With a Newtonian spacelike metric, the agreement is possi­
ble; thus, absolute universal time is,from our viewpoint, a 
consequence of Newtonian spaceUke metric! In special rela­
tivity, the answer is no. 

However, in relativity an intermediate thing can be 
achieved, the agreement when the clock transport is "infi­
nitely slow," the limit case when relative speed approaches 
zero (I believe this is Eddington's idea). So, could we require 
this weaker agreement with all generality? The answer is 
affirmative. In fact, suppose that the x' clock starts from the 
event A. Both this clock and the x clock at A, point to zero at 
A. After a while, the x' clock reaches another x clock at the 
event B. Let zbe the vector joining A with B. Then z can be 
decomposed asz = Y + ax where <cx,j!) = 0 and aER. Ifall 
x clocks are synchronized, atB thex clock points to <cx,aX), 
and the x' clock, to <cy + ax,Y + aX). Then, we demand that 
lima~oo«ey + ax'Y + aX) - <ex' aX» = O. Now, e is h (0); 
thus that expression becomes 
lima~oc<ex+py- cx'Y + aX) = limp~o«ex+py- cx)I(J,X), 
where we have put(J = l/a. Then, since 
limp_~o(cx + py - cx)l(J = <cx,X)-I(Dyc)px' we conclude that 
infinitely slow clock transport agrees with stationary volume 
synchronization iff <Dyc,k) = O. Now, it is not difficult to 
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see that this condition is equivalent to that of 
iy«c,it» = <c,y). 

In the general case, infinitely slow clock transport is 
nonsense. The best we could do is the following (this new 
process is equivalent to infinitely slow clock transport in the 
special case). Let 0': [a,b ]_M be a world line, i.e., a(t) be­
longs to .7 M. Let rbe a cross section of ii, and c a privileged 
time form. Then, the time elapsed from u(a) to O'(b ), as mea­
sured by the synchronized laboratory ris f~<croa,a)dt 
= r(F). If 0' remains fixed, this integral is a functional on r. 

Infinitely slow clock transport here means that r approaches 
a on 0'; the forementioned agreement translates into the con­
dition that r would be stationary when rOO' = a. By requiring 
this for every world lines we easily find that <Dvc,k) = 0 is 
the necessary and sufficient condition. If it is fulfilled, we can 
say that the "proper time" is an extremum for every world 
lines (in comparison with the time lapse measures performed 
from other laboratories); or, in the special case, that c gives 
the same synchronization as infinitely slow clock transport. 
In both cases, we say that c is afundamental time form. 

5. THE GAUGE 

As for existence of fundamental time forms, see Sec. 6. 

Suppose that c is fundamental. Then, if iiE vgM is ev­
erywhere nonzero and we put a = iio1T, then we have 
<D t • (ac),k ) = 0 because D (ii01T) = O. Therefore, ac also is 
fundamental. All these fundamental time forms will be re­
garded as equaly valid for describing geometric features of 
spacetime. Then, the gauge for deciding if a geometric object 
is physically consistent must be its invariance under the 
transformation c-ac, where a = ii01T is everywhere 
non vanishing. 

Since ii does not depend on directions, that transforma­
tion simply means certain change of time unities on each 
event. But ii could depend on events of spacetime. Therefore, 
we cannot get an absolute comparison among time scales at 
different events of spacetime; however, at the same event, time 
scales for clocks with different speed can be absolutely com­
pared with respect to each other. Now assume that two real 
clocks depart from an event A and travel along different 
paths, so that they meet at B. Someone might ask if the rela­
tive tick rythm of both clocks in B is different from that on A. 
Whereas this question makes sense in itself, it is not relevant 
here, because my time is a spacewise time, and I do not know 
whether the time of the real clocks agree with it. As it has 
been suggested to me, perhaps this means that this theory 
embodies in some nonquantic manner the following quantic 
assertion: The uncertainty principle prevents one from 
knowing both the metric of a spacelike slice and its respec­
tive extrinsic curvature. 

6. THE TIME ELEMENTS SPACE 

Now, suppose the r defines a TES and c is a fundamen­
tal time form. Then, g = r - c ® c defines a symmetric ele­
ment of IfiM of signature ( -, + , ... , + ). After rather long 
computations' we can characterize TES's through the 
following: 

Theorem: Consider a given time manifold YM, and let 
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gEfl ~M be symmetric, of signature ( - , + , ... , + ), and 
such that g(ii,ii) < 0. Define k = eh(ii/[ - g(ii,ii)] '12), 

c = - g(k,), y =g + c®c. Thus, if <D"c,k) = ° and 
D"lg(f,Jf) I = ° for every uEII bM and/; = /;01T withl,EVc'# 
(i:O, I, ... ,n - I), then y defines a TES on ,(YM, and c is a 
fundamental time form. Conversely, if y defines a TES on 
JiM and c is a fundamental time form, the field 
g = y - C ® C satisfies the above requirements. 

The theorem enables us to build fundamental time 
forms. If c is a privileged time form, it is enough to multiply c 
by a function qEfIgM in order to make Igi constant along 
each fibre. Also, it facilitates the construction of TES mod­
els. Besides the relativistic one, which trivially satisfies the 
theorem, the generalized Newtonian spacetime (see Part I, 
Sec. 4) defines another TES. 

We also can alloy relativistic and Newtonian theories in 
the following way. Suppose M admits a Lorentz metric 
gEV~M, whence also a timelike one-dimensional d!.!>tri~u­
tion. We put ii = g(x, )/( - g(X,X»'12 and q = g + b ® b, 
where x lies in that distribution. Let N,RE VgM be scalar 
fields such that N + R = I (the alloy ratios). By means of g 
we build the relati vistic spacelike metric y R , and by means of 
q and ii the Newtonian one, YN (see Part I, Sec. 4). Define the 
time bundle by p(j)E.;t m ifyEMm' <iim,Y>=f=O, 
gm(j,y)(N,rim(j,y) - Rm<iim,y>') > 0. Then 
Y = Ny" + Ry R' where N = N0 1T and R = R 01T, defines the 
mixed Newtonian relativistic TES on ,;tM. The proof of this 
assertion is rather long, and for the sake of brevity I prefer to 
not write it down. This TES has some bizarre properties: For 
example, its time bundle admits speeds greater than light. 

The preceding theorem excludes from our scheme the 
old theories with an interval given by ds 

= ( - g;j1X'dxf)'12 + (e/m)A,dx i
, and a metric field defined 

through the Cartan technique. In fact, that metric field 
would have its determinant constant along each fibre iff 
Ai=O. 

7. GAUGE INVARIANCE AND CONNECTIONS 

We are interested on connections that should be com­
patible with the geometric structure given by y and funda­
mental time forms. The gauge invariant properties of this 
structure are: spacelike metric, simultaneity that is the con­
dition < c,u) = 0, and fibre constancy of 1 y - C ® c I· 

Suppose that} is the vertical homomorphism associated 
to c and that 'V is a vertical connection such that 'VY = 0, 
'Vc = 0, 'T = 0, 'V"b = }u(b) if bEfIgM. If c-c' = ac is a 
gauge transformation, we have 'vc' = 'vac = a 'vc = ° 
because a = a0 1T. Thus, our definition of vertical metric con­
nections goes without changes. That is, to each fundamental 
time form c we attach a vertical metric connection 'von 
JIM, the one satisfying 'Vc = 0, 'VY = 0, 'T = 0, 
'V"b = }u(b). This connection is unique and defined by the 
formula which appears in Part I, Sec. 8; but it is not gauge 
invariant because the connection attached to c' is 
'V' = a 'V. This is not a bad feature, as we shall see in the 
following section. 

The definition of horizontal metric connections re-
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quires more care. We will say that 'V is a horizontal metric 
connection if it is torsion less and: 

(a) 'VY = 0, that is, IV preserves spacelike length; 

(b) <'V"c,w) = 0 if <c,w) = 0; hence, 'V preserves 
simultaneity; 

(c) D,,(g-'J 'V 15) = ° whenever uEfIi# and z = 201T 
(J stands for double contraction). Equivalently, 'V pre­
serves the fibre constancy of Igl. 

Condition (a) tells that 'V"k must be a mUltiple of k 
because y(k, ) = 0 and IVY = O. Thus, there must be some 
rjJEfJ?M such that 'V"k = - <rjJ,v)k. Condition (b) implies 
that 'V,. c must be a multiple of c; but <c,k ) = 1. Therefore, 
'v,c = <dJ,v)c. Then 'V15 = 'viy - c®c) 
= - 2<r/J,z)c ® c. Since g-'(c,), = - k, then 

g-I J 'Vzg = 2<dJ,z) and Dz(g-'.J 'V 15) = 2<D"r/J,z) = 0, be­
cause z = 20 1T. Therefore, r/J must be associated to some ele­
ment (jE V~M, that is, r/J = (j01T. 

In Appendix A we prove that such a connection exists 
and is unique. 

Now, let c-c' = ac be a gauge transformation. Then, if 
IV"C = <dJ,u)c, we have 'V"C' = «(j + d Inii)o1T,v)c'because 
'V is horizontal. Thus, if we require that IV be gauge invar­
iant, then dJ must change into r/J + (d Inii)o1T under a gauge 
transformation. Therefore, if (j is associated to c in such a 
manner that (j + d Ina is associated to (a0 1T)c, then there is a 
unique gauge invariant horizontal metric connection. 

We will think of rjJ, thogther with y, as the fundamental 
data of spacetime geometry. We tentatively call r/J the elec­
tromagnetic potential, though its true meaning must be dis­
closed only after disclosing field equations. Its operational 
definition is the following. Let mEM be fixed. Take r mE!T m' 

and extend r m to a cross section r of 1T in a neighborhood U of 
m in such a manner that r be experimentally stationary at m; 
in other words, we suppose there is an operational definition 
for the relative rest of close particles with respect to a given 
one. Now, restrict y and ac to r, that is, take the values of 
these fields at the laboratory r for having the ordinary fields 
yOr, (ac)or; build the Lorentz metric g = (y - a'c ® c)or, 
where a = a0 1T is to be determined. Compute the Riemann 
standard connection of g. Check if the normalized laborato­
ry field kor is stationary at m, i.e., if the covariant derivative 
of koris zero at m. If this is not so, pickain a suitable manner 
in order to have an affirmative answer. Then 
(j = - (d lnii) is the value at m of the electromagnetic 
p;tential associ;~ed to c. Therefore, the electromagnetic po­
tential associated to ac is zero. In other words, the value at m 
of the electromagnetic potential associated with c is minus the 
differential at m of the deviation of cfrom the timeform, 
which correctly gives the observable stationary (at m) charac­
Jer of a laboratory with normalized speed. 

If J is the differential of a function, it can be globally 
removed by a suitable election of a. That is, in such a case we 
would have an absolute comparison among time unities at 
different places of spacetime. If ¢ is not so, that comparison 
does not globally exist; we only can compare clocks at the 
limit when they join together. The proof of this interpreta­
tion requires additional techniques; it can be found in Ref. 4. 
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8. THE PHYSICAL METRIC CONNECTION AND 
THE CONNECTION ON V/7M 

As in Part I, we now lift the pair lV/V. So, we obtain a 
gauge invariant physical metric connection 
~wh = IV B,wh + 'V B,wh. Since IV is gauge invariant and 
B,w = 1T. ow, then the first term is gauge invariant. As for 
the last term, we have seen that in a gauge transformation, 
the relation 'V' = a 'V holds. Butj changes into)' = aj. 
Hence B,I V6,~M changes into B,la. Therefore, the last 
term and, as a consequence, ~ are gauge invariant. 

Now, we can lift ~ as in Part I, Sec. 9, getting the linear 
connection D on V.~M, which is defined by 
Dwv = A,~~,v + A2~~2V. Note that D is not gauge invar­
iant. In fact we have 

D> = A,~~,v + A ~~~ ~v = Dwv - w(lna)Vv. 

Nevertheless, the curvature field ofD, and therefore its 
Ricci field, are gauge invariant, as it is easily proved. 

9. CONCLUSION 

The departure point of this paper is the Pythagorean 
spacelike metric, a principle which permeates every signifi­
cant theory, experiment, and technology. The electromag­
netic potential appears later, in the study of connections. I 
believe this point is very coherent in a tentative unified the­
ory. In others, the electromagnetic field appears in the con­
struction of the static geometric description-the metric­
under the form of light signals; but it also appears, as a geo­
metric object, in the dynamic description-connections or 
field equations. Thus, field equations must imply that the 
electromagnetic field propagates along null directions; oth­
erwise, the theory would be meaningless. In our theory, this 
objection does not go. 

We have reached a number of geometric objects en­
abling one to study the time manifold geometry. The main 
remaining problem is to suggest and justify field equations. 
In my opinion, it is a very difficult one: 

(a) because of the horrific computations, even in simple 
models that perhaps could serve as a guideline for general­
ization; 

(b) because the energy-momentum field depends on the 
geometry; thus, it must be reinterpreted under our basic 
assumptions; 

(c) our manifold is now .~ M; hence, usual patterns of 
field equation techniques cannot directly be translated here. 

A naive field equation would be (j S n I K 1
'12dr = 0, where 

fl is a domain of !TM, dr is the coordinate standard volume 
form on .~M, and IKI is the Ricci field determinant ofD. I 
have computed this integral for the relativistic model and my 
results are: 

(a) if rP = 0, then IKI = 0, and this field equation is 
meaningless; 

(b) if rP = 0 but the Lorentz metric is constant (special 
relativity), then IKI also vanishes; 

(c) I have studied a static spherical model (one-charged 
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body problem), and there is no solution for the field equa­
tion. I believe this result is general for a relativistic model, 
but I do not have a proof. 

I find three answers to these troubles. First, we must 
add to the integrand a term (or factor), depending on direc­
tions, standing for a mass-energy density. Second, the depen­
dence of fields on directions is an essential property of space­
time, whence it precludes the assumption of a Lorentz 
metric; or, equivalently, that relativity is not compatible 
with local mass or charge anisotropy. Third, that the field 
equation is not appropriate. 

I feel this last is the correct answer. So, it seems that this 
way will be around for a while. 

APPENDIX A: EXISTENCE AND UNIQUENESS 
OF HORIZONTAL METRIC CONNECTIONS 

We look for horizontal metric connections, in the sense 
that V is horizontal, vc = rP ® c, Vk = - rP ® k, VY = 0, 
T = 0, where rP = f01T. In Part I, rP is supposed to be zero. 

It seems to me that this problem must be treated 
through local expressions, at least in a first attempt. But this 
way gives raise to another difficulty: The charts of the mani­
fold :TM are awkward to handle. So, we shall develop a 
technique enabling us to translate the problem to ordinary 
Finsler fields and Laugwitz connection (cf. Ref. 2), whose 
local expressions are simpler. Analogous techniques can be 
applied in other computations, for example the curvature or 
Ricci fields of D. 

If V is a solution, and U, ware h (0), we can put 
Vu,v = eUV",.li,ebu for defining a Laugwitz connection; we 
also need to know the action ofV upon fields of iJgM, that 
is, the associated homomorphism AIi 6M-V 6M. If w is 
h (0) and SE V?,'TM, we define Aw through 
(s,Aw) = (s - (s,iii)d In(c,ii),p.- lAebw), where A is the 
homomorphism associated with V andp.- IAebw is any ele­
ment of V6.7M such thatp.0(p.- IAebw) = (Aebw)op. This 
definition is consistent because s - (s,iii)d In(c,ii),iii) = 0 
and iii spans ker p •. 

Proposition: With the above notation, "7: i.!' a torsion less 
horizontal Langwitz connection such that VY = 0, 
Vii = - (j ® ii, VC = (j ® c, where we have put 
y = eaY' c = eac, (j = earP. 

Proof that V is a Laugwitz connection is a trivial mat­
ter. It is horizontal because if u is h (0), then (AiJ)x «(joii) 
= (d:«(joii), p.- lAebiJ)x = (P*d «(j01T), 

p.- lAebiJ)x = ~ «(j01T), Aebif'6:x = (ebiJ)pX<ii) = ux<ii). Now, 
the torsion of V is given by T(u,w) 
= v,zI! - Vui - ii.o [Au,Aw]. Then, if UW are h (0), we 

have T(u,w) = 1T.o[Aebu,AebwjOp - ii.o{Au,Aw}, because 
T = O. Taking account of the definition of A, it is not difficult 
to prove that p.oAw = (Aebw)op. Thus 
p.o [Au,Aw j = [Aebu,Ae./Lwj 0p. Hence T = 0 because 
ii = 1TOp. Now, V,,,ii = V u/c,ii)eak = Aw«c,ii) )eak 
+ (c,ii)eaVe,.u,k = - «(j,w) (c,ii)eak = - «(j,w)ii. The 

proof of Vy = 0 and VC = (j ® C is trivial. 
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Proposition: Let ~ be a t9rsionless horiz~ntal ~I!gwitz 
connection such that VC = tP ® c, Vii = - r/J ® ii, \JY = O. 
Then Ll,,/O = c"Ve I'caw defines a horizontal metric connec­
tion on 11M. 

Proof The formula defining V makes sense if V" W is 
h (0) whenever v,w are, and this is supposed to be true in our 
case, as we can verify by means of the formula (1) below. The 
proof that Vk = - dJ ® k, etc., is straightforward. Now, 
V" w = eae"Ve,e,f!!aChUJ = caVc,."ehw; therefore, V and V do 
induce each other in the sense of our previous proposition if 
A and A are related as before. We have V<c,ii) = 0, hence 
<s,Aii> = <5 - <s,iii)d In<c,ii),AV). But <s - 5,iii)d In<c,ii) 
belongs to the v~;.;;-M -module spanned by p*( V;l._V M); 
thus, if aElli:U, then <d (aop),AV) = <p*da,Av) = «da)op, 
p. 0.4V); but if v is h (0), then <d (aop),AV) = Vi, (aop) 
= caVe/l = «da)op,(Ae"i'!)op),whence p.oAii = (A ehV)0p. 

Then, as before, we can prove the torsion of V is zero. 

Thus, our problem of existence and uniqueness can be 
equivalently stated on I7 M. Let! x I J be a coordinate system 
on UeM. We take for .;I-v the coordinate functions! qi,p'] 
defined by q'(x",) = xi(m),pi(xm ) = <Cdxi)m'x",). Since Ais 
horizontal, we can write Aei = a/aq' + A xa/Bp'), where 

ei = (a/ax')01r. We put V,-.,e, = r~A. Then V,Jj 
= V,,(ukek) = r~,u'ei + Ae,(ui)ej = - r/Jiuiej'Therefore, 

A ~ = - T;,u' - tPiui, If we put g = r - c ® C = gJdxiOii) 
® (dxioii), then the matrix (gi;) is everywhere regular. Thus, 
after some standard computation, we find there is a solution 
on, ')'-U if the following linear system has it: 

2 
rr agii-. rr III agi} rr ", __ agjk rr uln 

giY' i' + i"'u + B k m U a I' [In . apr. 'PI' 'P 

agi} agik agjk ,/. 2.1. 
= --;:- + --, - --, - 2r/J,C/k + 2'1-'/p, + 'l-'kC,Cp 

aq at[ aq' (1) 

where c = c,(dxioii). If we contract (1) with u \ it becomes 

I' I' ag'j r k I' k 
2gi,B j + ci,B j + -B kU - cj,B i = Mjlku , (2) 

apr 

where we have put B; = r; ,uk, C'r = cagik/BpJu", and 
Mjlk is the right-hand side of (1 ). Since (gi) is regular, there is 
a solution for (I)ifit occurs for (2). We can verify without 
difficulty that Yir + T/" = - cir· Hence c'r = cn and 
c,rur = O. Suppose we write (2) taking at x m E.r;-U the values 
of the different quantities. Then, since r has signature 
(0, + , ... , + ), we can choose the coordinates in such a maner 
that, at x", , we would have 
Y,,(J = Da(l,Ca(J = saDa(J,YkO = CkO = O(Greek indexes from 1 
to n - 1). Now (2) has a unique solution at xm if 
2 + sa + sriF0 for every a,fiE! 1,00.,11 - 1]. Thus taking into 
account that Yir + T/,r = - c'Y' we have after some obvious 
steps: 

Theorcm: Let rE.'7M, and suppose that (0,1, ... ,1) and 
(0, T/" ... , T/ n _ 1 ) are the diagonal elements of Y I' and T/ I' when 
they are simultaneously diagonalized. Then, if 1/a + 1/rffO 
for every a,fiE! 1, ... ,11 - 1 L rEY M, there is one unique hori­
zontal metric connection on nM. 
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Corollary: If T/ is supposed to have signature 
(0, - , ... , - ) everywhere, there is one unique horizontal 
metric connection on 11M. 

APPENDIX B: Existence and uniqueness of vertic a/ 
metric connections 

Our conditions are: V"a = jv(a), Vc = 0, VY = 0, 
T=O. 

We put V",v - D(I'v = G (w,v); since V,,{i 
= Dup = jw(a), G is a bilinear operator and it defines an 

element of II 1M. Ifvc = 0, then 0 = <V",c,v) 

= V".(c,v) - <c,V",v) 

,= Du-<c,v) - <c,D",v) - <c,G (w,v» = T/(w,v) - G (w,v). 

Thus, <c,G (w,u» = T/(w,v) for every v,wElI AM. 
Now, jf <c,v) = <c,w) = 0, then B,[A,w,A,v] 

= D",v - D"w, as it is easily proved. Then, we have in gener­
al that B, [A,w,A,v] = D",v - D"w - <c,v)w + <c,w)u 

- <c,D",v)k + <c,D,.w)k. 

If T(w,v) = B,A,(V",v - V"W - B,[A,w,A,v]) = 0, 
then B,A,(G (w,v) - G (v,w) + <c,v)w - <c,w)v 

+ <c,D",v)k - <c,D"w)k ) 

= B,AlG (w,v) - G (v,w) + <c,v)w - <c,w)v). But if 

<c,G (w,v» = T/(w,v), then 

<c,G (w,v) - G (v,w) + <c,v)w - <c,w)v) = O. Thus, our 

second condition upon Gis 

G (w,v) - G (v,w) = <c,w)v - <c,v)w. 

If VY = 0, by a standard computation we have: 

2y(G (v,w),z) = (DI'Y)(w,z) + (D",y)(z,v) - (DzY)(v,w) 

But 

+ 2y(v,w)<c,z) - 2y(v,z)<c,w). 

2g(G (v,w),z) = 2y(G (v,w),z) - 2<c,G (v,w»<c,z) 

= 2y(G (v,w),z) - 2T/(v,w)<c,z). 

Hence 

2g(G (v,w),z) = (D"Y)(w,z) + (DwY)(z,v) - (DzY)(v,w) 

+ 2(y(v,w) - T/(v,w»<c,z) 
- 2y(v,z)<c,w). 

This formula tells us that if the vertical metric connec­
tion exists, it is unique. It can be equivalently written 

2g(G (v,w),z) = (D,g)(w,z) + (D~)(z,v) - (D,g)(v,w) 

+ 2g(v,w)<c,z) - 2g(v,z)<c,w). 
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Hence 

\l"W 
= D"w + !g-I«D,g)(w, ) + (D"g)(v, ) - (Dg)(v,w), ) 

- g(v,w)k - <c,w>v. 

This formula gives the vertical metric connection, as it 
is easily proved. 
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Koornwinder's polynomials and representations of the 
conformal group 

Klaus Ringhofer 

Fachbercich 5 der Ul1ivcrsiliil OSl1abriick, Federal Republic of Germany, Germany 
(Received 7 July l'in) 

The tensor product of two massive, spin less, positive-energy ray representations of the conformal group of 
spacetime SO,,(4,2)1 Z~ is reduced in a momentum basis. The basis vectors for the irreducible subspaces 
(the "Clebsch-Gordan coefficients") are found to be intimately connected with Koornwinder's 
polynomials in two dimensions. 

1. SUMMARY AND INTRODUCTION 

Within the last two years SOo(4,2)IZ" the conformal 
group of space-time, has found new interest by a paper of 
Luscher and Mack' who proposed a globally conformal in­
variant quantum field theory, Furthermore, all irreducible 
unitary positive-energy ray representations of the conformal 
group have been constructed (Mack') as induced representa­
tions on (the compactified) Minkowski space, They are ei­
ther massless with a definite helicity (that is, they become an 
irreducible mass zero representation with positive energy 
and a definite helicity when restricted to the Poincare sub­
group) or they are massive and contain spin multiplets with 
spin values I = 10' 10 + 1,"',L (that is, they contain all the 
irreducible representations with positive mass, positive ener­
gy, and spin value either 10 or 10 + 1 or "',L when restricted to 
the Poincare subgroup, each of them once), Besides, a di­
mension parameter d appears which is determined by the 
helicity for massless representations, but which is less re­
stricted for massive representations, 

There has been widespread opinion that only massless 
representations are of importance for physics, However, in 
Ref. 3 an argument originally due to Castell' has been given 
which shows that in the framework of partial-wave expan­
sions massless representations occur only in exceptional 
cases, As a rule, massive representations enter the partial­
wave expansions, and therefore a further study of massive 
representations is worthwhile from a physical point of view, 
On the other hand, a study of massive representations is also 
interesting from a mathematical point of view, since it will be 
shown that they are intimately connected with a class of 
orthogonal polynomials in two dimensions which have only 
recently been investigated by Koornwinder,' and since very 
often the study of the connections between a polynomial sys­
tem and a group leads to a deeper understanding of the poly­
nomial system, 

In this paper, a momentum basis is used to obtain mas­
sive representations with spin values 0, 1, ... ,L by reduction of 
the tensor of two massive representations with spin zero, The 
reduction is done by decomposing the tensor product of the 
corresponding Lie algebra representations, using Casimir 
operator techniques, However, each of the resulting Lie al­
gebra representations obtained by the decomposition is iden­
tified as a Lie algebra representation of one of the group 
representations obtained in Ref. 2. 

In the process of reduction it turns out that the basis 
vectors for the description of the spin states within an irredu­
cible representation will not simply be given by the spherical 
harmonics Ylm , but to allow for the possibility of spin multi­
plets the basis vectors will have the form pi )'dl lm ·, where the 
pi) = pi )(x,y) are Koornwinder's polynomials of two varia­
bles and where the ;;Ij 1m' are harmonic polynomials (actually, 
the p/)(x,y) will carry some more indices to distinguish dif­
ferent irreducible representations). As a consequence, differ­
ential operators E ± (l) ("ladder operators") will appear 
which map spin states I to spin states I ± I, They are known 
from a paper by Sprinkhuizen-Kuyper! 

The basis functions pi )'!y 1m' are of considerable phys­
ical interest by themselves, since they play the role of 
Clebsch-Gordan coefficients which are of importance al­
ready for a purely kinematical interpretation of the confor­
mal group in physics as proposed by Castell. J For instance, a 
very satisfying explanation for the tis scaling behavior for 
elastic proton-proton scattering has been obtained by this 
method,' 

2. COMMUTATION RELATIONS FOR THE 
GENERATORS AND CASIMIR OPERATORS 

Notation: Greek indices p,IJ,"',w run from ° to 3, and 
the metric ( - 1,1,1,1) is chosen for Minkowski space, Greek 
indices a,(J, .. ·,1T take the values 0,1,2,3,5,6, and the metric 
( - 1,1,1,1, I, - 1) is chosen for the six-dimensional space 
with SOC 4,2) as group of symmetry, The sum convention is 
used. 

A basis for the Lie algebra of the conformal group of 
Minkowski space is given by the four-momentum P" (gener­
ators of translations), the angular momentum tensor Milt, 

(generators of rotations and pure Lorentz transformation), 
D (generator of dilations), and K," (generators of special con­
formal transformations). This is the basis of physical inter­
est. However, for the purpose of calculations, it is much 
more convenient to use the generators 

M"l" M"s = - !(PI, + K,J, 
(2,1) 

M,,6 = !(P," - K,J, MS6 = - D, 

As is well known, the M a/3 fulfill the commutation relations 
ofSO(4,2), 
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and the Casimir operators ofSO(4,2) are 

C - 1M M a {3 11-2 a{3 , 

C - 1 M a{3MyoM KA 
III - 4s Ea {3yOKA , (2.3) 

C - 1 C C a{3 C - 1 M yOM KA 
IV - 2 u{3 , a{3 - SEa {3yOKA 

(the E tensor is defined by EOl2JS6 = 1). 

3. MASSIVE SPINLESS REPRESENTATIONS 
The generators of a massive representation D(d,O,O) of 

the conformal group with dimension parameter d and spins 
10 = L = 0 have been obtained in a momentum basis by Cas­
tell,' who reduced the quasi regular representation of 
SOo(4,2) on a hyperboloid in six dimensions, by Castell and 
the present author, 10 who reduced the tensor product of zero­
mass representations, and by Mack,2 who constructed in­
duced representations. They are (square brackets mean 
antisymmetrization) 

pI" =pI', 

a a =-, 
I" apl' 

(3.1) 

D = i(ppap + d), KI" = PI"apap - 2(ppap + d)al"' 

and from this the values of the Casimir operators are, ob­
tained as 

ell = (d - 2)2 - 4, ell = elv = O. (3.2) 

For representations of the conformal group, d takes the val­
ues 2, 4, 6,.·. (see Ref. 9) and for ray representations d > 1 (see 
Ref. 2). 

The generators act on the space Y(M) of Schwartz test 
functions on Minkowski space with scalar product 

(Q'J,t/J) = f Q'J *(p)t/J(p)m2(d - 2)0 (m2)0 (PO) d 'p, 

To work again in a momentum representation, the total 
four-momentum 

(4.1) 

has to be introduced as well as four more variables which will 
be referred to as "spin variables." For the moment they are 
chosen to be 

q'" = P<2)I" 

and the following form of the generators is obtained: 

pI" =pI', 

MI"v = - ip[I"av] + ~I"V' 
D=i(pPap + 2) +..::1, 

(4.2) 

(4.3) 

KI" = PI"apap - 2(pPa p - i..::1 + 2)al" + 2i~I"pap + kw 

The operators ~I"V'..::1, and kl" are defined as 

~. a 
~I"v= -lq[I"\1vl' \1v= aqV' 

..::1 = i(qP\1 p + a + /3 + 2), (4.4) 

kl" = ql" \1P\1 p - 2(qP\1 p + /3 + 2)\1", 

They depend only upon the spin variables and therefore they 
will be referred to as "operators in spin space." From the 
generators (4.3) the Casimir operators are obtained as 

Cn = pl'kl" _..::1 2 + !~pa~pa - 4, 

Cm = 0, (4.5) 

CIV = !e"el" + !sPaspa(Cn - !sPaspa + 2). 

To explain the "covariant spin tensor" sI"V and the 4-vector 
el"' it is convenient to first introduce the total mass 

M = ( - pl'PI")II2, 

the 4-velocity 

Ul"=~ 

(4.6) 

(4.7) 

(3.3) and the projection operator 

m = (_ pP P p)ll2. 

Y (M) can be completed to a Hilbert space after dividing out 
norm zero functions, that is, the functions vanishing on the 
forward light cone (latin indices run from 1 to 3), 

L + = [p I (P0)2 - PP i > O,po > 0) . (3.4) 

4. THE TENSOR PRODUCT [Jfd"O,O) @ [Jfd2 ,o,o) 

In this paragraph, the generators and Casimir operators 
of the product reprsentation D(d"O,O) ® D(d"O,O) are expressed 
by momentum variables and by "spin variables." Instead of 
d , and d2 , a = d , - 2 and f3 = d 2 - 2 will be used. 

Let p( I, and p( 2' be the four-momenta appearing in re­
presentations D(a + 2,0,0) and D(f:J + 2,0,0). Then, if 
(fa + 2,O,O)(P( 1 ') and (jf3 + 2,o,o)(p( 2') are corresponding gener­
ators in D(a + 2,0,0) and D(f:J + 2,0,0), the corresponding gener­
ator G of the product representation is G = (fa + 2,O,O)(P( I') 
+ (jf3 + 2,o,o)(p( 2 '). Especially, P = p( I' + p( 2'. 

967 J. Math. Phys., Vol. 20, No.5, May 1979 

P~ = g:, + itl"u v ' 

upon the momenta perpendicular to pI'. Also the 
abbreviation 

(4.8) 

(4.9) 

(the curled brackets indicate an anticommutator) will be 
used. Then 

(4.10) 

(4.11 ) 

The Casimir operator Cn has already been obtained in for­
mula (36) in Ref. 10. Slightly different variables have been 
used in this paper. 

The scalar product is obtained as 

(Q'J,t/J) = 1.P-QL'Q'J *(p,q)t/J(p,q)[ - (p - q)2]a [ - q2]f3 
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x e [ - (p - q)2] e ( - q2)e (pO _ q0)e (qO) d 'pd lq. 

(4.12) 

Having obtained the Casimir operators from the generators, 
the question arises if the operators Sill' and el1' which are 
necessary to construct CIV ' have anything to do with the 
generators. They have! Introduce the displacement operator 

d
" 

= ai' + ~(,1 ul
' + LIlI,uP). (4.13) 

Then 

pI' =P", 

(4.14) 

D = i(pl'd
" 

+ 2), 

K
" 

= PI,[ dl'd
" 

- ~ ,(CII + 4 - !s"ITS,,,,)] 

The importance of d,l, 5,,,,, and ep is further underlined by the 
fact that each of them commutes with the Casimir operators. 

5. INTRODUCTION OF WIGNER FUNCTIONS 

In this section the variables in spin space will be made 
dimensionless by dividing them by M and they will be sub­
jected to the pure Lorentz transformation which maps p to 
(M,a,a,a). The second step will be called "introduction of 
Wigner functions" (compare a corresponding step in Ref. 2). 
let latin indices run from 1 to 3 and let 8u be Kronecker's 
delta, Then the transformations described above are 

(5.1) 

. 1 [ . (.. uill)] Q' = - - u'qO + 8'l + - __ q . 
M U O + 1 1 

An extra factor (M a + f3 -+ 2)2 appears now in the scalar prod­
uct which can be multiplied into the Wigner functions. All 
these transformations are easy to do since the operators d

"
, 

5,11' and e
" 

transform simply. The result is 

P" =P", 
Mij = - zp[,ajj + (Jij> 

M iO = - i(p,ao + pOa) + (JiO' 

D = i(ppap + 2), 

K o = PO [d"ap - (l/M')(CII + 4 -!L ULU)] 
(5.2) 
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+- 8+ __ '_l_Ej 1 ( u·u ) 
M ~ UO + 1 ' 

for the generators with 

1 . 
(J,() = - --- Lull, (Ju = L U' 

UO + 1 
(5.3) 

(5.4) 

HereLlll",1, kfl andA io are again given by formula (4.4) and 
(4.9) with q replaced by Q. For the Casimir operators the 
result is 

CII = - k ° - ,1 , + !Lp~ pa - 4, 

CIII = 0, 

CIV = 1E'Ei+ !LUL...,(CII - !LULU+ 2). 

(5.5) 

Note that p has vanished from the Casimir operators. The 
scalar product becomes 

X [(QO)2 _ Q'Q,fe(M')e(p0)e(Q0)e(1 _ QO) 

xe [(Qo _ 1)2 _ QiQ,]e [(QO)' - QiQi] d'pd'Q. 

6. ANGULAR MOMENTUM BASIS IN SPIN 
SPACE 

(5.6) 

The Casimir operators (5.5) are invariant under rota­
tions in spin space, and therefore the introduction of polar 
coordinates Q, e, q; for Q I, Q 2, Q J will be useful. This is not 
quite trivial, since the operators E i jump between neighbor­
ing spin states, as can be seen from the explicit expression 

E i _Qi{(1_2QO)( __ a'_ ~+~~ 
- a(Qoy + aQ2 Q aQ 

_ 1(1 + 1») + 2K~} + 2{«QO)' + Q2 _ QO) 
Q2 aQo 

X ~+Q(2QO_l)~+(K+2)QO-(j3+2)} 
aQo aQ 

a x --, K = a + f3 + 2, 
aQi 

(6.1) 

for Ei. As is well known (see for instance Ref. II, pp. 98 and 
99, both Qi and the gradient vector a/aQi change the value I 
of the spin by ± I. With respect to basis vectors 
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(6.2) 

P(/)(Q0 _ Q) = p(I)(Q0,Q) 

(where the '!Y 1m' = Q I Ylm• are the "harmonic polynomi­
als"), the reduced matrix elements of Ei are 

(I + lllE III) = Vl+l Q-IE(I), for I-I + 1, 

(6.3) 

(I-IIIEII/)= - VIQ - 2IE(/)Q2/+1, for 1-1-1, 

with 

E(l) = Q(2Qo - 1) _J_ + 2«QO)2 + Q2 _ QO) 
J(QO)2 

~ J J 
X--+Q(2Qo-l)-+2KQ-

JQoJQ JQ2 JQo 

+ 2(KQ ° - [3 - 1) ~. (6.4) 
JQ 

Formula (6.3) shows that 

E+(I) = _1 E(l) (6.5) 
8Q 

and 

E~(l)=2Q-2IE(l)Q2/+1 (6.6) 

are ladder operators for the functions p(l )(Q ° ,Q ), raising and 
lowering the spin value I by 1. 

There are at least three reasons that make the ladder 
operators fundamental for the analysis of this paper: 

(a) They are directly connected with the generators. To 
make this obvious, apply the pure Lorentz transformation 

L ~ used in formula (5.1) [which transforms p to (M,O,O,O)] 
to the 4-vector K/1: 

{ 

0, 

~, = L ~ Kv = ~E for /I = i + .... 
M I' r-

for I" = 0, 

(Only the terms responsible for transitions I_I ± 1 are giv· 
en, that is, the terms containing the E/s.) Therefore, 

{

8Vl+1 
M ' 

(I ± lllK;lIl) = ~(I ± l1IE;!Il) = _ VI 
2M' 

E+(/), 

E~(l), 

which means essentially that the ladder operators are re­
duced matrix elements of the generators of the special con­
formal transformations. 

(b) They are intimately connected with the Casimir op­
erators, namely 

+ 21 (I + 1) - 4, 
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em = 0, (6.7) 

+ 1(1 + 1)[(CII -/)(1 + 1) + 2]. 

(c) They are ladder operators for Koornwinder's polyno­
mials. Once this fact is established it is quite obvious that 
Koornwinder's polynomials come into play. Introducingvar­
iables x,y by 

QO =!(x + y) +!, Q =!(x - y), (6.8) 

one obtains 

1 
E+(/) = __ [(x2 - I)J2x + (KX + A )Jx 

x-y 

- (y2 _ 1 )J2y - (KY + A )Jy] , 

(6.9) 

1 
E~I(/) = [(x 2 - I)J2x + (KX + A )Jx - (y2 - 1) 

(x _ y)21 

with 

K = a + [3 + 2, A = a - [3. (6.10) 

E ± (l) offormula (6.9) are identical with the ladder opera­
tors for Koornwinder's polynomials as given by Sprinkhui­
zen-Kuyper.6 More accurately, one should writeE ± (a,{3)(I). 
The following expression is obtained for the scalar product, 

(rp,,,,) = 2K ~ 3 f rp *(p,x,y,(),rp )"'(P,x,y,(),rp ) 

X[(I-x)(I-y)]a [(1 +x)(1 +y)]{3(X_y)2 

x () (M2)() (P O)() (1 - x)2() (1 - y)2() (x - y) 

Xd"pdxdysin()d()drp (6.11) 

[the factor () (x - y) enters to express that Q>O]. 

Calculating the scalar product of two basis vectors B~) 
(11 ' and B m, and, for the moment, performing only the integra-

tion over () andrp, one is led to a factor [(x - y)/4?ID/I' Dm,m" 
so that the measure contains a factor 
dm = [(l - x)(l - y) ]a[(l + x)(1 + y)]{3 

x (x - y)21() (1 - x 2)() (1 - y2)() (x - y). (6.12) 

This exactly the measure for Koornwinder's orthogonal set 
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of polynomials. It is positive within the triangle 1 - x' > 0, 
J - y' > 0, and x - y > ° but zero outside. 

7. THE IRREDUCIBLE REPRESENTATIONS 
CONTAINED IN THE TENSOR PRODUCT 

In Secs. 5 and 6 transformations of the spin variables 
have been performed with the aim to render the Casimir 
operators as simple as possible. This aim has been achieved 
by now. The Casimir operators (6.7) together with the ladder 
operators (6.10) depend only on the two variables x and y 
and cannot be separated any further. It is known from 
Koornwinder's work' that the Casimir operators possess the 
joint polynomial eigenfunctions 

p~:::;:.I)(x,y) = (xy)'" [x" + C1X" - Iy + ... + yn]. (7.1) 

Here m and n are arbitrary nonnegative integers and the 
polynomial inside the square brackets is homogeneous of 
degree 1/ in x and y, and also symmetric in x and y. The 
standardization here is so chosen that the coefficient of 
x'" I " y II , is 1. Explicit expressions for Koornwinder's poly­

nomials may be found in Ref. 12. The norm of P ~;J,:(~.i)(x,y) 
with respect to the measure (6.12) has been calculated in Ref. 
6. Attention should be paid to the notation; Koornwinder 
writes 11, k, r instead of m + n, 11, 1+ !. 

The standardization chosen in formula (7.1) is all the 
information about Koornwinder's polynomials that is neces­
sary for the purpose of this paper. Applying the ladder oper­
ators one obtains 

E+(/)p(a.(J.I) = n(v _1_ 1)p(a.(3.!+ I) 
!n.lI !n,n -- 1 , 

E·(/)p(a.(J.!) = (21 + 11 + I)(v + l)p(a.(J.!. I) 
m,H m,ll + I ' 

with 

v = K + 2m + 1 + n. 

Note that the values of v and of 

L = I+n (7.2) 

are not changed by the application of E'- (I ), and therefore v 
and L and possibly other indices characterize an irreducible 
representation. But formula (7.5) below shows that only v 
and L enter the eigenvalues of the Casimir operators. v has to 
do with the dimension of the representation, as will be seen 
later. The meaning of L can be explained immediately: Since 
n is not smaller than 0, L is the maximum spin value con­
tained in the representation. Applying E . repeatedly to 
p ~:::rtL l(X,y), one finally arrives at / = O. Therefore, any of 
the irreducible representations with maximum spin value L 
found in this paper contains also the spin values 
0,1 ,2, ... ,L - l. 

Introducing L in the formula for the ladder operators, 
one finds 

E +(/)P (a.(J.!) = (L - l)(v - 1- l)p(a.(J.I + I) 
111,n m,n -"] , 

(7.3) 

with 

V =K + 2m +L. (7.4) 
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The corresponding eigenvalues of the Casimir operators are 
obtained from formula (6.7): 

Cll = v' + L (L + 2) - 4, 

CllI = 0, (7.5) 
CIV = (v2 

- l)L (L + 2). 

What remains to be done is to identify the irreducible repre­
sentation characterized by v and L with the irreducible re­
presentation D[" t 2'(Ll2),(Ll2)] found by Mack,' To this end, 

replace the Casimir operator e" in the generators (5.2) by its 
eigenvalue v' + L (L + 2) - 4, and split off a factor M" from 
the Wigner function so that all is replaced by M - 'B,IM ". 
The result will only be given for p = (M,O,O,O). The gener­
ators different from zero are in this case 

PIl=M, 

D = i(Mao + v + 2), 
(7,6) 

- 2(Mao + v + 2)a", 

Ki = (l/M)[/(/ + 1) - L (L + 2)] 

Let rand N be the angular momentum and boost operators 
of an irreducible, finite dimensional representationD(L 12.1. (2) 

of the Lorentz group. ThenN N)s / (l + 1) - L (L + 2) times 
the unit matrix and formula (7.6) agrees with formula (6.39) 
of Ref. 2, describing D(d,L 12,L /2), if Mack's dimension param­
eter d is put equal to 

d = v + 2, (7.7) 

and if Ei is expressed as 

Ei = 2 [i(d - l)N i - tikl/,fi/]' (7.8) 

Using the canonical basis of Naimark 1l it is not very hard to 
check that Ei and 2 U(d - l)N j - tikl],fil ] have indeed the 
same matrix elements. This result is most astonishing: 
Koornwinder's polynomials have shown up in the study of 
the conformal group, but their ladder operators can be con­
structed already from the generators of the Lorentz group! 

It has been found that the tensor product 
D(d .. o,o) ~ Dld"O.O) contains the representation D(d,L12,L12) 

with L a nonnegative integer describing the spin content of 
the representation and with dimension parameter 

d = d 1 + d, + 2m + L, (7.9) 

where again m is a nonnegative integer, Each L and each m 
occur exactly once. 
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The question is raised as to whether the Benjamin-Ono equation, a nonlinear partial 
differential integral equation, is a completely integrable Hamiltonian system. The 
answer is almost certainly "yes." Particular solutions suggest the form that general 
polynomial constants must have. The structure of these and an algorithm to compute 
them is given. Explicit formulas are given for the first six. 

I. INTRODUCTION 

The Benjamin-Ono equation I can be written in the 
form 

u, = - UU x - H [uxx ], - 00 <x < 00, (1) 

where H denotes the Hilbert transform, i.e., 

II ['II] = ~ Soo. 'II (x')dx' 
[[ if x' - x 

and P signifies the principal value. 

Physically, the equation describes approximately solu­
tions of problems which have 

(i) A quadratic nonlinearity, and 

(ii) When the dispersion relation of the linearized prob­
lem has a long wavelength limit of the form, 

w/k = 1 - alk I, 

for some constant a. 

A typical example is the evolution of long wave length 
internal waves in a stratified fluid. 

Two opposite mathematical conjectures as to the nature 
of solutions of Eq. (1) can be made: 

(1) Since Eq. (1) is in some formal sense intermediate 
between the linearizable Burger's equation 

(2) 

and the much discussed Korteweg-de Vries equation 

U r = - U U, - U ux (2) 

it should share the integrability of these. 

(2) Formally, Eq. (I) is much different than Eq. (2) and 
(3). It is a nonlinear partial differential integral equation. It is 
non local as compared to Eqs. (2) and (3) and so the solutions 
may be much different. 

We will find that the first conjecture is more nearly 
correct. 

The main question we wish to address here is as to 
whether the Benjamin-Ono equation describes a completely 
integrable Hamiltonian system. Our answer will be: Almost 
certainly yes. 

The approach will be to look at solutions ofEq. (I) ofa 
particular form. The results obtained have three uses. 

(a) The explicit solutions ofEq. (1) ootained are them­
selves of interest. 

(b) Finding these solutions is equivalent to solving a 
(finite dimensional) completely integrable Hamiltonian sys­
tem. This suggests that the same is true for Eq. (1). 

(c) Inserting the solutions into their constants of motion 
strongly suggests the form that general constants of motion 
ofEq. (1) must have. 

Following this suggestion, we construct an algorithm 
for obtaining polynomial constants for Eq. (1) of arbitrary 
(fixed) order. Since the process is rather tedious, we limit our 
explicit results to the first six constants. 

II. HAMILTONIAN FORM 

Following Lax,' it is trivial to show that Eq. (1) is of 
Hamiltonian form. Thus, if we define functional derivatives 
8F /8u(x) by 

-F[U+EV] = --v(x)dx, d I I'" 8F(x) 
dE E- 0 .. oc 8u(x) 

and Poisson brackets between functionals F I , F, of U by 

[F F]-I'" ~..!!....~dx' 
I, '-.. "( ') a ' " (') , ·O'C uU X X uU X 

then Eq. (I) is 

~--[ ''''··1 U"Il , 
at 

where 

71 = - I {~1 + ~ H [ U x] } dx. (4) 

More generally we have seen) that the equation 

~=up~+..!!....Ir G(x' -x)~x' 
at ax ax . = ax' 

(5) 

with G (x) = - G ( - x) is of Hamiltonian form with 

)(' = I" uP,. 2dx 1 II au G (' )~, 
(P + I)(P + 2) + 2" ax x - x ax' x 

and 

aG = G(x). 
ax 

(6) 
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III. EXPANSIONS IN MEROMORPHIC 
FUNCTIONS 

The success in finding solutions of the Burgers' equa­
tion' and the KdV equation,·j by means of pole type expan­
sions suggest we look for solutions ofEq. (1) in the form 

N 

u = L. rP [x - XI(t) 1 + complex conjugate, (7) 
1= I 

where rP [x - x/(t) 1 is a meromorphic function of x with no 
poles in the lower complex x plane. This has the effect that H 
acting on rP is very simple. Indeed HrP [x - x/(t)] = - irP 
X [x - x/(t)]. Now insert Eq. (7) in Eq. (I). Since the poles 
of highest order on the right do not appear on the left, they 
must cancel. This yields 

rPrP ' - irP " = O. (8) 

From this we conclude 

rP (x) = - ik cot(kx/2), (9) 

where k is some complex constant. The analyticity assump­
tion then requires us to take k real and 

(10) 

Note some simple properties of rP. 
(1) Antisymmetry, rP (x) = - rP ( - x); (11) 

(2) "Reality",rP [X-X/(t)j" = -rP[x-x;(t)]; (12) 

(3) Addition theorem: 

rP (x)dJ '(y) + rP '(x)rP (y) = rP (x - y)[rP '(y) - rP '(x)]; 

(4) Substitution theorem: 

rP '(x)[rP (z) + cp (y)] = rP '(z)[cp (x) + rP (y)]. 

Using Eq. (12), the ansatz of Eq. (7) becomes 

u = L.rP [x -xl(t)] - L.rP [x -x;(t)]. 
I I 

where x + y + z = O. 

IV. POLE EQUATIONS 

(13) 

(14) 

(15) 

IfEq. (15) is inserted in Eq. (1), we obtain on using the 
antisymmetry property and the addition theorem 

- L.rP '(x - XI)XI + c.c. = L. rP (x m - xI)rP '(x - XI) 
I ml 

m-~l 

+ L.rP (XI - x:')cp '(x - XI) + C.c. (16) 
1m 

The coefficients of rP '(x - XI) and rP '(x - x;) must each be 
zero giving the equations 

XI = - L. rP (xm - Xl) + L.rP (x l - x;n) (17) 
m~1 m 

and the complex conjugate. While this reduction to a system 
of ordinary differential equations is a significant simplifica­
tion the resulting Eqs. (17) are still rather complicated. Fur­
ther, it is a little peculiar that the Hamiltonian character of 
our original Eq. (1) does not seem mirrored here. However, 
as pointed out elsewhere6 this is readily remedied. 

Differentiate Eq. (17) with respect to t and use Eq. (17) 
and its complex conjugate to eliminate the first derivatives. 
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Repeated use of the antisymmetry property and the substitu­
tion theorem yields the remarkably simple result 

. k 2 a 1 
x l = --- L. (18) 

2 aXI m*n sin2k /2(x m - x n) 

Thus, we have a (complex) many body Hamiltonian system 
with potential V ~ lIsin2x. 

We remark that since Eq. (18) is the time derivative of 
Eq. (17) that if we take a solution ofEq. (18) which satisfied 
Eq. (17) at some instant in time it will satisfy it at all times. 
Thus, we can take Eq: (18) as our fundamental dynamical 
equations and Eq. (17) as initial conditions. More precisely 
our Cauchy problem is the following: Given N different 
complex numbers Xl (to) with 1m XI (to) > O. Then we compute 
X I (to) from Eqs. (17). Then the XI (t ) are to be found by solv­
ing Eq. (18) given XI (to), XI (to). 

Of basic importance is that Moser' has shown that the 
Eqs. (18) are completely integrable. We adapt his results into 
our notation. He showed that if we define 

k k 
ZI =-cot-(XI-X ) m 22m 

and form the matrix L with elements 

Lim = O/~1 + (1 - 0lm)( - 2i)Zlm 

and B with elements 

Blm = Olm2iL.[ZTm + (k 2/4)] 

" 
+ (1 - 0lm)( - 2i)[Z Tm + (k 2/4)], 

then Eqs. (18) are 

aL = [B,L]. 
at 

Thus, they are of the Lax8 form. 

(19) 

(20) 

(21) 

(22) 

Accordingly, we have very many constants of motion. 
Indeed TrF [L ] for any Fis such. Nlinearly independent con­
stants are 

TrL", n = 1,2, ... ,N. (23) 

Before examining the possible implications of these for 
general constants of motion for Eq. (1), let us look in more 
detail at the special solutions we have arrived at. 

V. THE PERIODIC CASE 

If k=l=O, we have solutions periodic in x with period 
A = 2[[ /k. For illustration consider first the trivial case, 
N= 1. Then 

u = - ik cot ~ (x - x 1(t») + ik cot ~ (x -x;(t»), 

where from Eq. (18) we see that x1(t) = 0, i.e., 

x 1(t) = x 1(tO) + x1(tO)(t - to). (24) 

Here x1(tO) is to be found from Eq. (17). Thus, 

x1(tO) = - rP [x 1(tO) - x;(to)] = ik cot~k [x 1(tO) - x;(to)] 

or 

(25) 
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Note: (1) This "single soliton" solution is determined by 
two real numbers. The real part of x I (to) shich gives the ini­
tial center and the imaginary part which gives a velocity. 

(2) If Imxl (to) > 0, then from Eq. (25) we see thatxl(to) is 
real. Equation (24) then shows that in accordance with our 
assumption we always have Imxl(t) > O. 

GeneralN 
Olshanetzky and Perelomov9 have indicated a method 

which reduces the initial value problem for Eq. (18) to find­
ing the eigenvalues of an N XN matrix. Unfortunately, the 
procedure is sufficiently complicated that it is difficult to get 
a clear picture of the behavior of the solution. Hence, we 
restrict ourselves to the first nontrivial case. 

Here we have a simple two-body problem with transla­
tionally invariant potential. With xl(tO), xlto) given we cal­
culated xl(to) andx,(to) from Eqs. (17). Integrating Eqs. (18), 
we then obtain 

xI.it) =X(t) ±x(t), 

where 

and 

Here 

(' = [x(to)F + k '/sin'kx(to) 

and 

y = _ fto _ J... cosh-l [ coskx(to) ]. 
ik (1 _ k '/ f') 112 

VI. THE NON PERIODIC CASE 

Particularly, simple (and suggestive) results are ob­
tained when the period becomes infinite-k--..o. The ansatz 
of Eq. (17) becomes 

- 2i 
u = 2: + c.c. 

/ x-x/(t) 

The initial constraint on the velocities becomes 

while the equation of motion of the poles becomes 

d'x/ -=-82:---
dt' m-/=/(Xm-x/)3 

First let us look at the trivial case. 

N=1 
From Eq. (28) 
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(26) 

(27) 

(28) 

d'xl =0 
dt' ' 

and then 

xl(t) = xl(to) + (t - to)xl(to). 

The initial condition Eq. (27) then gives 

xl(to) = [Imxl(to)] - I. 

(29) 

Thus, again the "single soliton" solution is characterized by 
two real numbers. A velocity equal to l/Imxl(to) and an ini­
tial position given by Rex I (to). 

GeneralN 
Previously,to we have shown that the solution for this 

case is elementary. The essential result is the following. 

Theorem: Letxito), I = 1,2, ... ,NbeN complex numbers 
which are all different and such that Imx/to) > O. Form the 
N X N matrix M with elements 

M/m = 8/~/(to) + (t - to)L/m(to), 

where 

Then 

U = - 2i~ In{Det [M - xl]} + complex conjugate ax 

is a solution of Eq. (1). 

As an example, we can write down the solution for the 
first nontrivial case. 

For our purposes it is convenient to write these solu­
tions not in terms of four real numbers Re and 1m parts of 
x I 2(tO) but rather in terms offour real numbers V h v" x\O), xiO) 
whose significance will become clear. The solution is 

- 2i - 2i 
U = + c.c., (30) 

X-Xl(t) x-x,(t) 

where 

XI it) = (Vi + v')t + "!--'(J... + J...) + J... 
, 2 2 VI V, 2 

where 

and 

x(t) = J...[ 1 + f'(Y + ft ),]112 
f 
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X~O) - X~O) 
Rer = ---=----=--

2 

Without loss of generality we assume VI > V2. Then we choose 
the square root so that as t-+ + 00 

(32) 

and 

Thus, we just obtain as solution the sum of two non interact­
ing single solitons. To see what happens as t-+ - 00, we need 
a little care. Continuity arguments yield different results de-

pending on the ratio v2lv l. If (3 + 2V2)v, > VI > v2, then as 
t-+ - 00 

(33) 

x,(t )-+Vlt + ilvl + x\O). 

Thus, the poles interchange their parameters. On the other 

hand, if VI> (3 + 2V2)v" then as t-+ - 00 we obtain 

xl(t )-+Vlt + i/v I + x\O) 

x,(t )-+v,t + i/v, + x~O). 
Here the poles maintain their parameters. However, in ei­
ther case the solution Eq. (30) fails to show any change in 
form as we go from - 00 to + 00. There is no asymptotic 
change in our solitons after they pass through each other. 

The transition point VI = (3 + 2V2)V2 is rather inter­
esting. With this and only this relation of parameters do we 
find what Calogero ll has termed collapse. At some time the 
solution develops a singularity and we cannot integrate the 
equation further. 

VII. CONSTANTS OF MOTION 

We have seen that for the non periodic N soliton case the 
solution as t-+oo tends to N separated single solitons. Then 
the matrix L of Eq. (20) becomes simply 

(34) 

where v/are the velocities of the single solitons. Accordingly, 
the N constants of motion are 

N 

TrL"=Ie v/)". (35) 
/~ I 

Remark: The stability our solitons is well exhibited 
here. Thus, as t-+ - 00 we expect again to find N separated 
solitons with velocities v;, 1= 1,2, ... ,N. But, then 

N 

TrL n = I (v;)n. (36) 
,~ I 

Since the traces are constants and this holds for all n, it is 
clear that the set (v;, v~, ... ,v~) is merely some permutation of 
the set (VI' v" ... ,vN ). Actually, we can say a little more. Ifwe 
sum Eq. (28) over I we obtain, 
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(37) 

.·.Ix, = vt +/3. , 
However, if evaluate this t-+ + 00 ( - (0) when we have soli­
tons with parameters [( vhx\O); (v"x~O) ; ... ; (v]V,x~)] or 
[(V'I,X\O)'); ... ;(v:v,x<$)')], we see that 

I x~O) = I X)O)'. (38) 
/ I 

(Actually, from our N = 2 case we know that we only per­
mute the V's and the x(O)'s together.) 

The existence of the many constants TrL" for all pure 
soliton solutions suggest that there may be similar constants 
for general solutions of the Benjamin-Ono equation. Let us 
now try to find them. 

First note that there are three "classical" constants for 
quite general equations of the form like the Benjamin-Ono 
equation. For example, for all Eqs. (5) we have the three 
constants 

II = f u dx, I, = f ~' dx, I, = - 2,)Y'. (39) 

(These are essentially conservation of mass, momentum, and 
energy.) However, let us evaluate these constants for the 
Benjamin-Ono equation when u is a pure N soliton solution. 
To evaluate the constants, we wait till they are far apart and 
then find 

!V 

I( = 4IIN = 4II I (V,)o = 4IITrL 0 

,~ I 

]V 
I, = 4II I v, = 4IITrL 

,~ I 

N 

I, = 4Il I (V,)2 = 4IlTrL '. 
,~ I 

(40) 

(41) 

(42) 

These constants are clearly the simplest ones of the set 
we have seen are associated with N soliton solutions. Are 
there general constants corresponding to TrL" for n > 2? 

Remarks: (i) By analogy with the K de V equation we 
might suspect that they are higher order polynomials. 

(ii) Let us introduce the concept of "weight" in the fol­
lowing manner. We assign weight one to u and weight minus 
one to x. A consequence is that the operator H has weight 
zero. 

(iii) We notice that for the Benjamin-One equation the 
integrands of 11.2,) are polynomials of order 1,2,3 and are 
homogeneous of weight 1,2,3 respectively. 

(iv) Let PII(u) be any polynomial of order n and homo­
geneous of weight n. Then ifinIII = SP,/u)dx we insert anN 
soliton solution and evaluate this at large times, we will 
obtain 

N 

In = CII I (v,)n (43) 
,~ I 

where the CII are pure numbers. 
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From these remarks it becomes clear that the general 
structure of our constants must be of the form 

(44) 

where the integrand of J~) is of order (n - i) in u and is of 
weight n. Therefore, J~) has i derivatives with respect to x. 

We can normalize our constants so that 

J(O) = f undx 
" . n 

(45) 

Recursion relations connecting the J~) are readily found. 
Indeed we note that if aI nl at = 0, the terms of the same 
order in u must be individually zero. Thus, let 

au au 
aT= -uux' --;;r;= -H[uxx ]' 

Then we must have 

aJ~;+ ') aJ(O 
___ +_n_=O i-012 n 2 

aT at' ' -" , ... , - . 

Note: 

aJ(O) 
(i)-"-=O. 

aT 

(46) 

(ii) J~) must have an odd or an even number of opera­
tors H depending on whether i is odd or even. Further J~) 
has at most i operators H. However, it can have fewer since 
H2- - 1. 

(iii) The requirements almost uniquely determine 
J~" 2). 

Example: Suppose n is even. Then n - 2 is even. There 
must be 2 u's, no operators H, and (n - 2) derivatives with 
respect to x, 

. J(n - 2) = (constant) dx. f[ 
a,,/2 - 'u ]2 

.. n aXn/2 - , 

[Actually with J~O) normalized as in Eq. (45) we have found 
the "constant" is 2" - 3.] 

(iv) We see that 

~J<n-2) =0. 
at' n 

(47) 

Now we can try to solve our recursion relation Eq. (46) 
starting at the top, i = 0, or at the bottom, i = n - 2. (In 
practice it is convenient to work both ways and to meet in the 
middle.) 

We give an example of how the procedure can be car­
ried out. Let n = 2m. Then J~,') must have (n - I) u's, one 
differentiation, and one H. The only possibilities are: 

GJ = f u2m 
- 2 -J H [uJuxl, j = O,I, ... ,m - 2. 

Now if 

E)= fU 2m 
2 -Juft[uJuxl, 

we find that 
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and 

aJ(O) 
-"- = (2m - I)Fo 

at' 

aGJ __ 
aT - (2m - 2 - DE) + (2m - 2 - DFj + ,. 

Accordingly, Eq. (46) for i = 0 is satisfied if 

where 

aj = (2m - 1)/(2m - 2 - J)' 

Clearly, the process gets complicated as n gets large. 
However, we have already given enough information to cal­
culate 1,,2,3,4' We have carried the calculation through to 
obtain some of the lower In. The first three "nonclassical" 
ones are: 

14 = f{(U 4/4) + fU2H(ux) + 2(uJ2 }dx 

Is = f{(U S/5) + [~UlH(Ux) + U2H(UUx)] 

What are the constants I" when evaluated for pure soli­
ton solutions? We have indicated in Eq. (43) that they are 
indeed proportional to TrL n - '. From Eqs. (40) - (42) we 
see 

C, = C2 = C1 = 411. 

An obvious conjecture is Cn = 411 all n. We have 
checked this for n = 4. Accordingly, we feel very confident 
in the following conjecture. If the constant In is normalized 
as in Eq. (45), then for pure soliton solutions 

.V 

In =4I! I (VI)" -I. (48) 
I - I 

VIII. CONCLUSION 
It seems rather certain that the Benjamin-Dna equa­

tion describes a completely integrable Hamiltonian system. 

This raises a number of interesting questions. Is there a 
Lax8 pair of operators B, L associated with this equation so 
that it can be written in the form aL jat = [B,L ]? If the an­
swer is positive, we should be able to use the Inverse Scatter­
ing Transform method to discuss the general initial value 
problem for the Benjamin-Ono equation. Further there 
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should then be an analog of Lenardslz algorithm which 
would enable us to calculate the In much more efficiently. 

If the answer is negative, i.e., there is no Lax pair, this 
would be extraordinarily interesting. It would be the first 
such example known. 

Are the constants In in involution? The ones we have 
given are. 

APPENDIX: EXPLICIT SOLUTION OF THE 
CALOGERO MODEL 

In Sec. VI we have given the explicit N soliton solution 
for the nonperiodic problem. The proof of this uses a theo­
rem due to Olshanetsky and Perelomov" and Calogero. 13 

The published proofs are rather complicated. Here we give 
an elementary one. 

Theorem: LetxAt) be the solution ofEqs. (28) subject to 
xAto), xAto) being given. If L is the appropriate Lax matrix 
and K [x(t)] is the matrix with elements Kij = 8ij xP), then 

K [x(t)] = U! K [x(to)] + (t - to)L [x(to),x(to)] J U-l. 
(AI) 

Proof We have indicated that Eqs. (28) can be written 
in the form 

aL = [B,L]. 
at 

(A2) 

Define U (t) by au lat = BU subject to U (to) = 1. 
Consider 

J(t) = U"K[x(t)]U. 

On differentiating we find 

aJ = U'I{K [x(t)] + [K,B]}U. 
at 

However, in Ref. S it is shown that 

977 

[K,B] = L - K [x(t)], 

. aJ = U-'LU. 
. . at 
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(A3) 

(A4) 

Differentiating this once more yields, 

aZJ = u,,{aL _ [BL ]}U=O 
at Z at' , 

in view of Eq. (A2), 

.'.J = C I + Cz(t - to), 

(AS) 

(A6) 

where CI and C2 are constant matrices. Putting t = to in Eq. 
(A3), shows that 

C I = K [x(to)] (A 7) 

while putting t = to in Eq. (A4) yields 

C, = L [x(to),x(to)]. (A8) 

Putting then CI and C2 into Eq. (A6) and multiplying on the 
left by U, the right by U'I yields Eq. (AI). 

'T.B. Benjamin, J. Fluid Mech. 29, 559 (1967): 25, 241 (1966); R.F. Davis 
and A. Acrivos, J. Fluid Mech. 29, 593 (1967): H. Ono, J. Phys. Soc. Japan 
39, 1082 (1975). 

'P.O. Lax, Commun. Pure App!. Math. 28,141 (1975). 
'K.M. Case, Phys. Rev. Lett. 40, 351 (1978). 
'D.V. Chudnovsky and G.V. Chudnovsky. Nuovo Cimentos B 40,339 
(1977). 
'H. Airault. H.P. McKean, and J. Moser, Commun. Pure App!. Math. 30, 
95 (1977). 

'K. M. Case, Proc. Nat!. Acad. Sci. 75, 3562 (1978). 
'J. Moser, Adv. Math. 16, 197 (1975). 
·P.D. Lax, Commun. Pure App!. Math, 21, 467 (1968). 
'M.A. 01shanetsky and A. M. Perelomov, Lett. Nuovo Cimento 17, 97 
(1976). 
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"In the proof of this theorem explicit use is made of a result of M.A. Olshan­
etsky and A.M. Perelomov, Lett. Nuovo Cimento 16. 333 (1976), A con· 
siderably simpler proof of this theorem is given in the Appendix . 

"See Sec. 6. Ref. 2 . 
"F. Calogero, Lett. Nuovo Cimento 16. 35 (1976). 
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ERRATA 

Erratum: A particle model based on stringlike solitons 
[J. Math. Phys. 19, 1304 (1978)] 

U. Enz 

Philips Research Laboratories, Eindhoven, The Netherlands 
(Received 19 September 1978) 

In this paper, Eq. (16) is in error and should be replaced Equation (16) follows from (14) and (15) with 
by 

(16) 

e2 = a2E = A12a2
• The numbers a, Roll, and II follow from 

the basic action principle and depend on the specific form of 
w = w(D) in Eq. (6). They have not yet been calculated. 
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