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Using a generalized internal symmetry group analogous to the Lorentz group, we have constructed a
covariant n 2-plet mass operator. This operator is built as a scalar matrix in the (n;n*) representation,
and its SU(n) breaking parameters are identified as intrinsic boost ones. Its basic properties are:
covariance, Hermiticity, positivity, charge conjugation, quark contents, and a self-consistent n *—1, 1
mixing. The GMO and the Okubo formulas are obtained by considering two different limits of the same

generalized mass formula.

1. INTRODUCTION

In a previous article’ we presented a possible way to
complete the analogy between the external and the in-
ternal symmetry groups. We made the hypothesis that
the intrinsic SU(») spin plays, in an internal n®-dimen-
sional space, a similar role as the ordinary S spin does
in the Lorentzian space. Following this viewpoint, a
generalized SU(n)-based internal symmetry was pro-
posed for elementary particles, such that “broken
SU(n)” is automatically contained in it. In this paper,
however, we would like to present a modified mass
operator which generalizes traditional ones, and has a
covariant structure under the so-called hyper-Lorentz
group. We have derived it by adopting a former tech-
nique, ? originally used by Weinberg in the construction
procedure of covariant Lorentzian propagators.

In order to clarify our motivation, let us summarize
the principal properties of the generalized group. In
analogy to the Lorentz transformation, an internal
hyper-Lorentz transformation R was introduced. This
transformation satisfies the fundamental relation

Bupon Byl -RUT=g, (1.1)

and conserves

2 1/2
(1.2)

for any arbitrary n®-vector x* (=0, 1,...,122-1). In
(1.2) X are the SU(xn) generators.  is the identity and
g is the nth-order “metric tensor” built of the SU(n)
symmetric structure constants. The representation
corresponding to an infinitesimal transformation

R =[+ w, has the form
Ul+w)~I+ig. F+iB. B, (1. 3)

We can identify, apart from the SU(x) rotation genera-
tors F, another #* — 1 intrinsic boost generators B, with
commutation relations

[f‘i: Fj]:+ifiij)z’
lFiy Bj]:+if£jk3k7
|.Bi) BjJ:‘L.fiijk; (1.4)

which follow from the group property U(R,)U(R,)
=U(R,R,).

The generators 5(F +iB) form an SU(r)xSU'(x) alge-
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bra, with irreducible representations of the (a; b) type,
where a, b are two arbitrary SU(n) representations. *

In particular, covariant and contravariant vectors
transform according to the (n*;n) and (i, n*) represen-
tations, respectively. These vectorial representations
are of a great importance to us, since they can be
naturally connected with mesons. Notice that each of
these representations consists of the #* - 131 SU(x)
represeniations which stay unmixed as long as only pure
internal rotations are considered. On the other hand,
any boost induces mixing and destvoys the votational
invariants, and therefove can be intevpveted as the
geometvical® mechanism of the SU(n) breaking. Further-
more, by completing the analogy to the real space, we
define an “intrinsic rest frame, ” where one expects the
conventional SU(n) to be a little group. In any other
frame, characterized by the hypermomentum p,, there
exists a boost penetration into the little-group genera-
tors. Thus, p, expresses by its magnitude and direction
the SU{n) breaking.

In this paper, we have used the apove arguments to
construct an #®-plet mass operator built as a scalar
matrix under the generalized internal symmetry group.
Among its properties we can find: covariance,
hermiticity, positivity, charge conjugation, quark con-
tents, and mixing of representations. But the most
important one is the possibility to obtain the GMO and
the Okubo formulas by considering two different limits
of the same generalized mass formula.

2. THE n2-PLET MASS OPERATOR AND ITS FORMAL
PROPERTIES

In the ‘“exact symmetry limit” one expects mass
degeneracy within any given SU(n) unitary multiplet; in
our language it is to say that the mass operator should
be an SU(x) rotational invariant only in the so-called
“intrinsic rest frame, ” This viewpoint naturally sug-
gests the construction of such an operator as a scalar
matrix under the internal hyper-Lorentz transformation.

A scalar matrix 7#(p) is defined by the following trans-
formation law,

D(a;b)[RJ' 77(a;tn(/))' DT(n;b)[R]:ﬂ(a;b»(Rp)’ (2“ 1)

where D(a;,],LR] is the hyper-Lorentz transformation

matrix in the («;b) representation, and p stands for the
hypermomentum p, (u=0, 1,..., #n*~1) describing the
magnitude and direction of the unitary symmetry break-
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ing. In Appendix A we show that the most general n(p)
is of the form

7(p)=m(R°)=D[R]{2 ¢,5,}D'[R], (2.2)

where the summation index i runs over all the SU(»)
representations contained in the ag & multiplication,
and

I: for the representation i,

0: otherwise,

c;-arbitrary scale coefficients
°p, ~ (1, 0).

As indicated in the Introduction, one can easily show
that

D[R]=explia. (F, +F,)] if R is a pure rotation,
(2. 3a)
(2. 3b)

The particular R, which transforms % into p, can
always be considered as a pure internal boost trans-
formation, since °» stays unaffected under the SU(n)
rotations. Moreover, we are free to choose the orienta-
tion of the intrinsic coordinate system in such a way
that this R-transformation will be along n -1 principal
axes (in analogy fo external space, where any preferred
direction can be chosen as our Z axis). Thus D[R] takes
a simpler form

n-1
D[R]:eXp[; Bk(Hl(za) _Hk(b))]’

D{R]=exp{8 - (F,-F,)] if R is a pure boost.

(2.4)
where H’jd) are the n - 1 diagonal generators of SU(n) in
the d representation.

In accordance with the traditional population scheme
of the SU(n) representations, it is very popular to con-
nect the mesons with states of the n® ~1, 1 mixed
representations. We hereby propose a natural general-
ization to this naive picture by letting the mesons tvans-
form like an n*-vector under the hyper-Lorentz group,
i.e., via the (n; n*) representation. ® In such a way we
shall be able to derive the »*-plet mass formulas
automatically accompanied by the #* -1, 1 mixing.
Apart from the » — 1 breaking (boost) parameters, the
most general n®-plet mass operator involves two other
scale parameters, as indicated by (2. 2). Choosing these
parameters as m?2 and M2, the “bare” masses of the
n? — 1 and the singlet representations, respectively, we
obtain the desired #°-plet (mass)® operator

mP=DIR]- {m25,,  +M0,}. D[R] (2.5)

The simplest way to reach the explicit form of (2.5)
is to use the ¢,4, basis. According to the conventional
quark classification, given in Table I, one can easily
check that

n-1

Kz_l BelHY = BY s 1lg.4,) = 3v, +7 )] a;4p, (2.6)
where the new coefficients v, are defined by

L, =] L 2.7

E')/K:__l BK_1+I_=/K ]+lﬁl° (° )

Combining formulas (2.4), (2.5), and (2.6), we can
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finally present our generalized version to the mesonic
mass matrix,

(qiqj";hz,qk‘?)
1
=m3. exp(y; +v,)- 8,8, +— (M3 - m3)- exp(v; +7v,)
<0504y (2.8)
Before analyzing the detailed structure of (2.8), let us

first list some of its basic properties which are im-
portant by themself:

(1) Covariance: As indicated by the transformation
law {2.1), the m? operator has a covariant structure
under our generalized internal symmetry group.
Furthermore, one can rewrite (2.5) in an alternative
form which emphasizes its special form

P =F F Ry Dy by Ry oo, PO+ 2 D), (2.9)

where F*=(1/V2n, F ), F'=(-1/V2n, F %), kyand k,
are two constants linearly related to m: and M2, and the
tensor g is defined by (1.2).

(2) Hermiticity: Notice that the real matrix (2. 8) is
totally symmetric

me, , =m {2.10)

2
[EN TARRr TS
hence the eigenmasses are real quantities.

{3) Posilivity: One can easily prove that m2, M2>0
imply definitely positive eigenvalues for any arbitrary
breaking parameters.

(4) Charge conjugation: It is only in the sense that

m (2.11)

17 2
m i1k

ij,ky =
This property assures that polar #?-plet members will
have equal masses.

(5) Quark Contents: The mass operator in the (i; 1n*)
representation is expressed by (2. 6) in terms of the
quark and antiquark operators F , , F . . To be more
precise it follows from the multiplication property
(n; n*)=(n; 1)® (1;n*), and one should notice that the
(n; n*) representation has nothing to do with the
(2 ~1;1) or (1;#* - 1) ones.

(6) The “Exact Svmmetry Limil{"; The exact SU(n)
limit is obtained by letting the boost parameters vanish,
In this limit, the degenerated “bare” mass matrix
reads

m?n? = 1] —m?, wm?[singlet]—Mj. (2.12)
TABLE I. The conventional quark classification.
q1 P 13 q1 In
o 3 -1 0 0
H A L -2 0 0
B L | i -3 0 0
-t 1 1 1 1 1-n
H H n M "
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(7) Mixing: The m? matrix (2. 8) consists of a diago-
nal part for the n(n - 1) peripheral states ¢,q, (i #j), as
well as of a nondiagonal one for the other n central
states ¢,q,. Thus, the boost transformation induces,
intevalia, a simple mixing among the states which are
located at the representation origin.

(8) Traditional Mass Formulas: Using the approxima-
tion where the leading breaking parameter is small
enough in comparison with the (M2 - m2)/m? ratio, we
approach the famous GMO mass formula. On the other
hand, if M2 and m?2 are almost identical, one is able to
derive the Okubo type mass formulas for the »n®-plet,
These important approximations to the same mass
matrix, are considered in Sec. 4.

3. EXACT RELATIONS AMONG THE n*-PLET MASSES

For the peripheral members of the #®-plet, it follows
directly from (2. 8) that

m?(q,q;)=miexp(y; +v;) (i#]). (3.1)
Hence, we obtain, apart from the basic identity

m*(q,q,;) =m*q,q;), (3.2)
an additional multiplicative mass relation

m?(q;4;)- m*(q,q,) =m*(q,q,)- m*(q,q,)- (3.3)

This #-independent formula turns out to be an additive
one only if v, are first-order parameters. (3. 3) is
apparently useful starting » =4, and for the vectorial
mesons one finds

}'\*:K*D*:K*CD*O, (3.4)
P

where we have used the notation p for mZ2, etc. Notice
that in a “pure quark model, ” where M2=m2, (3.3)
holds for all the »®-plet members and not only for the
peripheral ones.

For the central states the situation is somewhat more
complicated, and the corresponding masses are the
eigenvalues of the following nondiagonal matrix,

mi(1+x) exp(2y,); mixexp(y, +v,); . ;mixexp(y, +7,)

mix exply, + vy); M1 +x)exp(27,);. s mix exp(y, +7,)

3 * y s

o3 mE(1+ x)exp(2y,) :
(3.5)

mix exply,+v1) ; mix exp(y,+vs)

-1 (3. 6)

measures the deviation from the “pure quark model, »
As it is shown in Appendix B, the eigenvalues of (3.5)
obey the following secular equation,

n
> (1+Kx). SE(u2, ...

K=

,I-Li)' (_ K)H-K:O, (3-7)

(=]

where the symmetric coefficients S¥ are defined by
n
(o +x)e oot (X +x) EZ;O S¥(xyynn, x,). x1°K,
K=

and p% =mj. exp(2y,) are the central masses in the x =0
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limit, i.e., in the “pure quark model. ” Notice that
every ¢% can be expressed in terms of the peripheral
mass

2 . 'WLZ(qKCTi)- mz(QK‘L)
M= 20, ~
m (quj)
and therefore Eq. (3.7) leads us to another mass rela-
tions of the form

(i#j+K), (3.8)

SEmE, ..., ,m2)=(1+Kx). SE(u2, ..., ud), K=1,...n

(3.9)
involving the physical central masses mZ, ..., m2, By
eliminating x from (3. 9) one gets the following parame-
ter free mass formulas

SEmi, ... omd) =Sz, ...
KSy(u3, ..., HD)
It should be noted here that for an (n — 1)2-plet, which

is contained in the n*-plet, similar formulas to (3.9)
and (3.10) do not exist. Solving (3.9) for

)

=x=const. (3.10)

Sk.(m3, ..., m2_), using the identity S¥ =S¥ +m2S¥3,
we get
K
SE m?, ..., m2 )= 120 (14 1x) (= m2)*0. SHpE, ..., u?)
#(1+KR). SE (L3, ..., b2,
(3,11)

It is to emphasize that different mass formulas are ob-
tained if we try to connect N? mesons to various n= N
cases. However, as we shall later see, identical and
familiar mass formulas can be derived for all these
cases if we consider only first order breaking of the
N?-plet. Thus, if we are interested in obtaining physi-
cally exact mass relations for N2 mesons, we face the
serious problem of determining the correct #> N, The
temporary value for » is 4, but until the real value will
be fixed we cannot avoid the penetration of the »*-plet
masgses into the N?-plet mass relations. Meanwhile we
must content ourselves with the following approximated
mass formulas,

4. THE SINGLE-BREAKING-PARAMETER
APPROXIMATIONS

If we believe that the n — 1 breaking parameters obey

BB, < ... <B,1s

it is justified to consider first the approximation where
only the leading parameter does not vanish, i.e.,

‘Bn-ls—ée’ ﬁn_zz...:(glzou (401)
From (2. 7) it follows that
n=1 1
'}/ng 2” @, ’}/"_I:‘..:'}/lz—~2—”— (402)

Substituting (4. 2) into the mass expressions (3.1) and
(3.7), one is led to results which describe the SU(n)
breaking to the smaller SU{n - 1)R U(1) symmetry
group. The n®-plet consists of the following SU(n - 1)
subrepresentations: n -1, (n—-1)*, (n=1)*- 1, and two
singlets (only one of them is also an SU(i) singlet]. The
corresponding masses are given by
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s = mtn = 1}=m*{(n - 1)*} = m} * exp (ﬁ—_—nz 9) ,

1
M2 =m*[(n~ 1) = 1] =m?. exp (_ = 6>,
and by the relations

M2 +m?=m? exp(— % >{(1 +ef)+x((n-1)+e?]},

" (4.4)
¥

MPm® =mi. exp( 6’\) - {1+ nx),
where M?, m? are the eigenmasses of the two mixing
singlets, and x was defined by (3.6). We are going to
show that (4. 3) and (4. 4) give under certain conditions
a variety of the traditional mass formulas.

Let us now consider some special cases of (4, 3) and
4. 4),

(1) <1, x:In this limit one finds, up to the first
order of 8, that

. n—2 ; 1
ng ~me (1 t 5= 9) L (1 - ;9) )

"9 (4.5)
m2~m? (1 + 9) y MP~ME=mi(1 + nx),
thus, the GMO mass formula
(n=2ym3 +nm?=2(n - 1) (4.6)

follows immediately.

(2) x<<1, #: Here we get, up to the first order of x,

-2 1
6) . S =md. exp (— —rzé}) s

)
2 2
Wi =wl. ex
s o p( Y

w?~me. exp (— %G) [T+ -1

M2~m?k. exp<”_'1 9) (1 +x), 4.7
which lead to the relation
1 [w? P
RAAE . it = M%y2 4,
T <”]2L +(n 2> mg =M?m?2, (4. 8)
{3) x «< ¥ <<1; In this limit

w ~m (1 L ;ﬂz 6) , mQL ~m2 (1 - %9) ,

(4.9)

1 n
m® ~m§<1 +(—-1)x - ’—19> , MRl <1 +x+

These masses are clearly connected by the Okubo mass
formula

nm’ + (= 1)M* =m? +2(n - 1)m5. (4,10)
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APPENDIX A: THE GENERAL FORM OF THE SCALAR
MATRIX

From the transformation law (2. 1) it follows immedi-
ately that

T tdy ;dz)([)) =n (@y;dy )(H O.D)

:D(dl;dz)m].n(dl;dz)(Op).D*«,l;dz)[RL (A1)
where °p~ (1, 0).
If R is a pure rotation, then
R° =%, D[R|=explia. (F, + Fy ) (A2)

The substitution of (A2) in (A1) gives the relation
7(°p) =explia- (Fy +F,)]. 7(°p) - expl~ ia(F, +F,)),

(A3)
which is satisfied if and only if
[Fdl + Fdz’ 7(°p)|=0 (A4)
Therefore,
ﬂ(OP):Zi) c;0;, (A5)

where the summation index i runs over all the SU(»)
irreducible representations contained in the multiplica-
tion of the d,, d, representations, and ¢;, §; were de-
fined in Sec. 2.

If R is a boost, then

R%=p, D[R]=expl8.(F, - F, )| (A6)

(A2) gives 7(p) its final form
ﬂ(p) :exP[B M <Fd1 - Fdz)‘ ‘{‘chéj}expls M (Fdl - Fdz)lv

after another substitution in (A1),

APPENDIX B: THE SECULAR EQUATION FOR THE CENTRAL EIGENMASSES

+7,);

mZ(1 + x) exp(2y,) — A;

i m2(1+ x)exp(2y,) =X, mixexp(r,
[ mixexp(v, +7,);

i

|

mixexply, +v,)

., mixexp(y, +7v,)

=0 (B1)
5 . s
m2x exply, +7,); mEx exply, + v,); oy mi(1 +x)exp(2y,) =2
can be rewritten as
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A = . ‘ =0,
1 1+q,

where we have defined 1, by

Tg=—
}Kx

L (= nexpl-2,) = ZREZT (s ). (B3

From (B2) it follows that:

A =T, 8, H T, T =

=8Ny, ooy M)+ S, - 0y T,), (B4)
Snfyy e e M) =001,
= expl- 2, 4o 4] D S, < B2,
(B5)
and
761 J. Math. Phys., Vol. 20, No. 5, May 1979

(B6)
Thus (3.7) follows immediately.
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A critique of the major approaches to damping in
quantum theory
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We examine the two major approaches that have been suggested for the quantum mechanical treatment of
the damped motion of a particle as a one-body problem. These are the linear, but time dependent, Kanai
Hamiltonian, and the more recent nonlinear potentials which have been introduced to simulate the
damping force. The most important criticism that has been leveled at the Kanai Hamiltonian is that its
solutions seem to violate the uncertainty relations. We show that this Hamiltonian actually represents a
particle of variable mass, whose classical behavior is identical to that of a damped particle of constant
mass. But quantum mechanically, its changing mass does lead to unphysical behavior when misinterpreted
as a constant mass particle. So this Hamiltonian cannot directly deseribe a constant mass damped
quantum particle. The nonlinear model has been interpreted in terms of the hydrodynamical analogy of
quantum theory, and a well behaved decaying wavepacket solution has been produced. However we
generalize this result to produce solutions that “‘decay™ to arbitrarily high energy. Thus it is not clear that
this model specifically treats dissipation. Rather it seems to seek out any stationary state. At any rate, its
physical interpretation is obscure at present. However we show, by analyzing the physical problem of
damping at low energies, that one can modify the Kanai Hamiltonian to eliminate its unphysical features,
so that this modified Kanai Hamiltonian can in fact be interpreted as representing a constant mass

damped particle with physically reasonable solutions.

. INTRODUCTION

Recently, there has been an upsurge of interest in the
quantum mechanical problem of a particle subject to a
damping force proportional to its velocity. The impetus has
come from nuclear physics, but the problem is very interest-
ing in its own right. An excellent, short, review article by
Hasse' covers much of what has been done on the subject to
date, and the reader is referred there for a very detailed list of
references.

The reason the subject is intrinsically interesting is that
one believes that at a microscopic level there is no damping,
and that effectively, damping is a collective phenomenon
produced by the interaction of a particle with the sea of back-
ground particles in the medium. It is the dissipation of ener-
gy to this background that causes the damping, and at the
same time the particle receives energy from fluctuations in
the background.

Yet classically, the end result of this many-body inter-
action is the existence of an effective one-body problem,
namely that of the particle subject to a damping force, and a
great deal of literature has been generated by the problem in
statistical mechanics of producing this one-body force.?

Now, since this one-body force does come about, it is
only natural to expect both classical and quantum theory to
be able to cope with it, and that the solution should blend
convicingly with the results of the many-body approach to
the problem, to whatever extent the physical situations
themselves overlap. This becomes especially important
when one realizes that in fact a truly undamped oscillator
never occurs in nature, and one must always include some
damping in order to obtain realistic results near resonance.
and yet it is the undamped oscillator that is easily treated as a
one-body problem.

The classic approach to the one-body problem for
damped motion is through Kanai’s Hamiltonian® (in one
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dimension)
H=(p/2mye " + V(x)e". (nH

This Hamiltonian has received a considerable amount of at-
tention,* but it produces some results that are considered
unphysical, and this has led to a second approach, due ori-
ginally to Kostin," which replaces the linear but time-depen-
dent Hamiltonian above, by a rather ingeniously construct-
ed nonlinear one, which we shall also discuss. We will see
that the nonlinear approach also has a severe problem with
interpretation.

We will first examine the solutions obtained from the
Kanai Hamiltonian, and will discuss explicitly those fea-
tures which have been criticized as unphysical. These criti-
cisms fall into two classes, the first of which we will show to
be unjustified, but the second of which is very valid, and will
necessitate a modification of the Kanai Hamiltonian, if it is
to have a physical interpretation.

First, in the quantum mechanical case of a damped free
particle, the spread of the Kanai wavefunction, Ax(z ), re-
mains finite for all times, even in the limit -~ 0. This 1s in
sharp contrast to the case of the undamped free particle,
where the wavefunction ultimately disperses through all
space. It also conflicts with the solutions to all other pro-
posed damping Hamiltonians in this respect. Nontheless, by
examining the behavior of a swarm of classical particles in
phase space, we will show that their behavior in the damped
case is very different from that in the undamped case, and in
fact Ax(t) always remains finite. Thus the behavior of the
Kanai solution becomes very plausible in this regard, as the
properties of the undamped case turn out to be a very poor
guide as to what to expect in the damped case.

The second criticism is much more meaningful, as the
Kanai solution appears to violate the uncertainty principle.
Of course formally, the uncertainty principle is satisfied,
Apdx ~#. However, the canonical momentum, p = mye’”,
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is not equal to the physical *‘kinetic”” momentum, p, = my,
for this problem, and for the kinetic momentum one has
modvAx ~#ie '—0, for large times. This behavior has been
a long-standing puzzle for the interpretation of the solution.
We show that the problem is caused by the fact that the
Kanai Hamiltonian actually refers to a particle of variable
mass, m(t) = me!”. This increasing mass causes an effect
equivalent classically to a damping force proportional to the
velocity.

So the particle with increasing mass classically has an
equation of motion identical to that of a particle of constant
mass subject to a damping force. Thus classically, these two
problems are equivalent. But quantum mechanically they
are not. Because even though the expectation values of the
quantum problem are the same as those of its classical coun-
terpart, the spread of the wavefuntion will be governed by
the specific form of the Hamiltonian. And in this case, the
increasing mass absorbs most of the momentum fluctu-
ations, so that the spread in velocity goes to zero.

We would like to point out the rather fascinating math-
ematical implications of this situation. Normally, one has a
given, unique, physical situation, and one can describe it by
various different mathematical formulations. These formu-
lations are generally connected by unitary (or classically,
canonical) transformations, and the totality of different for-
mulations is usually directly related to the amount of sym-
metry inherent in the physical problem. The situation here is
almost diametrically opposite. Here we have two completely
different physical situations—a constant mass particle sub-
ject to a damping force, and a particle of varying mass—both
of which give rise to the same classical mathematical de-
scription. Yet quantum mechanically, the Kanai Hamilton-
ian is only consistent with the variable mass interpretation,
and the constant mass interpretation is inconsistent, and vio-
lates the uncertainty principle.

Thus in this respect the Kanai Hamiltonian is truly un-
physical. But does this mean that 1t is therefore not possible
to give a constant mass reinterpretation of the Kanai Hamil-
tonian? In the classical case, since the equation of motion for
the two interpretations are identical, one can certainly inter-
pret the Hamiltonian as representing a damped constant
mass particle, as has always been done. Quantum mechani-
cally, one cannot do so with the Hamiltonian in its present
form.

However, we shall show that there is a further physical
ambiguity in both the quantum and classical problems, and
one can exploit this fact to modify the Kanai Hamiltonian in
such a way as to restore a reasonable constant mass interpre-
tation even quantum mechanically. The nature of this ambi-
guity has to do with the fact that when a damped particle
approaches closely enough to equilibrium, the damping be-
comes sufficiently small so that one can no longer detect that
the motion is being damped, and thus beyond this point one
can effectively switch off the damping force. Quantum me-
chanically, this has the effect of limiting the shrinkage of the
wavefunction, thus making it possible to preserve the con-
stant mass interpretation.
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For the nonlinear potentials, there are at present some
physically reasonable solutions known, which decay to the
ground state of the unperturbed oscillator. However it is also
known that any stationary state of the unperturbed oscilla-
tor is also a solution, so that not all solutions show damping.
We will produce a set of solutions which generalize both
these results, and which *“decay” to any arbitrary stationary
state of the unperturbed oscillator. Thus it is not clear that
the nonlinear damping potential specifically damps. Rather
it seeks out any stationary state at all. Thus the entire phys-
ical basis of the method remains difficult to interpret, a situa-
tion which is not helped by the failure of superposition
amongst known solutions, or the lack of information as to
how many unknown solutions exist, both problems being
consequences of the nonlinearity of the problem.

In Sec. I we shall produce some solutions to the classi-
cal and quantum mechanical damping problem, as formulat-
ed with the Kanai Hamiltonian. We will show that this Ha-
miltonian actually represents a particle of variable mass,
which is responsible for its strange behavior when misinter-
preted as describing a particle of constant mass. Thus the
Kanai Hamiltonian has definite unphysical features. In Sec.
I11, we will show that a classical distribution of damped par-
ticles in phase space does not spread indefinitely, but re-
mains finite, as does the Kanai wavefunction. This behavior
is completely different from the undamped case, and argues
for the plausibility of the Kanai solution in this particular
respect.

In Sec. IV, we discuss the nonlinear approach and point
out the difficulties of interpretation it runs into. In Sec. V we
point out that it is unrealistic to expect a particle to keep
damping beyond a certain minimum energy, both classically
and quantum mechanically. We then use this fact to modify
the Kanai Hamiltonian by eliminating the damping beyond
this point. This eliminates the unphysical qualities of the
solutions and then they can be reasonably reinterpreted as
describing the damped motion of a constant mass particle.
We explain exactly what such a reinterpretation entails, in
terms of the formalism. While it may prove somewhat dis-
turbing to have to cope with a variable mass particle, the fact
is that this property is already built into the Kanai Hamil-
tonian. By modifying the Hamiltonian we are actually allow-
ing it to describe the physical situation of a constant mass
particle, and it then becomes the first linear model to suc-
cessfully handle the problem of damping. (In fact, in the
companion paper of Ref. 6 it is shown how one can introduce
the concept of a “dissipation variable’ and thereby eliminate
all mention of a variable mass, if one prefers.) Finally, Sec.
VI contains a summary of the paper.

Before we begin, we should point out that when one
discusses damping forces, there are at least three types of
dissipation involved. First, the Schrodinger equation has an
intrinsic dissipation built into it, in the sense that a free parti-
cle wave packet will spread spatially. This is due to the un-
certainty principle, and for a Gaussian packet,

(4x)* = (4x){ + (dv)¢> This diffusion effect does not de-
stroy the coherence of the packet (i.e., its capacity to produce
diffraction effects). Furthermore, given any encouragement,
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a wave packet will not diffuse, as when bound in a stationary
state of an attractive force.

Second, if one puts in a damping force, via some Hamil-
tonian like that above, the particle center of mass will repro-
duce its classical motion, and so energy will be dissipated.
But nonetheless, the packet will not lose coherence, though
there will be diffusion effects due to the uncertainty princi-
ple, as before. This is important, and it is unfair to expect
such a wavefunction to reproduce effects of say, dissipation
in a heat bath.

Third, there are the incoherent effects due to the chaot-
ic interactions with the surrounding medium. This can be
handled via a density matrix of statistical mechanics. A par-
ticle in a medium at finite temperature, whether in equilibri-
um or not, has no memory beyond its relaxation time. But a
pure quantum mechanical wavefunction has perfect recall
until a measurement is made. These considerations affect
what one can rationally expect from the behavior of a solu-
tion to Eq. (1), and they indicate a certain nonequivalence
between the one-body and many-body approaches.

Il. INTERPRETATION OF SOLUTIONS TO THE
KANA| HAMILTONIAN

The Hamiltonian of Eq. (1) leads classically to the
equations

V= a_H. = (p/mo)e BRsR )
dp
. . JdH ( 8V) .
Py 2)8} T e — = — — 71, 3

p = (meve’) Ew o 3)
and the equation of motion

z}+yv+m0“ﬂ:0, 4

dx

which adds a damping force, F; = — ymv, to the problem

of a particle moving in a potential V. It should be noted that
the canonical momentum,

p = moue'’, (5)
is not equal to the “*kinetic” momentum,

Dy = Mob. (6)

For the free particle case, ¥ = 0, the classical solutions
are

x = Xo + W/l — e~ 1), (7

v=ue " ®)

(x — xo) = (vo — v)/7. )

The form of the momentum, Eq. (5), shows that the
Kanai Hamiltonian actually refers to a particle of increasing
mass, m(t ) = mee”. To see this in more detail, let us examine
a particle whose mass is increasing, but for which the extra
mass carries no extra momentum-—such as the case of a rain-
drop moving through a mist which is at rest. For such a
particle, momentum conservation gives

(m + Sm)(v + 8v) — mv = Fét, (10)

where F represents any force present on the particle, so that
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the equation of motion becomes

(i)(m(t)v)zF. an
dt
The Lagrangian for this equation is

L=im@y -V 12)
and the canonical momentum is

LN, (13)
dv

Furthermore, if the potential is of the form

V=m(t)p(x) (14)

{which has the formal interpretation of an external gravita-
tional potential, being proportional to the mass), then the
Hamiltonian will be of the form

H=pv—L=p/2m@)+ m(t)p. (15)

Therefore, the Hamiltonian equation of motion becomes
- d ) dp
=| — |m@ W) = —m(t) —,
p=( £ Jont 1) %

b+ ity myw = — 22
dx

Now, the Kanai Hamiltonian, Eq. (1), is exactly of the
form of Eq. (15), where

m(t)/m@) =7, an

so that the canonical momentum of Eq. (5), is exactly that of
Eq. (13), and the equation of motion, Eq. (4), is exactly that
of Eq. (16). Thus it follows that the Kanai Hamiltonian actu-
ally represents a particle of variable mass, Eq. (17), which
produces a classical equation of motion that is identical to
that of a damped particle with constant mass.

(16)

m(t) = mee”,

So the problem arises that if the variable mass particle
of the Kanai Hamiltonian produces a classical motion which
cannot be distinguished from a constant mass damped parti-
cle, then in what way does it differ from such a particle—
how does its variable mass express itself? Of course the mo-
mentum of the particle in the two interpretations is different,
one being p and the other being p,, but classically, the prob-
lems are formally identical, and either interpretation is valid.
However in the quantum mechanical case, while the expec-
tation values obey the classical equations, the fluctuations
are nonetheless controlled by the detailed nature of the Ha-
miltonian, and this is precisely where the variable mass
shows up,* as we shall show.

To acquire some feeling for the quantum mechanical
behavior of the Kanai wavefunctions, we can examine the
Schrodinger equation for the free particle case, V' =0,

R Y g0 (18)
2m, oxt ot

There is a natural unit of length 4 = (f/m,y)"?, in terms of
which the equation becomes
13y
2 oy

—Gpe "y 2L y=x/i. (19)
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Also, in terms of the variable u, given by

u=1—¢", (20)
the equation reduces to the free particle equation
2
Lov o on
2 9y? du

Introducing the Green’s function G (y,u), for this
problem,

G (y,u) = miuy """, (22)
which obeys Eq. (21) as well as
G (,0) = 86(»), (23)

the general wavepacket solution obeying the boundary
condition

U(»,0) = ¥(y), (24)
becomes

va) = [ dV6 6 -y 25)

Specifically, for the Gaussian packet,

vo=¢ 7, (26)
we find that ¢ evolves in such a way that

[ Yu) | ~e = 27, 27
where the width a(u) is

a¥u) = a* + 4ut/a’ = a* + (AvYad, 28)

in terms of our dimensionless variables (v here is also in di-
mensionless units). Remembering thatu = 1 — e ~ ¥/, we see
that the wavepacket is finite both at t = 0, and at 1 = o, in
contrast to the case of an undamped particle wavepacket,
(Ax) = (4x)} + (o).

In fact, had we made instead the substitution u, = e ~ ¥/,
representing the solution for a wavepacket that becomes
Gaussianat f = o0, its width would also be given by Eq. (28),
with u, replacing u. In this case the wavepacket actually
shrinks in time. So the wavepacket can shrink or expand, but
the important feature is that it maintains a finite width at all
times. We shall see in the next section that this behavior is
perfectly plausible from a classical point of view, although it
differs drastically from both the free particle case, and from
all the nonlinear potentials that have been proposed.

The unphysical feature of the Kanai Hamiltonian
shows up in the following way. In the case of a bound parti-
cle, say in a harmonic oscillator, if one calculates the spread
of the wavefunction in time, one finds®

(Ax) =(A4x)ee (29)
and

(Apy =(Ap)se™, (30)
so that the uncertainty principle is formally satisfied,

(Ap)(Ax)y ~ (Ap)i(Ax)~F. (31)

If we remember that the Hamiltonian represents a particle of
increasing mass, there is nothing strange about this. But if
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one wants to force a constant mass interpretation on the
problem, then in terms of the kinetic momentum, p, = mv,

vt

pr=pe
(4p,)t = (dpye™ ", (32)
(Ap, ) (Ax)* ~(Ap)Ax)e "0,

we have the rather perplexing situation that the uncertainty
principle seems to be violated. It would be incorrect to at-
tribute this vanishing of the product 4p,Ax, as given by Eq.
(32), to the lack of an extra fluctuation term in the Hamilton-
ian, to match the dissipation present (as has been done in the
literature). That would be true in a macroscopic treatment of
the problem via statistical methods, but the one-body Schro-
dinger equation contains all the fluctuations it needs to guar-
antee the uncertainty principle.

This strange behavior, which has proved very puzzling,
is a direct consequence of our attempt to impose a constant
mass interpretation on the quantum mechanical solution.
The quantity p, /m, = p/m(t) represents the velocity,
whose fluctuations are decreasing, (4v)’ ~ (4v)oe ~ 7, while
p represents the momentum, whose fluctuations are increas-
ing. The difference between the two is provided by the mass,
whose increase furnishes the added momentum fluctuations.
So the uncertainty principle is not violated, but only appears
to be violated if one insists on the incorrect constant mass
interpretation of the Hamiltonian. But of course an actual,
physical damped oscillator does have constant mass, and so
the Kanai Hamiltonian as written does not apply to such a
system. Nonetheless, we shall show in Sec. IV that it is phys-
ically valid to modify the Hamiltonian at low energy to
achieve a reasonable constant mass interpretation of the
problem, eliminating the problems associated with the un-
certainty principle. There will then be no further obstacles to
a constant mass interpretation.

lll. THE DISPERSION OF THE KANAI
WAVEFUNCTION

We saw in the last section that for a damped free parti-
cle, the Kanai wavefunction does not spread indefinitely,
like that for an undamped free particle, but maintains a finite
width in the limit #— o0, and it has been criticized as being
unphysical on these grounds. We shall examine the behavior
of a distribution of classical damped particles in phase space,
and show that it behaves in this regard like the Kanai wave-
function, while a distribution of undamped classical parti-
cles spreads indefinitely like the undamped free particle
wavefunction. So in this respect the Kanai wavefunction ac-
tually behaves very plausibly.

The first thing to notice is that there is no Galilean in-
variance in the problem of damped motion—Newton’s first
law does not hold. All particles slow down and asymptotical-
ly come to rest. So there is something very special about
speed zero. It is the end point of all motion, but it is never
reached in a finite time by moving particle. On the other
hand, a particle at rest remains at rest always.
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Furthermore, there is no such thing as a “little bit of
damping.” Either the motion is undamped, and all speeds
are equivalent, or it is damped, and speed zero is special. If it
is damped, the time scale is set by 1/y = 1,, the damping
constant. In units of this time, y¢ = t /,, all damped motion
is scaled identically. So there is no smooth passage to the
limit y—0. All finite values of y are formally identical, and
the value ¢ = O represents a different problem. {This is not
true if other forces are present. For example in the harmonic
oscillator there are two time scales, 1/ and 1/w,, and it
makes sense to speak of the limit y<w,.)

Note too that the form of the damping force,
F,= — ymg, acts as a converging lens in velocity space.
This means that if one releases a swarm of particles simulta-
neously, with a spread in velocities, p(v), the faster particles
slow up more rapidly than the slower ones, so that the distri-
bution tends to shrink in velocity space. Ultimately, of
course, all velocities tend to zero.

And so, as can be seen from Eq. (7), all particles travel
only a finite distance before coming to rest. A particle origin-
ally at x,, with velocity v,, will end up at t = o, with

x/-: Xo + U()/}/. (33)

Therefore, of course, the distribution will have a finite
spread in Ax as t— o« . Thus, far from being unphysical, clas-
sically this behavior is mandatory. And while the classical
behavior only controls the motion of the expectation values
in quantum theory, and the quantum fluctuations are not
necessarily related to classical considerations, nonetheless,
this argument shows the plausibility of having Ax stay finite
for the quantum wavefunction, and the Kanai wavefunction
has this property.

This is totally different from the behavior of a free un-
damped wave packet, which will spread indefinitely in Ax.
There the spread is due to an uncertain knowledge of the
velocity, (4v),. But with damping, we know that every veloc-
ity component of Av will decrease separately, as will 4v
itself.

In line with our comments above, this finite spread of
the wave packet in x space will take place for any nonzero
value of 7. Depending on the original shape of the packet,
Ax;can be smaller or larger than 4x,, so that the behavior in
the limit —0 is no guide to the behavior at y = 0.

We can quantitatively illustrate these remarks. A distri-
bution of particles which starts off at ¢ = O with a shape given
by pe(x,v), will at time ¢ be governed by the equation

Dp dp dp dp
Dt v Ix dv ot 34)

For a free undamped distribution, @ = 0, and so the distribu-
tion at time z will be

P8(x,0) = po(x — VD). (35)

For the case under consideration, damping witha = — y»,
the solution can be constructed from the particle motion as
given by Egs. (7), (8), and (9),

P(x,0) = polx — W/P) (e — 1),ve"). (36)
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So for example, if the velocity part of the distribution was
initially p(v) = A exp[ — (v — v,)>/4 ?], then at time ¢ the dis-
tribution would become

p, () =Aexpl — (ve"' — v,)7/4 2]

=Aexpl — (v —vee ")/ (de 7)), 37)

and would have its center at v = v, exp( — 1), and width
A (1) = Adexp(— y1).

To study a simple example in detail, consider the fol-
lowing special distribution. At f = 0, the distribution is uni-
form within a region of (x,v) space,

() {const, X, <X<Xy, U<V, 38
X,0) =
pe 0, elsewhere. (38)
If we normalize by

J-dx dv p, =1, (39)
then the constant will be

po=1/4x4v, Ax =(x,—x)), 4dv= (v, —v). (40)

For undamped motion, each particle will move at constant
speed, or horizontally in Fig. 1(a), and the distribution
p(x) = fdv p(x,v) will spread as shown in Fig. 1(b).

If now we consider the case of damped motion for the
same initial distribution, p,, of Eq. (38), then each particle
will move along the straight line given by Eq. (9), ultimately

{a),
t=0
Vel " 77 B S |
t
Oo ~ %
L/ |;t47"~_”l : !
1 |
kax ax ey t—
vV ¢ L : 1 ! X
i i ' | ) i
' | | 1 ' J
! | | ! 1 '
P IR
t i ! X i [
' l 1 ' i I
—1 ! ! ‘ i 1
X X2 xove X, +Vit xrve PRAA
X
(b)
O(x) t-0
t
Vax /—\
l"AX -’l }*—AV‘C——-|

FIG. 1. Spread of a uniform distribution of undamped particles. (a) Evolu-
tion of p(x,v) in time. An originally uniform rectangular distribution of
particles spreads out as the faster particles outspeed the slower. (b) The
distribution p(x) = fdv p(x,v) as a function of time. The half-width re-
mainsdx untill Ax = Avt, and thereafter becomes Avt, expanding
indefinitely.
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FIG. 2. Spread of a uniform distribution of damped particles. (a) Evolution
of p(x,v) in time. An originally uniform rectangular distribution of particles
squeezes together in v, as all particles move along parallel slanting straight
lines, exponentially approaching the x axis at = . (b) The distribution
p(x) = fdv p(x,0) as a function of time. The width as t— « is finite,

Ax, = Av/y. (c) A distribution where 4x | is actually less than 4x,.

settling on the horizontal axis as /— co. The spread of the
distribution will be as shown in Fig. 2(a), and the spread in
p(x) will be as shown in Fig. 2(b). In Fig. 2(c) we show a
distribution that will actually shrink in size as time goes on.
However the important point is that the spread at = o« will
always be finite if the initial distribution was. In this respect
the solutions to the Kanai Hamiltonian show the same be-
havior as a classical distribution of particles. Other quantum
mechanical wavefunctions, representing other approaches
to the damping problem which behave quite differently in
this respect, will have to establish their own plausibility.

V. THE NONLINEAR APPROACH TO DAMPING

The alternate one-particle approach that has been tried
for the problem of damping uses nonlinear potentials. Kos-
tin’ first introduced such a class of potentials with the prop-
erty that the expectation values of the dynamical variables
reproduce their classical behavior. We agree with the con-
clusion of Immele, Kan, and Griffin,”* that the natural inter-
pretation of such potentials is in terms of the fluid mechani-
cal interpretation of quantum mechanics, where the
resistance is proportional to the “velocity” of the fluid,
which is related to the phase of the wavefunction, or
In(y/4¥*). They showed that there exists a solution to this
potential that behaves in just the manner one would expect
intuitively from a damped wavepacket. An extension of the
type of potential allowed was given by Albrecht,’ and nu-
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merous general wavepacket solutions were produced by
Hasse.!

At present, it is known that these potentials possess
some intriguing, physically reasonable solutions. However,
they also possess extra, undamped solutions, which are diffi-
cult to interpret. Furthermore, because of their nonlinearity,
they may possess other, nonintuitive solutions (in fact, we
will produce one such class), as there is no completeness
theorem for them. Other consequences of their nonlinearity
are that solutions cannot be superimposed, and until an in-
vestigation of their regions of stability is carried out, it would
be difficult to apply perturbation theory methods to them
with any confidence. These difficult problems have barely
begun to be attacked,although Ref. 8 has a discussion of
superposition. In another vein, some general properties of
non-Hermitian Hamiltonians have been discussed by Eck
and Thompson.’

However, beyond all these difficulties, the entire ap-
proach suffers from the fact that its physical interpretation is
very obscure. To underline this point, we would like to show
that one can generalize the known solutions to the problem
by producing a class of solutions whose interpretation is very
puzzling. The nonlinear Hamiltonian, in the form of Kan
and Griffin’, is

Hi = [H, + (B82DIn(/v*) — W (O = it (41)

Here H, is the Hamiltonian without damping, and the In
term produces the velocity-dependent damping, with ¥ the
dampingconstant (F; = ym,). Thefunction W (¢ )ischosen
as

W(t) = (/20 f dr| ) In(w/gm), (42)

the expectation value of the damping term, in order to make
the expectation value of the total energy, H (¢ ), well behaved.

If H, is chosen as the Hamiltonian for the undamped
Harmonic oscillator,

H, = p/2m, + mwix’, 43)
then Kan and Griffin noted that one solution of Eq. (41) is

1/, =ye” Bo(1)
= N, exp| — (mowo/28)(x — X (£))?]
XexplixP (¢)/#i]e ~ &), (44)

where
X ()= Xoe " cos(wt — b),
P(@)=mX (), o=(j—r)"

the classical solutions for the motion, while

(45)

go(t) = wit /2 + f dt'(P2/2my — muw?X /2 — yPX /%,
0
(46)

and N, is a normalization constant. This solution has the
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classical solutions for its expectation values, and as t— o,
approaches the Gaussian ground state of the undamped os-
cillator, a behavior which would appear to be quite reason-
able. However they also noted that

4, = N, ,(x) expl — (mowwo/2)x e~ 0+ Do, (47)

where %', are the Hermite polynomials, and &, are normal-
ization constants, are also solutions of Eq. (41). These are
merely the stationary solutions of H,, the undamped oscilla-
tor, and their appearance as solutions to what purports to be
a damping problem is rather strange.

We can in fact generalize both of these solutions. The
functions

U, = N7 x — X (e &, (48)
where
8,(1) = &t ) + nwd, (49)

are also solutions to the Hamiltonian, Eq. (41). The special
case, n = 0, is the solution ¥, of Kan and Griffin. Also, these
solutions ‘““decay’ to the unperturbed stationary states,

l,//n(x!t) - un’ (50)

which have arbitrarily high energy E, = (n + 1)#iw,.

One can see that the damping force, the gradient of the
logarithmic damping potential, vanishes in any stationary
state of the form

@ (x,t) = f(x)e”, 51

where f(x) is real, and 3 is a constant, regardless of whether
or not g is a solution of the Hamiltonian. So it is clear that
this potential seeks out stationary states, rather than low
energy states. [In fact it seeks out any separable function
S{x)g(t), with f(x) real.] The individual highly excited sta-
tionary states are very nonclassical objects, and one normal-
ly makes classical wave packets by superimposing them. But
of course one cannot superimpose nonlinear solutions. Thus
we feel that it would be fair to characterize the present status
of the nonlinear approach by saying that it offers intriguing
possibilities, but that its entire physical basis and interpreta-
tion remain quite obscure. And of course, one has no guaran-
tee that other, even stranger, solutions do not exist.

V. MODIFICATION OF THE KANAI
HAMILTONIAN

We pointed out in Sec. I that because the Kanai Hamil-
tonian represents a variable mass particle, its interpretation
as representing a constant mass particle breaks down as
I— o0, because the fluctuations become unrealistic, and both
Ax—0and 4p, = mu—0. Now there is nothing implausible
in both Ax and Ap, decreasing as the particle damps. The
problem arises because the damping never stops.

On the other hand, there is always a physical limit to
such damping. For example, if the motion is that of a
damped harmonic oscillator initially in a highly excited
state, where 4p, Ax>, there will be no further damping
once it reaches its ground state. If the motion is that of a
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damped free particle, once its energy decreases to

E = (3/2)kT, the damping will be swamped by thermal vi-
brations. Also, if the particle is composite, with internal en-
ergy €, the damping will be overwhelmed by internal mo-
tions when its energy has decreased to E ~¢,. In all these
examples the damping mechanism will still be working, but
there will be no further decrease in amplitude of the wave-
function. So the solution to the problem of unlimited damp-
ing depends on the realization that beyond a certain lower
energy limit the damping force is balanced out by other, not
explicitly stated, forces and for the purposes of the equiv-
alent one-body problem may just as well be discontinued.

These statements have their counterparts even for a
classical particle. Such a particle at rest in the medium will
remain indefinitely at rest, even with damping present, and
so behaves like a free particle. On the other hand, a moving
particle will continue to move forever, though with ever de-
creasing speed. Thus the classical problem could be restated
by saying that the damping force is F; = — ym,v, for v£0,
and F, = 0, for v = 0. We write it in this manner merely to
emphasize the special role played by v = 0. However from a
physical point of view one can go further and say that there is
a point beyond which, for v+0, the motion effectively
ceases. In the general statement of the problem, this point is
arbitrary. But in any specific problem, it will be determined
by the nature of the system, as in the above examples. So for
practical purposes, one might replace the damping force by

F,= [ — ymu,
0, €< €.

€= (52)

So we see that even classically, the particle keeps damp-
ing long beyond the time when there is any physical meaning
to the notion, and this is exacerbated by the mathematical
problem that this motion does not smoothly blend into the
v = Ocase. The replacement of the damping force by Eq. (52)
represents a primitive attempt to remedy the situation.

A different way to say this is that actually, in the classi-
cal case one solves the Langevin equation, which not only
has a damping force present, but also a random force due to
the collisions with other particles in the medium. This ran-
dom force averages out to zero, but keeps the fluctuations of
the particle motion from vanishing. When the velocity de-
creases to the point where the damping is no greater than the
random force, then we have reached the energy €, given
above.

Quantum mechanically, these problems are brought
into a much sharper focus. If we consider, for example, the
harmonic oscillator, there is a natural energy, €,, determined
by the uncertainty principle, beyond which internal fluctu-
ations will prevent the energy from decreasing. But if one
tries to interpret the Kanai Hamiltonian as describing a con-
stant mass particle then Eq. (1), with ¥ = imqw3x?, makes
the “physical energy,” E, = He ™V, decrease continuously
beyond this minimum (since the time average of the “canoni-
cal energy” E = H, is constant in this case).

So the unphysical quality of the solutions, as given by
Eq. (32), is really partly a reflection of the classically unreal-

Daniel M. Greenberge 768



istic solutions to the problem. The most primitive method
for dealing with the quantum mechanical problem would be
to replace the damping force by one similar to that of Eq.
(52), so that for the oscillator

(p/2moe " + tmuwixie”, He "> ifw,

=~ r2mo) + tmavix, He "' = i,
(53)
where
_ | (T2
a)Z:(g(z)—»)/l/4, H= —J dt (H), (54)
TJ). 1,2

o being the displaced frequency, and H being the Hamilton-
ian averaged over a period.

This Hamiltonian would keep the oscillator frequency
at w for all times. It is primitive in that it introduces excessive
transient effects in matching the solutions during the discon-
tinuous switching of the Hamiltonians. (Because H oscillates
in time about a fixed average, one must average over a period
to determine the appropriate switching energy.)

A more refined procedure would be to consider the par-
ticular problem on hand, whether it is statistical or other-
wise, and attempt to modify the Hamiltonian to preserve the
correct correlations {({t )i¥(t + 7). However, one must be
careful not to confuse the statistical correlations with the
quantum mechanical ones, as mentioned in the introduction.
For example, in the case of the damped free particle, if the
particle comes to rest and no further observations are made
upon it, its initial velocity uncertainty will cause an ambigu-
ity that only a clear insight into the problem at hand can
resolve, if one wants a truly realistic model. Because of the
damping, the initial velocity uncertainty will certainly
damp, unlike a true free particle, in the sense that in what-
ever direction it takes off in, it will surely slow down. On the
other hand, constant interaction with the damping medium
will serve to continually relocalize the particle, as in a cloud
chamber, and thus constantly renew its velocity spread, con-
verting the problem into a many-body statistical one.

The important point is that one is not doing any vio-
lence to the physics by modifying the Hamiltonian in such a
fashion. One is merely removing a classical problem, which
becomes much more bothersome in the quantum case. It
might be pointed out that this procedure makes y a function
of energy, rather than time, since for a highly excited initial
state, it takes longer to decay to the ground state energy—
and it is the energy, not the time, that sets the criterion for
the change in Hamiltonian.

Whatever model one chooses, one can now interpret 1,
as representing the constant mass of the particle. Once the
particle has decayed to its physically lowest energy, the fluc-
tuations will cease to shrink, because of the modified Hamil-
tonian, and the problems associated with the original Kanai
Hamiltonian no longer occur.

The specific procedure for reinterpreting the solution as
representing a constant mass damped particle depends on
noting that while the variable x still denotes the position of
the particle, the canonical momentum,
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p = m(t yv—(#/1)d/Ix, no longer represents the physical
momentum. Rather, in the constant mass reinterpretation
the physical momentum is represented by

pr=e Vp—(#i/e VI/Ix=mw,, (55)

Thus if the system is, for example, a damped harmonic oscil-
lator originally in a highly excited state, it will originally
have Ap, Ax>#. As it decays, the uncertainty product will
decrease exponentially until such a time that it would take
the particle to decay to the ground state, and at this time
Ap, Ax ~h. Beyond this time, if one used the original Kanai
Hamiltonian, the system would keep decaying and offer no
possibilities for reinterpretation. But with the modified Ha-
miltonian, there will be no further decay, and for later times,
one uses p, = p = my—(#/1)d/x. The Hamiltonian
changes discontinuously at the critical moment, but the
wavefunction is kept continuous. As an example, if one
wanted the kinetic energy in the constant mass interpreta-
tion, at some time before the critical time: classically, one
would take p; /2m, = smo’ = e ~ *¥'p*/2m,; quantum me-
chanically, one would calculate

K.E =¢ {p/2ms)

= — (B 2mp)e =" f dx Y* 3Y/Ix*. (56)

So the modified Kanai Hamiltonian offers one viable
method for treating the problem of a constant mass particle
subject to damping. Its solutions represent the effects of the
damping up until a certain physically reasonable cutoff
point, after which the effects due to the damping cease. It is
also true that once one accepts the modified Hamiltonian,
with a constant mass interpretation, the entire concept of a
variable mass becomes superfluous, and one can restate the
problem so that one need not think in terms of a changing
mass at all. This is best done by introducing a new dynamical
variable, the “dissipation variable.” This line of thought will
be pursued further in Ref. 6.

V. SUMMARY

We have shown that the most straightforward ap-
proach to the problem of a damped particle, namely via the
Kanai Hamiltonian, actually yields unphysical results. This
is because the Hamiltonian does not really represent the sys-
tem it is expected to. While in the classical limit the theory
can be interpreted as representing either a constant mass
damped particle, or a particle of increasing mass, quantum
mechanically, only the variable mass interpretation is cor-
rect, and this leads to the often noted violation of the uncer-
tainty principle when it is misinterpreted as representing a
constant mass particle.

Nonetheless, we have shown that as the particle contin-
ues to damp and its energy decreases sufficiently, there is an
ambiguity in the physical situation itself, when treated as a
one-body problem, both classically and quantum mechani-
cally. We have also shown that one may modify the Hamil-
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tonian so as to eliminate any further damping. Once this is
done, one may reinterpret the Hamiltonian so that it really
does represent a particle of constant mass. From this point of
view, the mass of the particle is constant, and it is rather the
dissipation process that is varying.

The alternative point of view, that of the nonlinear po-
tentials, produces a set of solutions that behave quite reason-
ably as representing damped particle motion. Unfortunately
this method produces other solutions as well, whose physical
interpretation seems very strange. There are totally un-
damped solutions, as well as solutions which damp to states
of arbitrarily high energy, and width. In fact the entire
“damping” procedure seems to single out stationary states,
rather than low energy states. Thus the method is plagued
not only by the intrinsic difficulties of nonlinearity, but by
very basic questions of interpretation as to what the Hamil-
tonian represents.

Therefore, the modified Kanai Hamiltonian, despite its
disturbing pedigree—having evolved from the original vari-
able mass Kanai Hamiltonian—actually yields (along with
the treatment in the companion paper®) the only one-particle
treatment of the damping problem to date whose solutions
can be thoroughly understood and represent physically well-
behaved damped particles of constant mass.
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ADDENDA

We have recently come across a paper by Feshbach and
Tikochinsky,'" based on a Lagrangian suggested by Morse
and Feshbach,'? which attacks the problem of damping from
an apparently different point of view. However, their ap-
proach is actually equivalent to that of Kanai.

Their Lagrangian,
Ly = mXp + (mgy/2)(xp — px) — muwixy, (57)

leads to the equations of motion for the independent varia-
bles, x and p,

. e wz — 0,
y+ oV (58)
X —yx+ox=0,

where yis a damped oscillator, and x is an *“‘antidamped” one
(i.e., of exponentially increasing amplitude). The apparent
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time independence is due to the canceling of the damping
and antidamping exponentials. However, if one adds to L, a
total time derivative,

L= Ln - Zﬂ’fe
, o (59)
f=mgy/D(xe” 2y + (ye 7Y,
and then makes the substitution
— . 11 o
x=(E+ige VY \/2, (60)

y= (e —in/ Va2,

both of which operations formally represent canonical trans-
formations which do not change the physical problem, then
one obtains

L= (my/2)E — 03E D + (m/2)() — wine 1.
(61)

Comparison with Egs. (12), (14), and (17), for the
Kanai Lagrangian, and Eq. (15) for the Kanai Hamiltonian,
shows that Eq. (61) is just the Kanai Lagrangian for a
damped particle (£), plus an antidamped one (77). The Kanai
form represents the uncoupled normal coordinates for the
problem. And in fact, while (elegantly) solving the problem
quantum mechanically, the authors' introduce raising and
lowering operators which decouple the modes. Their wave-
functions are therefore equivalent to the Kanai solutions
(and also exhibit the attendant physical difficulties with the
uncertainty principle).
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The usual treatment of damping forces in quantum mechanics starts from the introduction of the explicitly
time dependent Kanai Hamiltonian, which actually represents a variable mass particle, and the
misinterpretation of this Hamiltonian as representing a particle of constant mass leads to certain physical
difficulties. However the Hamiltonian can be modified so that it can be reinterpreted as describing a
constant mass particle. Here we explicitly introduce the mass as a new dynamical variable, which allows
us to write a linear, time independent Hamiltonian for the system, which can be solved by conventional
methods. The damped harmonic oscillator and damped free particle are treated in detail, both for the
Kanai Hamiltonian and for our case, and the solutions are compared. Our solution can be reduced to the
Kanai one in appropriate circumstances, but in general it has a much greater versatility, as a result of
which it can be more easily reinterpreted as describing a constant mass particle subject to a damping
force, which reinterpretation is of course necessary if the method is to have practical applicability. We
also show how such a reinterpretation can be carried out in detail by introducing a “dissipation variable™,
in terms of which one may avoid the concept of a variable mass altogether.

. INTRODUCTION

In the companion paper’ we discussed some of the phys-
ical considerations relevant to the treatment of‘'a quantum
mechanical system with a damping proportional to its veloc-
ity. The most direct treatment is through Kanai’s time-de-
pendent Hamiltonian®* [see Eq. (3.6) for the harmonic oscil-
lator case], which reproduces the classical equation of
motion. We noted during that paper that the Kanai Hamil-
tonian actually represents a particle of varying mass,

m = mqe*", which fact explains the peculiar quantum me-
chanical features of the solution, when misinterpreted as re-
presenting a particle of fixed mass subject to a damping
force. The problems that arise concern the fact that as the
energy of the system decreases, so do the fluctuations in posi-
tion and in the physical momentum, until ultimately they
become so small that they violate the uncertainty principle.
We also showed that one could alter the Kanai Hamiltonian
at low energies so as to provide a reasonable constant mass
reinterpretation of the problem.

Here, we are going to exploit the varying mass to intro-
duce a new mathematical technique for solving the problem.
It turns out that the mass and proper time of a particle can
easily be treated as conjugate dynamical variables, obeying
their own equations of motion.* We happen to believe that
since the formalism is so simple and suggestive, it most likely
provides a clue to a more fundamental application of the
ideas involved. However, we will not pursue such ideas here.
Rather, we will show that from a purely computational point
of view, it provides a linear, time-independent treatment of a
problem where the physical energy is clearly time-depen-
dent, and where previous treatments are either explicitly
time-dependent, or nonlinear. Furthermore, the general idea
of taking a parameter of the problem, and making it into a
dynamical variable in its own right, should prove a versatile
technique applicable to other problems.

There is another advantage to specifically treating the
mass as a dynamical variable. Normally, if one wants to treat
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an interacting system, one introduces a potential which pro-
duces the desired interaction. Then if one is interested in
only part of the system, say an almost isolated atom, the
potential can be viewed as an external force which causes
transitions between states of the atom in question, and which
gives rise to an energy spread in the states of the atom.

But what if one’s basic isolated entity is itself a compos-
ite system, with internal degrees of freedom? Any energy
spread of the system’s states can normally only be treated by
introducing a model which includes these internal degrees of
freedom, even if one is not specifically interested in them.
For example, we might have a nucleus subject to a force we
want to treat, but this nucleus may happen to be unstable to,
say y radiation to a lower energy state. If we do not care
about the details of the ¥ decay, our formalism allows one to
treat the excited nucleus as a particle of indefinite mass (a
“mass” wave packet) without having to inquire about its
internal structure. This represents a definite advantage over
the conventional formalism.

A further advantage of our method is the flexibility of
the solutions. We will show that they reduce to the Kanai
solution in special cases, but in general they can encompass a
much wider range of behavior of the physical system.

A feature that our Hamiltonian shares with the Kanai
one is that it can also be interpreted in the classical limit as
representing a damped particle of constant mass. However
the specific Hamiltonian we introduce to approximate the
Kanai Hamiltonian, has the same quantum problems associ-
ated with the constant mass interpretation, so that the wave-
packets shrink beyond the limit prescribed by the uncertain-
ty relation. But in our method, one may also introduce a
class of Hamiltonians which eliminate the damping beyond a
certain point, in order to provide a quantum mechanical
constant mass reinterpretation. As an example of the flexi-
bility of the method, we show that one can do this in a con-
tinuous manner just as easily as in our discontinuous treat-
ment of the Kanai Hamiltonian.
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Once the problem is reinterpreted in terms of constant
mass, the concept of a “‘variable mass” actually has no fur-
ther relevance. It becomes the vestige that remains of our
search for an interpretation of the Kanai Hamiltonian. So
one can at this stage again reinterpret the formalism in such a
way as to eliminate all mention of a variable mass. This is
done by introducing in its stead a **‘dissipation variable”
which keeps track for us of the damping mechanism.

In this paper we will primarily treat the damped har-
monic oscillator, as a representative problem in damped mo-
tion. In Sec. I1, we shall present a brief account of the general
idea of our approach. In Sec. 111, we discuss the classical
damped oscillator from both the conventional Kanai ap-
proach and from ours. We treat the Kanai solution of the
damped quantum mechanical oscillator in Sec. 1V, in some
detail, so as to be able to compare and contrast the solution
with that of our treatment, which is presented in Sec. V. In
these two sections we also show how to reinterpret these
solutions so as to describe damped particles of constant
mass. We also introduce here the dissipation variable as a
method to avoid the concept of a variable mass altogether.

With both the Kanai Hamiltonian and our Hamilton-
ian, there are problems with the uncertainty principle in
such a reinterpretation. However, in Sec. VI, we show how
to modify the Hamiltonian at low energies in such a way as to
circumvent these physical problems, and thus make possible
a consistent constant mass reinterpretation of the solution.
Finally, in Sec. VII, we briefly solve the damped free particle
by our approach, and we close with a short summary in Sec.
VIIL

Il. MASS AS A DYNAMICAL VARIABLE

It 1s very easy to extend the formalism of classical phys-
ics to treat systems whose mass is variable.* The general pro-
cedure merely consists of considering the mass, m, of a sys-
tem and its proper time, 7, as conjugate dynamical variables,
so that the Hamiltonian, which was formerly of the form
H = H{x,p;t) now takes the form

H=H(xpr,mz). 2.0

(We will always work in one dimension—the results are easi-
ly generalizable. Also, we take the mass in units of energy,
mc’, where we will always take ¢ = 1.) The “velocities’ are
given by

—xooH . _H (2.2)
dp om
The equations of motion, one for p, the other for m, become,
- 9 . _ _9oH 2.3)
Ix or

Thus a potential depending on x provides a force which al-
ters the momentum, and similarly, a potential depending on
7 provides a “force” which changes the mass of the particle.
The relation between p and v is dynamically determined by
the equation of motion for x, Eq. (2.2). Similarly, 7 is no
longer given kinematically, as in special relativity

[dr = (1 — v*)""*dt ], but through its own equation of motion,
Eq. (2.2).
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A simple example, to illustrate the procedure, is given
by a relativisitc free particle. We have chosen this example
because the difference between ¢ and 7 is familiar here, and
has physical significance, and also comes immediately from
the formalism. However, there is nothing intrinsically rela-
tivistic about the formalism itself, as we use it here, and we
will be applying it to nonrelativistic problems only. The Ha-
miltonian takes the form

H= (pz + m2)1/2. (24)

The velocity is given by

dH )
V= — = p(p* + m?)2 2.5)
p

This equation can be inverted to give the momentum, p,

p=mvy, y=(1—0v)" =@ +m)"/m. (2.6)

This is the conventional approach to the problem. How-
ever we can also, in our formulation, write

T = M _ m(p* + m?) = (1 —v)"”, 2.7
om
which dynamically defines the behavior of the proper time.
Of course, for a free particle, p = m = 0. So, from the point
of view of our formalism, we can say that conventional clas-
sical mechanics leaves out half the subject, since the kinema-
tical background for the problem must be independently
postulated. For nonrelativistic problems this is usually done
implicitly, by assuming that the mass is constant, and that
T=1

The question arises as to what new physics is intro-
duced by the formalism. If the mass remains constant, as in
our example above, there is no new physics in the classical
case. However even here there will be a difference in the
quantum case. This is because the very introduction of the
mass and proper time as dynamical variables guarantees the
uncertainty principle AmAr~#i. So one can compose a wave
packet of different mass states, whose expectation value
obeys the classical equations. Only in the limit 47 — oo,
Am -0, does the system approach the conventional classi-
cal limit. (We might point out that the Bargmann theorem,
preventing the superposition of different mass states in con-
ventional nonrelativistic quantum theory, does not apply to
our formalism®.)

1f the Hamiltonian has a 7 dependence, so that the mass
changes, then the problem will be formally equivalent in the
classical case to a classical problem with the mass postulated
to change in the specified manner. In the quantum case, the
expectation value of the mass will change in this manner, and
there will also be fluctuations in the mass governed by the
uncertainty principle.

We shall apply the formalism in the next section to the
classical damped harmonic oscillator.
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lll. THE CLASSICAL DAMPED HARMONIC
OSCILLATOR

The Hamiltonian for an undamped harmonic oscillator
1s
H,= p/2m, + Smoix?. 3.

Here m, is the constant mass and w, the (angular) frequency.
The velocity, from Eq. (2.2), is

X =v=p/m,, 3.2)
and the equation of motion, from Eq. (2.3), is

P = i (33)

U=X= — wgX.
H, also plays the role of the physical energy,

H, = F = const. 3.4)
The solutions take the form

X = X,COSwot + (o/ wo)SiNwot, 3.5)
where x, and v, are the initial position and velocity.

The damped harmonic oscillator can be described by
the Hamiltonian due to Kanai,?

H, = (@p/2my)e ~ 2" + Imowixe™". (3.6)
The velocity in this case is

X =v=(p/mye ", p=mue’. 3.7
The equation of motion becomes

D = mo(V + 2y)e’" = — mywixe?”,

X4 2yx% + wfx =0. 3-8)
The solutions are given by

x = xqe " V'coswt + 0 (v, — YXo)e ~ Vsinwt. 3.9
The frequency of oscillation is w,

@ = 0y — y*>0. (3.10)

We will assume throughout this paper that the system is
underdamped.

The Hamiltonian H, is not constant, however it is ap-
proximately constant and varies only to order ¥/w,. The
physical energy, E is time-dependent and is given by

E=He . (3.11)

Note that the “kinetic” momentum, p, = my, is given by
Pi=mov =pe ", (3.12)

so that the canonical momentum, p, is not the same as the
physical momentum. It was pointed out in Ref. 1 that this is
because the Kanai Hamiltonian actually refers to a particle
of increasing mass,

m(t) = mye*". (3.13)

The canonical momentum refers to the momentum of this

varying mass particle. If one interprets the system instead, as
applying to a constant mass particle of mass m,, subject to a
damping force, then its momentum is given by p,.. Classically
one can use either interpretation, because both systems have
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the same equation of motion. But quantum mechanically,
the constant mass interpretation runs into trouble with the
uncertainty principle, and cannot be maintained unless the
Hamiltonian is modified.

One can also treat the problem by writing a specifically
chosen variable mass Hamiltonian,

H = p/2m + Imogx® — 2ymr. (3.14)
We have left out the term relating to the rest mass of the
particle, which will in turn rob 7 of any interpretation as a
physical time. The Hamiltonian above should be interpreted
as a formal treatment of the problem, which is closely related

to the above time-dependent treatment. For the “velocities,”
we have

v=p/m,

. OH -p? 5

T = —— + lw 2 _ 2
om 2m? 200 T

= — v + Lolx® — 2y7. (3.15)
The equation of motion for m becomes
m= —9H _ + 2ym, (3.16)
ar
with the solution
m = me?, B.17)

which is the same as that of the “‘proper” interpretation of
the Kanai Hamiltonian, Eq. (3.13). The equation of motion
for x is

p=(mv)y = — mojx,
%+ (m/m)x + wix = 0.
Together with Eq. (3.16) this reduces to Eq. (3.8).

The Hamiltonian, since it is explicitly independent of
the time, will be a constant of the motion. The physical ener-
gy of a particle of constant mass m, would be given by

E=mu¥o/m, %,=p,/2m+ tmoix’. (3.19)

It should be pointed out that just as the Kanai Hamil-
tonian can be interpreted in the classical case as applying to
either a constant mass or variable mass particle, so too can
the same be said of our Hamiltonian. For our variable mass
Hamiltonian, since the velocity is given by v = p/m, then if
one wanted to interpret the theory as applying to a particle of
constant mass /m,, subject to a damping force, one would use
for the physical momentum in this case

(3.18)

Do = MV = mep/m. (3.20)

However, since we have chosen this specific Hamiltonian to
do exactly what the Kanai Hamiltonian does, we shall see
that quantum mechanically, it runs into the same problems
in the attempt to give it a constant mass interpretation, and
for exactly the same reasons. But again, we shall be able to
modify it to make such an interpretation possible.
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IV. QUANTUM TREATMENT OF THE DAMPED
OSCILLATOR

We present here a brief quantum treatment of the Kanai
Hamiltonian, since we will want the solution for detailed
comparison purposes, both for the similarities and differ-
ences it presents to our treatment. We will solve it by using
operator methods, which we present in some detail since it is
not covered in standard texts.

First we write the solutions of the undamped oscillator,
to establish our notation. The Schrédinger equation be-
comes, using the Hamiltonian of Eq. (3.1),

Hipp= — 2 - %0 @.1)
[ ot i Ox
Then, introducing the length scale defined by
Ao = (B/mwo)?, 4.2)
we introduce the dimensionless variable
= % Py = % % 4.3)

The Hamiltonian then becomes

fon( &\ o,
=B Ly ) B @

The step-up operator @, and the step-down operator a, are
defined as

@ =N, + i), a=1U/NDE,—ip), “5)

and obey the following commutation rules:

b, y]=1/i, [aa]=1,
(4.6)
[Hoa'] = fiwa’, [Hoal = — fiwaa.
The Hamiltonian then takes the form
H, = fiw(a’a + 1).
The stationary state solutions are
b=ue " E, = (n+ Do, 4.7)
obeying
82
( - + yz)un = 26"11", €, =n + % (48)
ay?

with solutions
u, = NHe 7> N,=(V 72m11,)", (49

where the H,, are the Hermite polynomials, and ,, is chosen
so that fuldx = 1.

The Kanai Hamiltonian is given by Eq. (3.6). In this
equation m, is a constant, but it should be borne in mind that
physically, this equation represents a particle with mass
m(t) = mqe*”". The canonical momentum, p, represents the
classical quantity m(z Yv. This has no effect on the technique
of solution, which proceeds formally. Making the substitu-
tions (4.2) and (4.3), we have

ha)o 1,2
ey = —

Hy= (e 2+

R
5 410

i
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We will also need to introduce the first quadrant angle 6,
defined by

tand = y/w. 4.11)
Defining the operators
b =1/ V2) e "p, + "),
(4.12)

b=/ Ve Tp, —e'ip),

which obey the commutation rules

(bb1=1, [H,b*l=%wb", [H,bl= — fiwb,
(4.13)
we have, for the Hamiltonian,
H, = fiw,(b b + 1). 4.14)

Unfortunately, here the similarity with the undamped
case ends, as the b ’s are explicitly time-dependent, and there
are no stationary states. However, we have

i at i
#d ] #
— bt = — b, 4.15
[ ey g (4.15)
and introducing the complete Schrodinger operator U,
ver+ 19 (4.16)
[ ot
in terms of which the Schrédinger equation becomes
Uy =0, (4.17)
we find
[Ub*] = fiweb * — (f/T)yb,
° (4.18)

[(Ub] = — fiwd — (#/Dyb".

We can still find raising and lowering operators for Uas
linear combinations of & and & *,

[Ud*]=twd*, [Ud]l= — fiwd, 4.19)
where
d=>b—itan(@/2)b*, d*=b"+ itan(6/2)b, (4.20)

with @ defined by Eq. (4.11). Using these definitions,d and d *
are not normalized, and

[d.d *] = cosE/cos*(6/2), 4.2
so that we could introduce new operators
D = cos(8/2)(cos®)*d, [D,D*]=1, (4.22)

but for our purposes we will not need them.*

The operators d * and d are step-up and step-down oper-
ators for U, but they have no simple relation to H,. Nonethe-
less, we can use them to construct eigenfunctions for U
satisfying

Up, = AP
and from these we easily construct solutions of the Schro-

dinger equation, since U contains an explicit time derivative.
In fact, if

(4.23)

— A, /h

U, =@ , (4.24)
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then 3, satisfies the Schrédinger equation, Uy, = 0.

To find the lowest state, we set

dep,=0. (4.25)
Then
Uldp,) —d(Up) = —d(Upy) = — #iw(dpo) =0,
(4.26)
which implies
Upo = Ao@oy o = @oe ~ 2 /%, “4.27)

One cannot find a lower state, since reapplying d will give
zero. Using definitions (4.20) and (4.12), the solution to Eq.
(4.25)is

@0 = N exp( — Ly%’® 21", (4.28)
and
Up, = (fiwe/2)ep,. 4.29)
Finally
Yo = N exp[ — L (e* + it )]
= Nexp[ — 1epe®”" + L(y — i)t ]. (4.30)
The general solution (unnormalized) is
¢n — (d Q)n‘/]oe - inwt’ (431)
where from Eq. (4.20),
d*=01/V2)sec(8/2)[p, + iz],
(4.32)

z=ye 2T p =(1/i) 9,
oz

To express the answer in Hermite polynomials, we note
that for the undamped oscillator,

wH,0e 0 = (Va) (£ )07

- 9H
= (V2i) “( 5 u —2yH,,)e—y’/2
y

= (V2i) 'H

—y/2
n+1e ’

(4.33)

from the recurrence relation for the H,’s. Similarly, because
of the ( — 4z%¢*®) of Eq. (4.30), we can write

d*[H,(cz) exp( — §2°¢**)]

=4 (i — z)H,,(cz)exp( — 17%6%%)
Jdz

= H, , (cz) exp( — 4z%*7), (4.34)
for the specific choice of ¢,
¢ =e?"%(cosf)”* cz = (cosh)"ye". (4.35)

Here A4 is a constant whose value we need not determine. The
factor (cosf)2 = (w/w.)""* has the effect of changing the w,
in A, and y, into w [Eqgs. (4.2) and (4.3)). So finally, we can
express the normalized solutions, Eq. (4.31), as
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¥, = N H, (cosf)’pe"’)
X expl — Le¥2e® 4 Lyt — i(n + Yot ],

N = N, (cos@) ",
where N, is given in Eq. (4.9).

(4.36)

The unphysical feature of this solution comes from the
fact that the decreasing exponential determines the spread of
the function, so that

|¢|2~exp( — ycosfe’”' ) ~e =747 (4.37)
which implies

Al ™1, (4.38)
For the momentum

(Ap)y~e*r"A 2~ (4.39)

Thus the solution formally satisfies the uncertainty relation
(Ap)(dxy’ ~#.

But here, in the quantum case, if one wanted as an alter-
native to be able to maintain a constant mass interpretation
for the solution, as one can do classically, and consider m, as
the mass of the particle, one would run into trouble. Because

in this case the “’kinetic” momentum, p, = mg = pe ~ *", is
not equal to the canonical momentum, so that

(4p, ) ~e ", (4.40)
and so the product

(4p, N(Ay) ~te =27, (4.41)

Thus, as t — o, the uncertainty product goes to zero.
Therefore, as was discussed in Ref. 1, the interpretation as a
constant mass particle must break down, because ultimately
the uncertainty relation will be violated.

One can however save the constant mass interpretation
by modifying the Kanai Hamiltonian, as indicated in Ref. 1.
The way one would apply a constant mass reinterpretation
of the problem would be to note that x still represents the
position, but for a constant mass particle, the momentum
would be p, p, = e ~ 2V'p — e ~ 2 (#i/1)3/Ix. The expecta-
tion values of this operator, or functions of it, will give values
that one would interpret as representing m.v. We will see at
the end of the next section how this fits into a general scheme
for such a constant mass reinterpretation.

V. QUANTUM TREATMENT WITH VARIABLE
MASS

Now we are going to solve the variable mass Hamilton-
ian of Eq. (3.14). Remember that here m is a dynamical vari-
able, which quantum mechanically becomes the “mass oper-
ator.” Its classical value, moez”', will have meaning only as
an expectation value. We will actually find it expedient to
work in the “m representation,” where 7 becomes a differen-
tial operator.

The variable mass Hamiltonian of Eq. (3.14) is indepen-
dent of time and one can find stationary state solutions. If
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one represents the 7 dependence in the form*

@ (x7)= (27r)""2f dm Y(x,m)e""" ", (5.1
then the operator m becomes
.0
m = (#/i) —, (5.2)
ar
while in the m representation, we have
7= — (#/i) i (5.3)
om

The solutions to the problem will only make sense for m > 0,
so we will place this restriction on m here, for purely math-
ematical reasons. This also has consequences for the analy-
ticity in 7, which we will not need.

The operator product (/7) must be symmetrized,

mr — Y(mr + rm) = — (B/D)(md/dm + 1) (5.4)
so that the Schroedinger equation becomes
( P | 2 Zyﬁ( d 1)]
A= — — —mopxt+ ZL—m— + —||¢
maw Tt T m 2
i Y
_ _ 5.5
i adr -9)

Again we introduce the length 4, but now 4 is a function of
m,

A = (A/mw,)? = f(m), (5.6)
so that
. Fw, a )
= — A= 2
2 ( ax? + Al x
(2 1) .
+ ) mam + 2 57

Once again we take y = x//A, but now the change in
variables from (x,m) to (y = x/4 (m), m) implies

y= x/A :x((uo/ﬁ)l/zm]/l’

9,19
ox A dy
(5.8)
9 ,r9., 9
am  2m3dy  m
fdx dm — f dy A (m)dm.
The relevant operators become

ox 3  dm 27 9y om’
and finally, the Hamiltonian becomes

. Py & 2y a)
H = (——-—+ P+ =y
2 ay*? y iwoyé?y
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4 (mi + —;—) (5.10)

and is separable. It should be noted that in the variable mass
case the switch to dimensionless coordinates is no longer
merely convenient, but is necessary to make the equation
separable.

We write
= Y)M(m)e (5.11)
where
(k > 4y +-2—7/y£)Y=2/1Y, (5.12)
ay* iw,” dy
d 1 .
[m(——») + ——]M: (ir2)pM (5.13)
dm 2
and
fic = fiw A + Y. (5.14)
The solution to Eq. (5.13) is
M = (dmm) V2 (m/my)"? . (5.15)

The normalization will be explained at the end of this
section.

To solve Eq. (5.12) we write

Y=e"U(®y). (5.16)
The choice
K= y/iw (5.17)
eliminates the first-order term, giving
(- 2+ ﬂ}y)u:(m L)y, (5.18)
ay* ;) iw,

which is nothing but the undamped oscillator equation, Eq.
(4.4), in the variable u = p(w/w,)""* = x(mw/#)"?, which
converts the frequency appearing in A from w, to . The
solution is

U=NHwe "

where N’ is the same numerical normalization factor appear-
ing in Eq. (4.36), and where

(5.19)

2 + piw, = Aw/w)n + L), (5.20)
which gives for the energy factor, fie,
fie(n,B) = (n + Hw — fiy/2i + Bhy. (5.21)
Thus the complete solution becomes
Pxmt) =y j df3 a, (B )(dwm) " (m/me)" ?
X e~ x(m/fNw } iy)/2
X N 'H, (x(mw/#)e ~ <P (5.22)

The exponential factor @ + i can be written w.e’. For each
value of n, the mass dependence becomes a wavepacket,

Daniel M. Greenberger 776



[ dB a, @) om/moy e

_ m-mf dB a,(B) expliB (& In(m/mo) — yt)]

= 2mm)"?4,(3 In(m/mg) — yt)

= m"f, (m — mee’"), (5.23)
where A4, is the Fourier transform of a,,,
A4,6)= @[ dBa,B)er (5.24)

The functions 4, must be normalized in accordance with Eq.
(5.32), which in turn determines the normalization of the
a,(8). Each of these packets is centered about the *classical”
value m = m,e’"". However the superposition of different
masses, plus the independence of the shape of these packets
for each value of n, gives the solution far greater flexibility
than the solution of the Kanai Hamiltonian.

We can recover the Kanai solution by requiring the 4,,
to be Dirac & functions. This is done by choosing the a, (8) to
be constant, for all B. If we take a, = ¢/m//?, then

f/l (m)dy dmc(mom) ”ZJ- dp expliff (4 In(m/my) — yt)]
= (ﬁ/womo)”227rcf dy(dm/m)5( In(m/meo) — yt)

= /10477cf dy dm&(m — m,e**")

= 417cf dx

and if one replaces m by me’"" everywhere it is left in Eq.
(5.22),

(5.25)

m = myet"

exp[ — ix¥(moo/ e} H (x(mw/#)"), (5.26)
and remember that
xAm /ﬁ 0 __ 12 19+2yr,
(min/R)e™ = e (5.27)

x(mw/#)"? = y(cosf)?e",

then one has exactly the expression (4.36) for the Kanai solu-
tion. When one considers the entirely different logic leading
up to the two formulations of the problem, one can see that
this reproduction of the Kanai solution proves our conten-
tion that it represents the problem of a particle of definite
(i.e., Am = 0) but changing mass. [Equation (5.25) was inte-
grated at 7 = 0.]

We add a final word on the normalization of the solu-
tion. When the solution #(x,m,t ) of Eq. (5.22) is integrated
over f3 to give

Yoomit) = @m)**Y 4, In(m/my) — yt)

X N H, (mw/#H) Dexp( — ix’w.e® —ie,t), (5.28)
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we can check the normalization,

fdx dm|(x,m,t)|* = 1. (5.29)

A,,(—;— ln( :n") _ yz>~2. (5.30)

The factor (m,/m)'? comes from the fact that N’ contains
the constant mass m,, while /, contains the variable m. If we
now replace m by u, defined by

The integral over x gives

() s

2m m n

pw=5Inm/my) —yt, — o <p< oo,
(5.31)
du=dm/2m,
then this integral becomes
Jd,u e 1y |4,@w)|*=1, (5.32)

which determines the appropriate normalization of the 4,
and which is time-independent.

This solution, like that for the Kanai Hamiltonian, re-
presents a variable mass particle. The mass in this case is a
distribution (actually a separate wavepacket for each value
of n), centered about mue*”’, and like the Kanai wavefunc-
tion, it cannot be given a constant mass reinterpretation, for
exactly the same reasons, namely that the damping proceeds
10— .

However, as in the Kanai case, we will be modifying the
Hamiltonian in order to be able to provide a constant mass
reinterpretation. To that end, let us explain exactly how to
interpret our wavefunction, and then how one would reinter-
pret it as representing a damped particle of constant mass.
Again, the variable x represents the position, and ¥ is nor-
malized according to Eq. (5.29). The momentum,

p = mv — (f/))3/0x, represents the momentum of the
packet, whose mass is centered about the value m = mqe?™.
The classical velocity would be given by the expectation val-
ue of the operator (p/m).

If one wanted to reinterpret the results as applying to a
particle of constant mass, the first restriction one would have
to apply is that the wavefunction in *““mass space” be rather
narrow. This is necessary, so that Ap could be interpreted as
mAv. Otherwise contributions corresponding to terms 5Am
would appear, and have no constant mass interpretation.

In order to apply a constant mass interpretation to the
problem, one merely considers the entire concept of “‘chang-
ing mass” as we have introduced it, as a formal manipulation
of symbols. Then our variable m can be written as

m = my,

(5.33)

where 77 is a dimensionless dynamical variable, which we can
call the “dissipation variable.” Aslong as the system exhibits
dissipation, 1 will be increasing. Its expectation value for the
Kanai Hamiltonian will be e***, but for our modified Hamil-
tonian it increases only to a certain value and then remains
constant.

Thus the mass is always m,, and the momentum,
Po = mgv, becomes
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P =m0 = mo(p/m) = p/n = (ﬁ) g (5.34)

in) ox
Expectation values of functions of the momentum, for the
constant mass particle, become

(@) = f m, dv dx 1//*f<j— _(9_) . (5.35)
m dx
The operator (%/1)d/dm becomes
(ﬁ) 9 _ (_”L) 9. (5.36)
i/ dm imy/ dn

With this interpretation. or reinterpretation, of the formal-
1sm, one need never introduce the concept of changing mass,
but rather consider that one has a damped particle of con-
stant mass.

We shall not attempt a further physical interpretation
of the dissipation variable at this time, except to note that it is
obviously related to entropy production. And just as the en-
tropy itself in classical physics can be thought of as a variable
which somehow contains on a macroscopic level all the inte-
grated microscopic information relating to “order” in the
system,” s0 100 the same can be said for the dissipation
variable.

This is the prescription for interpreting the formalism
as applying to a constant mass particle. It will run into trou-
ble for the Hamiltonian we have been treating, Eq. (3.14),
because of the same uncertainty principle problem as with
the Kanai Hamiltonian, namely that 4pAx — 0. However,
the causes are identical as for the Kanai case, and here too we
will be able 1o modify the Hamiltonian to provide a reason-
able constant mass interpretation.

VI. MODIFICATION OF THE SOLUTION AT LOW
ENERGIES

We have seen that if we want to maintain the interpreta-
tion of the solution to either the Kanai Hamiltonian or the
variable mass one as relating to a particle of constant mass
m,, rather than increasing mass, then we must cope with the
fact that the physical momentum, p, = mov, and the posi-
tion, x both damp without limit, so that the uncertainty rela-
tion is violated, as in Eq. (4.41). It was pointed out in Ref. |
that one can modify the Kanai Hamiltonian to eliminate the
damping for small enough energy. The same can be done for
our Hamiltonian, and we can easily write down a whole class
of Hamiltonians that accomplish this.

In our problem of the Harmonic oscillator, ““small
enough energies” means for energies of the order of 1#iw.
Since we are working in a system where n is diagonal, we can
write

P(x,m,t) = Z a,|nm.t), 6.1)

where the right-hand side is defined by Eq. (5.22). And since
we know what the initial physical energy of the particle in
state 71 is, at ¢ = 0, namely E "’ — (n + %) #iw [from Eq.
(5.21)], then we also know how long it will take this state to
decay down to energy €, ~ 1#iw. Specifically, this time is giv-
en by
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l\ 2<:[“
ER%e e

t,=(172y)in(2n + 1. (6.2)

Once we know this time ¢,, which is different for each
state n, we can modify the Hamiltonian, which is diagonal in
n,

K= a7 n>— Y a, k% |n). (6.3)
After we have the totality of numbers .7, it may be quite
difficult to reconstruct the form of the new operator H '
which is valid in any representation. However we do not
have to face this problem, so long as we remain in the repre-
sentation |n)>. The chief requirement on %", is that

W/’l - )/ "t 1<tu’

Va ;,g — Y :Pz/Zmo + %mu(l)zxzv > z;z’ (6'4)

so that the Hamiltonian ultimately becomes that of an un-
damped oscillator of frequency w (not w,). The conditions of
Eq. (6.4) actually define an entire class of Hamiltonians with
the desired properties.

The proper way to modify the Hamiltonian depends on
the particular problem one is solving, and on what particular
features of the actual problem one considers most realistic,
and worth preserving. So without attempting to discuss the
problem in any generality, we will merely outline two solu-
tions as representative. First, the simplest thing to do ts, at
1 =1, ,to abruptly change the form of %, to H",

n?

7y alny=3%a, w0 —t)|n>

+ SaHO@—1)ny (6.5)

[6 is the step function, 8(x) = 1, x > 0; 8(x) = 0, x <0, and
6 = 1—0). Thenat t = t,, one will have to express the state
In> in terms of the eigenstates of H °, denoted by |/ >,

iny =3 b4 1), (6.6)

Actually, one is guaranteed that by time z,,, most of the
contribution to this sum will come from the few lowest states
of H *, as required by consistency. One can see this first by the
fact that the time has been specifically chosen so the average
energy will now be close to &, so that the lowest states must
dominate the expansion. However one could also look at
{x*>. In the initial state, <x*, ~n{x*>, from the properties
of the Hermite polynomials. But in time ¢, the factor m'”* in
the argument of /,, will effectively create the proper time
dependence, ¢~ *", which will bring down the width by a
factor of 1, from Eq. (6.2). These proofs are important in the
case of high 7, the semiclassical states. For small #, the states
are already of the appropriate energy and width.

The second solution method we will discuss, is to alter
the Hamiltonian continuously. For example, instead of the

perturbation %', = — 2ymr, one could have
Ky = - 2ym(l — m/m)r. 6.7)
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This replaces ¥ by

Yer = Y(1 —m/my). (6.8)
At ¢t = 0, one chooses m, such that m < my, so that y g~7.
But as m approaches m,, y — 0. The constant m, is then

chosen appropriately, m, = f(n), so that this will happen at
time ¢,. The classical solution for the Hamiltonian (6.7) is

m/my = (m,/A)e> /(1 + (mo/A )e*) (6.9)
where

A=m, —~my=m, for n> 1. (6.10)
For small and large times,

m=me, <1,

mam(l —e W), >4, (6.11)

The transition region is determined by the point of inflec-
tion, m = 0, given by £,

e’ =A /my (6.12)
So if

A/my=¢€,/€~2n+1, (6.13)
then

fy=1,. (6.14)

The quantum solution to the Hamiltonian of Eq. (6.7)
starts by replacing m7 by its symmetrical equivalent, Eq.
(5.4), and the term m°7, by its symmetrical equivalent,

i(mir + ™m?) = (ﬁ) (m*d/dm + m). (6.15)
i

(One could weight in any amount of the term mrm without

altering this result!) This would replace the function M of

Eq. (5.15) by

(B~ 12

m
M = const X

(m, — m)#+ 172 (6.16)

which produces a wavepacket centered about the solution to
the classical equation (6.9), in the same way as the function
M of Sec. V was related to its classical behavior.

One final remark concerns the appearance of the con-
stant «,. This is the frequency of our original unperturbed
Hamiltonian, ) = @* + y°. But we want our final un-
damped Hamiltonian to have frequency w. So w, can no
longer be considered a constant but must be interpreted as a
function of m,

wy(m) = @ + Vi (6.17)
Then
om) — w, <1,
(6.18)
olm) —w, >,

Since we are working in a representation where 7 is diag-
onal, this will still be a number, not an operator, so this offers
no complications. The evolution of the variable 7 is made
quite complicated by altering /%7, however, we are basically
not interested in its behavior.

What have we accomplished by modifying the Hamil-
tonian in this manner? We have noted that each state takes a
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specific time to decay to a minimum wavepacket, at which
time it approximates a particle in the ground state of the
undamped oscillator. Beyond this point the particle will not
decay further, because of the uncertainty principle, and so
we have effectively replaced the Hamiltonian for later times
by that of an undamped oscillator. Thus the wavepacket will
never shrink beyond being a minimal wavepacket, for a par-
ticle of constant mass, and one can apply the constant mass
reinterpretation to the modified Hamiltonian, as outlined at
the end of Sec. V.

We remind the reader that by using this reinterpreta-
tion, and introducing the dissipation variable 7, one need
never talk about a changing mass at all. The mass of the
particle is m, always, and the behavior of the variable 7 regu-
lates the degree of dissipation present. And thus the Hamil-
tonians (6.4) or (6.7), where m is replaced by myn, will refer
to systems of constant mass showing a physically reasonable
behavior.

We might note that if the wavepacket is narrow in mass,
as it must be if we want to maintain a constant mass interpre-
tation, then there are certain approximations one can use in
this case. For example, one could alternatively use the Kanai
definition, p,=e 7p, for times f < ¢,, and po=(m./m)p,
for times ¢ > ¢,,, in the discontinuous case. In the continuous
case, one could use p,~e “"'p, for times r € t,, and
Po=(my/m)p, fortimest > ¢,, while for 7 ~¢,, these approxi-
mations are not valid.

Vil. THE DAMPED FREE PARTICLE

We close with a brief treatment of the force-free
damped particle, in the varable mass formalism, because the
solution we are interested in does not quite parallel that of
the oscillator. The Kanai solution to the free damped parti-
cle, with the Hamiltonian

H= (@@ /2m)e", (7.1)

is treated, among other places, in Refs. 1 and 3. The variable
mass treatment of the problem starts from the Hamiltonian

K =p/2m — ymr, (7.2)
which leads to the time independent Schrodinger equation
# (821.//) yh ( d 1) i Y
— _ + - m— 4+ — = - — — 73
2m \dx’ [ om 2 [ ot (7-3)
The distance scale in this problem is set by
A= (#/my)", (7.4)
in terms of which the equation becomes
A2 Y 1 ( d 1 ) 1 dy
-+ —|m—+ == - ——
2 ax? [ dm 2 Iy ot

(7.5

The length A has a similar definition to that in the oscillator
case, and we can use the substitution (5.8) (reading y for w,),
which yields the equation

(-1 1,8), 0,2, 1),
2 dy? 2iy8y i am 2

Daniel M. Greenberger 779




i 4 (7.6)

iy ar
The m solutions are exactly as before, and we can write
=M (m)p (p,t)e /3 a7

where M is given by Egs. (5.13) and (5.15). However, in
order to produce a solution directly comparable to the wave-
packet formulation of the Kanai solution,' we proceed not by
directly solving Eq. (7.6), but by first making the
substitution

z=ye 772 (7.8)
Then for the variables z and ¢, we have
9 o wnd 20 9 ¥, 9 (19
dy dz  ydz Ot 2 oz ar
and Eq. (7.6) becomes
O 1 dp
—le ML = . 7 7.10
2 az? iy Jt (7.10)

which is exactly the quantum Kanai equation, Ref. 1, Eq.
(11). The solution is

o (e = [ 42 G~ @), (7.11)
where

@ol2) = ¢ (2,0), (7.12)
the initial value of ¢, and

G (z,1) = Qmiuy " e™’, (7.13)

the Green’s function for the problem, and the variable u is
given by

u=1—e 7,

So finally
U(z,mau,t) = (47rm)“"2f A (m/my)P’? e P72

X J dz' G(z — 2 ,u)e P(2), (7.14)

where one may arbitrarily choose a different function @ ¢ for
each value of /3, and

Y(xam,t) = i [(xe

The 8 dependence of ¢ {’ (z') plays the same role as the func-
tion a(f3) appearing in Sec. V and the # dependence may be
integrated first.

DA (m)m,l —e Tt]. (7.15)

As with the oscillator, the center of each packet obeys
the “‘classical” equation, m = m,e’’. Also the explicit time
dependencein the term (xe ~'”?)/A, plays the role of cancel-
ling the time dependence due to the m'”? which appears in A.
So each separate mass piece of the solution behaves similarly
to the Kanai solutions, but the freedom to create mass super-
positions gives far greater flexibility to the total solution.

As the solution damps out, the considerations of Sec. VI
are applicable here, and can be used to bring the particle to
rest without further damping, and provide for a constant
mass reinterpretation. However, for the free particle case the
physical considerations must be very carefully taken into

780 J. Math. Phys., Vol. 20, No. 5, May 1979

account in any particular problem, as pointed out in Ref. 1,
Sec. IV.

Vill. SUMMARY

The standard approach to the damped harmonic oscil-
lator, via the Kanai Hamiltonian, actually treats a particle of
varying mass. The mass still plays the role of an external
parameter in that theory, albeit a nonconstant one. We have
gone a step beyond this and shown how one may treat the
mass as a dynamical variable. Thus our solution consists of a
superposition of “‘mass packets,” the expectation value of
which varies as the Kanai particle mass.

Classically, both these Hamiltonians have an alternate
interpretation as a particle of constant mass subject to a
damping force. However this interpretation breaks down
quantum mechanically, because in both cases such an inter-
pretation leads to an ultimate violation of the uncertainty
principle. The mechanism for this is that as the particle keeps
damping, its wavefunction keeps narrowing indefinitely,
both in configuration and momentum space.

Nonethless, both the Kanai Hamiltonian and ours may
be modified, so as to provide a viable constant mass reinter-
pretation. This procedure makes use of the fact that beyond a
certain point, it is physically impossible to detect that the
particle is still damping, and so the damping force may be
safely turned off. We have also given a specific procedure for
carrying out such a constant mass reinterpretation of the
Hamiltonian, provided the mass wavepacket is narrow. In
fact, we show that by introducing the dissipation variable it
becomes possible to avoid mention of changing masses alto-
gether. Thus, through the use of the modified Hamiltonian,
the method allows one to treat the practical problem of the
damped constant mass particle. In this regard, our variable
mass method is more flexible than the Kanai Hamiltonian,
and has the mathematical advantage of being time indepen-
dent. It is also linear, of course, which gives it important
advantages over the various nonlinear approaches to the
problem.’
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We specify the class of perturbative complex matrix potentials for which the corresponding many-channel
Marchenko type transformation operators are bounded and integrable. Our reference matrix potential
contains Coulomb interactions, different threshold energies, and centrifugal potentials with different
angular momenta. Estimates for the transformation operator and its derivatives are obtained; they. enable
us to improve our recent results and are necessary for the establishment of a unique solution to the
‘‘generalized Marchenko fundamental equation.” From the existence of an integrable transformation
operator, the analyticity of the Jost solution as a function of k; is deduced in the upper-half of the

physical k, plane.

1. INTRODUCTION

The transformation operator plays a prominent part in
the theory of the inverse problem of scattering: Indeed, the
starting point of the method developed by Agranovich and
Marchenko' is to specify the class of potentials for which the
existence of a bounded transformation operator can be
proved. Within this class of potentials, a fundamental equa-
tion for the inverse problem is then derived. In the first part
of their monograph, however, they only considered coupled
channels without either the centrifugal terms or Coulomb
interactions and with the same threshold energy in each
channel. In the second part of their baok, an indirect itera-
tive approach for the singular centrifugal part was then used
via the transformations introduced by Crum and Krein.? We
consider here a system of differential equations containing
different (and even not necessarily integer) angular mo-
menta, different threshold energies and Coulomb interac-
tions, by a direct method using the Riemann—Green
solution.’

Cox* considered a system of coupled channels with dif-
ferent threshold energies. He was able to apply the method of
Jost and Kohn® and to get a generalized Gel’fand—Levitan
equation. However, he did not say for which potentials his
equation is valid. His Gel’fand transformation operator is
not necessarily a bounded function; it could happen that the
transformation operator is only defined as a distribution. In
that case, it is only useful if we can show that its diagonal
part is bounded so that a well-behaved potential can be ob-
tained by differentiation. Therefore, we want to find the class
of perturbative potentials for which a transformation opera-
tor exists in the sense of functions theory and not in the
enlarged sense of distributions. We only consider Marchen-
ko’s type transformation operator for the reasons explained
in Ref. 6, and upper bounds for this operator and its deriva-
tives are obtained. These bounds are necessary for the estab-
lishment of a stable and unique solution to the generalized
fundamental Marchenko equation.” The recent results ob-

“Chercheur I.I.S.N.
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tained in Refs. 3, 6, 8 must be modified according to our new
estimate of the Riemann—~Green solution. The present paper
is divided into five sections: The introduction forms the first
section. In Sec. 2, the definition of a transformation operator
and the use of the Riemann—-Green functions are briefly re-
called. New estimates for the Riemann—-Green solution are
found in Sec. 3. In Sec. 4, the results for the Riemann-Green
function enable us to obtain new upper bounds for the trans-
formation operator and to specify the class of perturbative
potentials for which a bounded integrable transformation
operator exists. From the existence of an integrable transfor-
mation operator, the analyticity of the Jost solution in the
upper half of the physical k, plane is shown in Sec. 5. The
paper includes five appendices. In Appendix A, a spectral
representation 1s derived for the complete Riemann-Green
solution. Upper bounds for the unperturbated Jost solution,
the derivatives of the unperturbated, and the complete Rie-
mann—Green solution are obtained in Appendices B, C, D,
respectively. The derivatives of the transformation operator
are estimated in Appendix E.

2. THE TRANSFORMATION OPERATOR AND
THE USE OF THE RIEMANN-GREEN SOLUTION

Two systems L, and L of n coupled differential equa-
tions are defined by the following two equations:

L()(X)ds(.(/i 1x) = l:% 1 + A— l/()(-x)]é()(A 7x) (1)
2
and
LX) (A,x) = [%1 + A — Vi(x) — V(x)](b (A,x),

(2)
where I, A, V,, V stand for the unity matrix, the diagonal
matrix of different channel wave numbers & ,2 (i = 1,n), the
reference matrix potential and the perturbative matrix po-
tential respectively. The reference diagonal potential con-
tains the usual singularities: The centrifugal potential and
the Coulomb interaction, while the perturbative potential is
allowed to be complex (non-Hermitian). The Jost matrix so-
lutions ¢, and ¢ satisfy the same boundary conditions:
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lim [¢(A,x)];

X—* o0

lim [$o(A4,0)],

=S, expli[k;x — [m/2 + 0; — (@;/2k) In(2k;,x) ]},
&)
where the Coulomb phase o; is defined by Eq. (4):
rd+1+ia;/2k)
T T+ —ia 2k

2o,

@

¢, is the irregular Coulomb diagonal matrix defined by Eq.
(5):
(8oAX)] = 8W i asc,t, 4 1/2( — 2iR%)

Xexp[ — yim(l; + 1 + ia;/2k) + io],

(5)
where W denotes the Whittaker’s function (see Ref. 9). From
Ref. 10, we know that when the Coulomb interaction is at-
tractive, the reference and the perturbated problems have
both an infinite number of bound states.

We are looking for a possible integral representation of
the form:

8 (A,%) = do(A,x) + f " K (ot )AL dt, ©)

when A belongs to the spectrum of L¢ = 0 and where K (x,?)
is the transformation kernel. This kernel X (x,¢ ) is connected
with the solution of the inverse problem by the equation:

2% kx) = V). )
dx

We want to specify the class of perturbative potentials ¥
for which such a continuous bounded kernel exists.

It is shown in Ref. 3 that the transformation matrix
elements have to satisfy the partial differential system (8):

ox? x?

- 2 Vil(x)Klj x,y)
]

_j’i+kz__lj(lf+1)
- a? Y 2

]K #AxY)

i
X

a.
- —J]Ki, ) (8a)
y

. . d
lim K(x,y) = lim % K (xy)=0, (8b)
yroo y—o JY
I/y(s) dsr

Kg x,x) =14 f ij = l,n. (8¢c)

X

The partial differential system (8) is equivalent to the inte-
gral system (9):

K (xp) = f

(x + )2

@

R (x.y;5,5)V (s) ds

+1 f fR,-, xyis) S Vils)
2 7
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XK,J(s,u) duds, ij=1,n. )

In Eq. (9), & denotes the Marchenko domain represented in
Fig. 1 and the R /(x,p,s,u) are the Riemann-Green solutions,
satisfying the partial differential equations (10):

F e HMtD e
o

ey ; ]Rf, X.p;8,4)

i
X

> W+1) q
= (—9? +k12-— sz— — —yi]R,»j x,p;85u),  (10a)
Rxysu)y=1 if |x—s|=|y—ul (10b)
If we use the canonical variables
:x+y _y—x =u~|—s _ u—s
7’ 2 * § 2 ’ 770 2 » 50 2 ’
(11)
Eq. (10) reads
o _ MWD .
ands  (m+sy (m+4§)
I;+1 Q; k2
=&y (m=§) '
X R 1,6:M050) =0, (12a)
Rn&mub) =1 if n=mn, or &=¢&. (12b)

In Appendix A, the spectral representation (A10)-(A11) is
obtained for R (x,y;s,u), using the techniques of Ref. 11.
However, we are not able to write this spectral representa-
tion into a close form. Simple expressions for the Riemann
functions # ;and R {, corresponding to the cases /; = a; = 0,
i=l,nand k; = a;, = 0, = 1,n respectively, can be deduced
from this spectral representation:

R xpsu) = F (A 5[x —s)— @ —u)Pl}D), (13)
where #, is the Bessel function of zero order and
Afj:k?—k}, (14)
and
R Y(x.yss,u) = P, (1 — 2x,)

I
— 2x, f P (1 —2x;, + 2x,t )P 11— 2x1)di,
0

(15)
(s)
u=s
(O, x+y)
Usy+x-s
Usy+S-x
(O,(x+y)/2) F———————7
u>s
y>x
(O)x) ===
0 »
{y,0) (x+y,0) (u)
FIG. 1. Marchenko domain.
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where

= )€ — 8o (16)
(7 — €)M — 55)

x = (17, — ME — &) ) an
(M + &)(170 + 80)

and P, is the Legendre polynomial.

This last function R § will be used in the next section in
order to evaluate the complete Riemann solution R ;.

3. UPPER BOUNDS FOR THE FUNCTIONS A?
AND R,

In the domain & of Marchenko, the following inequal-
ities are satisfied:

0<&<ESTLNHo< 0 (18)
From Egs. (16) and (17), one easily gets
x, <0 (19
and
s < 706 < 1

<X, < S S5
M+ +E)  2mf 2
or

0<1 —2x,<1. 20)
Our next step is to prove the inequality (21):

el —2x, =142 P =ME—8) 2m+E)m—£)
(n—&EXno— &) (7 — &)Y, +§81)

After multiplication of both sides of Eq. (21) by
(7 — (e + £)/ (1 + E)(9e — &)>0, we must show that

E,851060)

_ =&)Y+ &)

2 @t = E—E)
7+ )10 — €0

(74 &) — &)

(22

The following inequalities are successively obtained: )
E(7]»§;’70,§o)

O tE) A EE—E) gy

M+ €)M — 50) 7+ &) — &)
< (77 + 5)(770 + §0) - 2§0(770 + §0) (24)
(7 + &) — &0)
< (77+§)(770_§0)+2§0(77+§-770_§O) (25)
1+ &) — §0)
So(m + & — 7o — &)

<l +2 . 26

ST om -6 29
As

i(ﬂ“}'é‘_ﬂo—go): ?70+§o

3 n+& m+&r 7

the right-hand side of Eq. (26) is certainly overestimated, if
we replace § by 7 > £. Finally, we get the requested result
21):

§0 (277_770—§0)
EMménebo)<] + =2 ° 2V
"E3050) (170 — &0)
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& (m—§0)
<1 2= 1 =2 L2 27
S =g @n

We are looking now for an upper bound for |R g.i . Starting
from its representation (15), we get

|RGI<|P(1—2x))|
1
+ ‘ f Py(1 — 2x, + 2x:t ) dPy(1 — 2x,t) |
,

(28)
Since
0<l — 2x,(1 — )1
and

1<l — 2t A E)0 — 80
(77 - §)(770 + §o)

for 0<¢<1, we can write

| R U.E0,60) |
<14 |P(1—2x)— 1

<P (1 —2x)< |4 T HE — &) i (29)
' (m — &) + &0

where the following property has been used:

1<P(x)<(2x)" for x> 1 and / real >0.

We can construct the complete Riemann function R, from
the function R 2-, using the composition formula

R (71.8570,60)

& e
= R £k + f dglf dy, R £
< 3

s 5 a, aj
x klv _kj B T “51 - m +§1 Rij(nl’gl;nmé‘()).

(30)

The bound (29) for |R 2| is then used to find an upper bound
for |R;|. Setting

Ié? ’;0,0:R? ,&:776,80 (7]_§)(770+§0) f',, 31
. Ents) = R An.&m g){4(77+§)(m-§0)] G1)

Rynmat) = Rifngimnto| T ENRLENL )

W= 4k =k eB)
and
al_j — 2(21, + 1 max(a'_)aj)’ (34)

Eq. (30) can be written as
R~ij(77’§;770’§0)

- S 7 _
= RO Emots) + f d@f dn RO07.m,,8)

U
— -

o2 %)

Xli,',(ﬂné”l;??oio), (35)
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where
| R 2(77r§;770;§0) | <1

(36)

The successive approximations applied to the absolute value

of Eq. (35) lead to

|R P(1.6m060) | <| R Unsmoto)| <1, (37)
R D18 m060)
E o -
“at [ R gmi
& 7
o o
4"<k?~k?+ ZA— d )
Lo+ & =&
Xlé E;))("]ué-l;no»go)
1771
dglf dn, (#, - )
J "ot
< fﬁ de, j “dn, (,tﬁ+ % )
5 Y m — 51
{(7 6 — Eo) +a;
<[ e [ an M 68
(77 E)m — &)
|R P(11.65m0,60) |
& N -
‘ dg, dn, R 8(77’§§771,§1)
So U
a. a.
4"(k%—k?+ I — )
! m+ §A m — §1
& T .
y[@fdmmm@mm
&o "m
. fo
4]'(k,.2 — k4 LA ! )
/ 7 + gz 7 — §2
X f d§ J R p ’qp - 19§p7 l;np’gp)
4[‘(kf~—kf+ &y )
np + §p np - §p
R O0,08 i m0éo)
1
oo [
[/J'/ 7] / . (77 )I/Z
1 S
X dé—l T f d§7 /2
J; - § ol UEE N
. 1
dm f dyy—— .
: 6”7 (. — &)
X f dn, —]—g—l
M. o (7//1 -5 ) :
(notice that for p =0, &, = &, and 7, = 7).
|RPO1,Em0.60) |
<[ui — &) + a1’
[f:” dgl/(n o é'l)l/zlp [Jl,; d7}1/(77| _ §)1/2]h
p! p!
(39)
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Since the modified Bessel function can be defined by

16/‘0(2) — i (Z /4){1 _ LJ & cos@ dGQeZ,
0

o) . (40)

p=0

we easily get the following upper bounds:

| R(l(n’§;77(),§()) |

N Cr el R UL,
) |

& i,
B J dg, lh - J dmn,
(n—507 Jy (n

41{(7] + § )(770 — §())]/'
(7] - § )(770 + §1>)

X exp(4f [,U,_Z/-(nu - g()) + a,j](nu - §0)% ). (413)

The same method, directly applied to the case @, = 0, leads
to

I RU(779§;170,§0) |

4/ (7 + &) — &) | e

(m = &) + &)

The inequality (42) differs from the inequality (41) with
a; = 0, by a factor 2 in the exponent; this is due to the ap-
proximations we have done, in the evaluation of (41), in or-
der to get separable integrands in Eqgs. (38), (39). The esti-
mate (41a) of R; is much more general and much easier to
use than the estimate (58) of Ref. 3.

Xp [ 2#[/(770 - gn)] (42)

Several further approximations to Eq. (41a) can be
performed:

(1) Since 9&,<7,&, we have
(7 + £Yno — E)/ (7 — £ Y70 + £)>1

and
| R (7.6:770:80) |
(O E0Y
o + E) — )
Xexp@{ [ui(n — &) +alOp — )}, (41b)
where
;= max {
7
and
a,=maxa,
J
(ii) Since
n+E nts nts o
Mo+&e Mo Ui
we can also get from Eq. (41a)
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l Ry(n’§§770:§0) |
\81, 7o —go L
< <770 + §0)
X exp(@d{ [ (10 — £0) + ;1o — o)} 7). (41c)

This inequality (41c) was the only one obtained in Ref. 2 by
another method. In Sec. 4, estimates of K are obtained from
the different approximations (41), and we explain why the
use of inequality (41b) must be preferred.

4. AN UPPER BOUND FOR THE
TRANSFORMATION OPERATOR

Using the canonical variables (11), the integral equa-
tion (9) for the transformation kernel reads

Kn&) =1 f o R (17U, (70)
+ [T an, [ R g
]

X D Uy — K [ (770,60)- (43)
7

If weintroduce, in Eq. (43), the matrices R, K, and U defined
by the following equations,

R(/(U’ginmgo)

5 e e + & o — &) |
:R,j(n,s;nn,go)[ 0 +s) On=¢

(770 + S{‘()) (77 - g)

X exp{ [}, — &) + 4,105 — EN}VA, (44

Kn€) =R, 5)(” e (45)

5

Un) = 4" exp@{ [12(ns — &) + a,]

X (770 = £} IV (m), (46)
where
;= max(u,) 47
and j
a, = max(a;), (48)
we get j

Ryné) =} f o R(1£:000) U )
il
x & 5
+J dﬂOJ; d§o R,:,('rl’é—;nms‘—o)
0

X Z U,'[("’]u - §0)1€U(770’§0)' (49)
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From Eq. (41b), we see that |R,J|
mations applied to the absolute value of Eq. (49) give

1K O(.)| < f dna| U]

<4 f dne| Tl = 55,

where

1 =sup 3 14,

1B D@6
< f ar, f ) 463 |0,0m =& K|

%oﬁ(n)f dnof A |1U (o = &0l
|KP(0.6))
et D | [ an [ aenom -]’

and ﬁnally
IK (1.6)]

< es| [ an. [ a6 100, — 1)

Using the physical variables again, we get

f an, | Cde U — &)

(x -+ p)/2 Veoexios .
f dsf dul|U (s)]|

(St

+
(x vy)/z .
j ds ||U (s))|(s — x)
w1 @106l -
(x ~ y)/2

<f 1T (s)||s ds = 6'(x)
and also

<Ay — x)a(x).

So we have

K G <L) (2

confoif?5?)

o |+
=
N——

=

and also

1K Gell< %({-)Id"(x -2§—y) exp[d'(x)]
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(51

(52)

(53)

(54)

(55a)

(55b)
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[N |
e (Eenlow] (6

P
if 6" exists and where

gf{x+y \ L - :
0[( 2 ) =sup 2 f 77(1)4[ 1 Uij(770)i
i T i

X exp| 4[/112("70 — &o)?

+afn, — 5] dn,, (57)
p? = max(4"| k2 — k2)), (58)
J
a,= 2(2/, + 1) max(|aj} ) (59)
J

The same method with the use of estimate (41¢) leads to the

estimnate
LA eopts o,
2 \x 2

(60)

[Ky(x) | <

which corresponds to the one obtained in Ref. 3 and used in
Refs. 6 and 8. However, from estimate (60), it is not obvious
ifim, K (x,x) is finite while it is so from estimate (55).
From that point of view, Eq. (55) is much better. If we use
estimate (41a), without any approximation, the method of
successive approximations gives

Ko < (L) (22 expllizaealll. - 61)

with
25

(x { »)/2 Y X S - AV,
,
= %f dsf du |U,»j(s)|(——>
x Xty s N

w y - x s . u\, 1,
+1 j dsf du 1U,j(s);(_> . (62)
(x4 /2 s s

If 1‘>1j, since u/s > 1, we have
|20l <ot (x).
For/; < lj, we get

(63a)

2,;, X.y)

e (522)
2
(x -+ ¥)/2 yooxts - u\, -1
+ %J ds f du ]U,}(s)l(—)’
x X 4y -y N
<30 /,)&l(x +y) + (_y_)h L
2 x

oo

From estimate (61), it is not obvious whether lim, , K (x,y)
is finite whereas it is the case from estimate (56). The most
general estimate (41a) for R,, will, however, be used in Ap-

(63b)
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pendices C, D, E in order to get estimates for the derivatives
of R i u’ and K,_-,-. The results of Refs. 6 and 8 may be modi-
fied according to our new estimates for K.

In order to ensure the convergence of the integral in Eq.
(6), since, in Appendix B, an upper bound (B12) for the func-
tion ¢(A,x) is found for Imk, = §>0, | k; |»s>0, and

a, >0, it is sufficient to impose that

L+ 2(kp)"
J‘ ylum\&()<-x+y)e75y[ + I l’y] <

; [e ]
2 Q2| k|y)
for x>0
or
[o:2)
f dyf dno 15| U ()]
(X -+ )2
— gl f dn, f dy N
Clyas 10 L 4
<2 dno 7]() ‘U(WO)H
= G (x)< ©. (64)

Since we suppose that G ! '(x) exists for x>0, we can justi-
fy the interchange of the order of the integrals in Eq. (61) by
the Tonelli-Fubini theorem. Equations (55)-(64) show that
xK (x,p) is bounded and integrable if Gl ! l(O) remains
finite. Nowhere have we made the assumption that Uis a real
or Hermitian matrix; our results are thus valid for non-Her-
mitian potentials. We see that an exponential decrease is re-
quired for the perturbation potential; the rate of this de-
crease is measured by 4(1°x* + ax)'%. In absence of
Coulomb mteractlons U, (x) must decrease faster than
exp[ — \1\ ; “x]. (The exponent obtained in
Ref. 3 contains a wrong factor. ) In Appendices C and D,
bounds for the derivatives of R | and R, ,are obtained. These
bounds enable us to get a bound for the derivatives of the
transformation operator K in Appendix E. The estimates
(50), (51), and (E3) obtained for K (x,y) and its derivatives
are necessary if we want to prove the unicity and the stability
of a suitable solution to the fundamental equation of the
inverse problem the existence of which Coz and the author’
have generalized for non-Hermitian systems of coupled
channels.

5. ANALYTICITY OF THE JOST MATRIX
SOLUTION

We first consider the Jost solution as a function of the »#
variables (k,,....k, ). Equation (6) yields

[¢ (A’x)],_/ = 5,/[(150(/1,)‘)],‘]

+ f 7 K (x ) (@A) ] dy. (65)

Since [#.(A,x)],; depends only on k; and since the solution
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K (x,p) of Eq. (8) is an entire function of

A2=k?—k? (66)
(from a theorem demonstrated by Poincaré"?), [#(A,x)] ;isa
function of k; and A } only. This shows that [#(A,x)]; is an

even function of all the ks, except k; as is well known from
Ref. 12.

Instead of considering ¢(A,x) as a function of many
variables &, (/ = 1,n), the conservation of energy (66) be-
tween the channels may be used to eliminate &,,...,k,, in favor
of the largest variable k, and the n — 1 constants A},

(I = 2,n). By doing this, we must define, as in Refs. 13, a
Riemann surface, consisting of 2" ' sheets, having branch
pointsat k, = + 4, (/ = 2,...,n). With each sheet, Weiden-
miiller' associates a vector r of n — 1 elements 7, = + 1,
defined according the rule

sgn Rek, | = r,sgn Rek,, (67)
sgn Imk, | | = 7,sgn Imk . (68)

The physical sheet is defined by 7,= + 1 (/= 1,n—1). In
order to prove the analyticity of @(k,,x) with respect to &, in
the upper half of the physical plane, the existence and the
continuity of @(k,,x) and its first derivative with respect to &,
must be shown. The existence of a bounded continuous
<1>,-j(k,,x) has already been shown if G l(0) exists for
Imk, > 0, hence for Imk; > 0. Since the integral in Eq. (6)
converges absolutely, the differentiation of @ with respect to
k, can be performed under the integral sign:

d d e
|52 tk0)] - [ 0] 8,+ [ Ko

d
X ——<D(,k1.r) dr. 69
(dkl (.00) (69)

Since [(d /dk,)®(k,,x)] exists and can be bounded for
Imk, >0 and since K Ax.2)is absolutely integrable,

((d /dk )P (k,,x)], is well defined and bounded. The matrix
function P(k,,x) is thus analytical in the upper half of the
physical k, plane, for all fixed x > 0.

6. CONCLUSION

We have found sufficient conditions that the matrix
perturbative potential should satisfy in order to get a bound-
ed and integrable transformation operator with bounded
first derivatives. These conditions are, of course, dependent
on the reference potential: The centrifugal part imposes that
the perturbative potential has certain moments [see Eq. (56)]
while the Coulomb interaction or the different threshold en-
ergies lead to an exponential decrease of the potential [see
Eq. (57)]. For this class of potentials, the analyticity of the
Jost solution has been shown in the upper half of the physical
k, plane (for @, > 0). This property of analyticity is essential if
we want to establish a fundamental equation for the inverse
problem. The upper bounds (55), (56), (E3) that we have
obtained for the transformation operator and its derivatives
are of basic importance for two reasons:
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(i) They allow us to get an upper bound for the kernel of
the fundamental equation and consequently give us the con-
ditions to be imposed to the scattering data in order to have a
suitable solution to the inverse problem.

(ii) They are also necessary to ensure the stability of the
inverse problem (see Ref. 14). Indeed, the experimental scat-
tering data are only known up to a certain energy and the
question naturally arises whether this is sufficient to well
define the potential. Of course, this is not sufficient if we do
not restrict the class of acceptable potentials (see Ref. 15).
On the other hand, if we impose that the solution of the
inverse problem should belong to the above-defined class of
potentials, then the estimates obtained for K and its first
derivatives will enable us to show that the solution is stable
with respect to small changes in the phase shifts above a
certain energy.
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APPENDIX A: SPECTRAL REPRESENTATION
OF THE COMPLETE RIEMANN-GREEN
FUNCTION

Since the partial differential Eq. (10a) satisfied by the
Riemann-Green matrix element R (x,p;s,u) is separable
with respect to the variables x,y, a spectral representation
can easily be obtained, by a generalization of a method devel-
oped by Riemann and described p. 328 of Ref. 11.

Setting 47 = k] — k], we consider the following two
differential equations:

W+ o«

i
pe

[5 +A?j+/12— ]U(i’x):o, (A1)

x2
2
dy’ y? y
The regular Fi(4.y) and irregular G(4,y) real Coulomb func-
tions, defined by the equation:

form a system of two linearly independent solutions of Eq.
(A2), the Wronskian W of which is constant:

2 (1. .
[y 2D Sy -0 (A2)

W:Wr[F,G]:FiG—GiF: —1. (A%)
dy oy

The solution v, of Eq. (A1) is chosen in such a way that the
boundary conditions (AS) and (A6) are satisfied:

v, (Ax)=0 for x=ux, (A5)

and
d
—u, Ax)=1 for x =x,. (A6)
dx

An expression for v, (4,x) in terms of F, and G, is easily
obtained:

e, (A,x) = [GUA + 4 D2 x DFA ' + 4 )20

i
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— GAA + A D OF A + 4 Y)2x,)].

(A7)

We consider the solution w(4,py) of Eq. (A2) with which a
function @(A,y) can be associated, such that the following
equality is verified for any function f(x) belonging to
L*0,):

ro=([ 3 ) wan " druore) @

where (f2) denotes the integration over the continuous spec-
trum, plus an infinite summation over the point spectrum
when a; is negative. From Refs. 10 and 16, we know that
such functions w(A4,p) and w(4,y) exist:

w(d,y) = mw(d,y) = F(4,). (A9)
The Riemann-Green matrix element R ; can be written for

|x —s| > |y — u|, which is always satisfied inside the Mar-
chenko domain (and also inside the Gel’fand domain):

R (x.y;5,u)
=2 sgn(s — x)( f Z )d/lw(/l,y)w(/l,u)vx(i,s), (A10)

where
sgn(@)=a/|al.
Of course, when |x —s| = |y — u|, we have

R (xy;s,u) = 1. (All)

However, we did not manage to rewrite the spectral repre-
sentation (A 10) for the complete Riemann—Green function
into a close form. This can only be done in particular cases
when a, =/, = 0 or when a; = k; = 0 and leads to well-
known results."'""* We must acknowledge that not very
much progress has been achieved since 1930: Most of the
actually known Riemann-Green solutions were already dis-
covered at that time by Darboux'' and Chaundy,' in spite of
the fact that new constructive methods'** have been
proposed.

APPENDIX B: BOUND FOR ¢,
Taking the absolute value of Eq. (4), we get

| [¢0(A!x)][j|
=04\ W ia skt 412 — 2ikx)| e, (B1)

Assuming that the Coulomb interaction is repulsive (a;>0)
and setting Z = — 2ikx,k = — ia,/2k,v=1,+ 1, the
Whittaker’s functions W can be expressed in terms of the
Kummer function U by the Eq. (B2) [see Eq. (13.1.33) of
Ref. 9]
W (Z)=e *7Z"" 22U +v—k1+202Z).
(B2)

If Re(1 + 2v) > Re(} + v — k) > 0, the integral representa-
tion (13.2.5) of Ref. 9 for U can be used:

Ul+v—x1+27Z)
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1 fw ~Ztyv—k—1/2 —
e Ztpv —x 1+t v+ I/Zdt
T +3—1x Jo 1+

(B3)
if
Re(/; + 1 + ia,/2k) >0, (B4)
or
UG+v—nxl1+2v2)
-1 1
I'v+i—x) Z
- t\v o« o} t\vEw )
X e '— 1+ —) dt.
Lo @) 2
(BS)
It readily follows from Egs. (B2) and (BS5) that
e Z/2
W.(Z)= 3
rv+i—w)zv—'
* vk - 1/2
><f e - 1(£ + 1) dt,
0 t
(B6)
if
Imk/ k"> — (I, + 12/, (B7)

Our @, Jost solution behaves like Z  'at the origin and has a
discontinuity along the imaginary negative k, axis [we take
—m<argZ <moarg( — )= — /2, and 37/2 < argk,

< —7/2).

Setting k, = y + i85, we get for 620 and | &£, |>s>0
| [d(A <x)],j|
exp(amd/4| k|’ — 6x) expla/2s);,
< )
|C (L + 1+ ia/2k) |2 k| x)"

Ny 2|k |\
xf e 1+——;— dt, (B®)
[¢]

since

Z 0, i /2k)
(£+1)
t
a Z
— expRel(1, — i 1n(_+1)]]
exp|Rel 1,15 ) (2

T ]
arg| 1 + —
2|k,|* & t

i

y4 U, - ad/2k,H
= ‘— +1 ex
t

2| k;|x

[l - 9
— ‘l + ea,u/Z.\. (Bg)

The integral in (B8) can be evaluated:
f et + 21k|x)"
O

L )
S Gk X"+ D, (B10)

0

J

Pierre Rochus 788



@I + 2|k x1"
so that the final result can be written as
exp(Bam/4s — 6x)
(LU + 1 +ia/2k)|

(B11)

| [#o(A4,x)] 5] <

[142(k;|x]"

X I ;
[2]k;|x]"

(B12)

where
e )
1+ 2%,

Cl2 a?
124 — )[[,._12.{. d ]
PTEY TS
a; 7a; 172
(1 ) . ] .
( + 4k 2/ 2k,;sinh(ra/2k)

i

(B13)

APPENDIX C: BOUNDS FOR

| (3/3m)A7(M:E:0:E0) |, | (3/9E)A(n,EmosEo) |

The derivative of Eq. (15) with respect to 77 or £ can be
written as

1
RY= _2,x£P,’I(1—2x2)—2x{j P(1 — 2x1)
0

XP (1 —2x, + 2x,t) dt + 2x,2x;

1
xf 1 Pi(1— 20)P (1 — 2x, + 2x,t) dt
0

1
axox f (¢ = DP(1 - 2x1)
(¢]

XPU(1—2x, + 2x,2) dt, Ch

where the primes denote derivatives with respect to any of
the two variables 5 or £. Before proceeding further, the fol-
lowing bounds are recalled:

|P(x)| <l for |x|<1, (C2)
Pix)y<i(+1)2 for x|, (C3)
P,(x)<(2x)" forx>1, (C4)
Pix)<id+ 1D(2x) ' forx>1. (C5)

Setting Z = 1 — 2x, and using Eqgs. (20) and (21), we obtain
R PI<|x5 |1+ D +4]x(] |Pi@)]

+ |5 | I+ DI+ DQRZ )"

<4|xj I+ DEZ)Y !
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+ x|+ DI+ 1+ DRZ)", (C6)
IR |<(22) (lel + |x2|)lmax(lmax+1)
X2[1 + lmax(lmax + 1)]
<AQZ)(| x| + |x3))- €n

To pursue, we have to find upper bounds for [ | (3/d7)x, |
+ | (8/3m)x, | 1and [ | (8/8&)x, | + | (/& )x. | ], where
_1_ i),c_] = Mo—s £ <0,
xdn (- 770)(17 &)

10 __ &=

x 95 (- §o)(§ 77)
1o f+m 4
x0n  (m—n)n+§)

i ix_z = _WTtse + §° >0
x, 6 G-+

ax, ax,

raRdr
(§ §0)(70 — §)
(77 § )10 — $0)
C@=8) | @tE)
(77~s)2 n+8y
27,

MRS )
ax, ax,
ERars

< (1= 8J(m0 —
(77 §)(mo — §o)
L-&) |, @+8)
(77 &y n+£)
27
< s (C9)
The bounds for the derivatives of R 2 read then

d
—— R0.5m0k0)

<
m—£&y
and
8
§

(70 + £)E — &0
(7 + &) (Mo + &)

(7 + &) — 1)
(7 + &) (o + &)

4+ —E) ]!
(m — &)+ §0)

(C10)

77 53M0s60)

< (nzfg)z [

n-¢ )(710 + go)

APPENDIX D: BOUNDS FOR | (6/61])/?,-,- | AND
| (8/08)A; |

In this appendix, the estimates (29, (41) (C10), and
(C11) for R Y, R,, and the derivatives of R ; are used to find

i Trip
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bounds for the absolute values of the complete Riemann 5 i 3 no
function derivatives. Taking the derivatives with respect ton + _L dé: J:, d Ta_g_ R ngimus)
and £ of Eq. (30) and setting

X T 1,8)R {11:,6 510:60)- (D2)
Tn&)=ki—k}—a/(n—§&)+a/+¢&), it readily ) Y gRins Lo
follows that Defining
Di/("],g;no,é_o)

J .
- R,:,(ﬂvs;ﬂ(»go)

oy :~(770+§0)(77_§)-1'1R' E,ED), D3)
d .o 3 o L4(17, — EYm +§)] In ofO505) (
= S RYmEmE) — [ de RYmEm ) C.mim
X T, .,(37,§ DR 11,6 1570,60) _| 4((?1; + §§o))((7z7 —+ §§ ))1 ! _80"? R (7,E:70£0), (D4)
S o a L o — $o E
d 1 d 1——-R 0 25,771,611 5 0
+ J 3 L ] p 1631161 RO Emnt)
X Tif(”]1»§1)Rq(771,§1;770,§o)7 (b1 _ 4((770 + 53))(27 :_i)) ['R 8(17’§;170’§0), (D5)
J LK o — S 77 ]
g R,»,(’],g,??ogo) R~U(77y§;770’§0)
_ 9 poi s [+ 8)—&) e p (. £
S Rt = | LB =E | Ryt (D6)
” oo, £ E (9, — 50)
+ J:’ dn R 0(77’§’771,§)Tf;(7?19§) _ 4 exp[4[,u§(770 —Ey+ a,,(?lo _ §0)]l/2}1 (D7)
X R {07,€5m0,Eo) J

Egs. (D1) and (C10) lead to

. 241, _ 208 B n— §o
D imnt)|< e B — 60w — 80 + a0 L2

24 o[ =€ - £ Mo —ME—E) (> e, A tHE
+ w—Er E (10 &)[/t,, 5 +a,-,( 5 + (=€ 1nn_§)] (D8)
and
247 2 No—§ 24y
Cj 1557050 < E 07T S0 \fo — Ul + E 90— So
| C1.8:10,80) | w7 T v §)[ﬂ(77 7 +a nn—é] — (19 — &0)

(1 + 0 — &) |7 =7 (10 + £)o — §) ]6 =€
2 0o — So % i 11 % p l] . D9
x[/tu(n ME —£) + a,[n n (771-§)(771+§o)]71.17n+ aj[g m e e —E) LI:&] (DY)

If we use the well-known fact that Inx < x for x > 1, Egs. (D7) and (D8) can be written as
a .
—3; R {(1,6:70:80)

<[4(710 — &) + s‘)]h{ 241,
e+ 8 =81 L(np—-¢&Yr

24
—-$)

+E (o — £ 13E — £) + a, ”‘5"] +
7 (7

e 2E(770—§0)

2 2 _
[ B8 o10)

2 g2
) ) (=nE-g) , 0B EDn+ o))

T 2 T =)

and

I R1.Em0E)

Z3
<[4(710—§0)(’7+§)]"l 247
o+ &) — &)1 L(p—£&)

EG— )\ —m +a, 25| _HT_pp, g,
T R e SR
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x[#i(no—n)(s‘—§o)+%ay’7 WEE) 4 o 77(2)_52”'

D11
n—&) T ®1h

APPENDIX E: UPPER BOUNDS FOR THE DERIVATIVES OF THE TRANSFORMATION OPERATOR
Performing the derivative of Eq. (43) with respect to 7, we obtain

d *© d
o Km¢&) = —RnEn0UL + 3 L dne o R (1.£:10,0)U ()
&
- zj dEs R0 £1.E)Un(n — EK £
! 0

o & aJ
+ 2{: L dmn, J; g, -3—77— R (1.8:1060) Uy (0 — E)K (70,6 0)- (ED)

Setting U, AM = E () U(n), we get the following upper bound:

K )| (7,(77)+%f:d77[ ey (ﬂo)(#,s“+a,,n77§)+ —HEam

(Sl

‘8 [(77+§)4]1 <

(22 0, ) jvsa )+ 3 [ 225 O ) 1K)

3, d%f dﬁo(Z:é:) Tty rEmmole—era T

24 PN D (0 — ME — £)
+ (77 —§)2 ( o §o)[ 2 +a,j )
M —EDm+ &)
+a; n—&) ]} [ Uy (0 — 80| | K 70:60) |- (E2)

Since we have

K (00)| < %(Z—*i)a"(n) expld'(o — &)1,

. (55b)

it readily follows that

<1

" A ]
K1) \[4(77+§) HTI+ - g)za(ﬂ)+%/t?,§[0*’(77)+

‘317 o £y 70|

6A4
rays §)[ o+ 0'2(77)]+—0°(77)eXP[0‘(77 )] j U )] ds

+ nd’(n) expla'(n — &)

A * &
do dO OU 0~ So
Vo | [ dgmiven -6l

+ —0"(17) exp[d'(n — §)]f dnof d§o{#1§[1 + 772—)2]

%y A§ 24m+8) L5 :
+ + 0 o o — Soll-
it L s L = LY (E3)
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To proceed further, we must evaluate the following integral:

f dn, f dEa b f (o — £

with [ =0, 1, or 2 and f (17, — &) = || U (s — &)|| or | U (17, — £,)||. We easily obtain

= e 2 S+ &
i dnof s/ f ds f dne s £ (5)
7 e L W —£ $

)I+]__sl+l

= Jw ‘_dsf(s) c+¢

[+1
where
‘ olp—&)y f fip—&)=|U(m -5,
Sw-§)=
i —£&) if fn—&)Y=||U@m— ).

1

! _ j )
= —— 3¢, Sa-E (E4)

1+1j=0

(E5)

If U has the moments implied by Eqgs. (E3), (E4), and (ES), the transformation operator has a bounded first derivative with
respect to 9. (If />3, this does not introduce new conditions.) The same simple but tiresome considerations will prove that
the £ derivative of K is bounded and so are the x and y derivatives.
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Recently, definitions of total 4-momentum and angular momentum of isolated gravitating systems have
been introduced in terms of the asymptotic behavior of the Weyl curvature (of the underlying space-time)
at spatial infinity. Given a space-time equipped with isometries, on the other hand, one can also
construct conserved quantities using the presence of the Killing fields. Thus, for example, for stationary
space—times, the Komar integral can be used to define the total mass, and, the asymptotic value of the
twist of the Killing field, to introduce the dipole angular momentum moment. Similarly, for axisymmetric
space-times, one can obtain the (“*z-component” of the) total angular momentum in terms of the Komar
integral. It is shown that, in spite of their apparently distinct origin, in the presence of isometries,
quantities defined at spatial infinity reduce to the ones constructed from Kiiling fields. This agreement
reflects one of the many subtle aspects of Einstein’s (vacuum) equation.

I. INTRODUCTION

Consider a self-gravitating system in the framework
of general relativity. Let us suppose that matter
sources are confined to a spatially bounded world tube.
Let, furthermore, the space—time (M, g,,) describing
the gravitational field of this system admit a Killing
field £°. Then, the Komar integral®

Q = Jszcc:dbcd Vcéd dsab
represents a conserved quantity; the integral is inde-
pendent of the particular choice of the 2-sphere §?
surrounding the matter sources, made in its definition,
[Here, fabcd and @a are respectively, the alternating
tensor and the derivative operator on (M, g,,). | If &
is a stationary Killing field, @ represents the total
energy of the isolated system, while if %e is an axial
Killing field, @ has the interpretation of the component
of the total angular momentum along the corresponding
axis. These conserved quantities have played an im-
portant role in the understanding of stationary, axisym-
metric isolated systems.

If a given stationary space—time has the property that
the manifold of orbits of the stationary Killing field is
asymptotically flat at spatial infinity, one has also
available the Hansen? multipole moments. These arise
from an examination of the asvmptotic properties of the
norm and the twist of the Killing field on the manifold
of its orbits. Of particular interest to the present
analysis is the dipole angular momentum moment. Con-
sider the case in which such a stationary space—time
is equipped also with an axial Killing field. Then, one
has available two “‘angular momentum like” quantities.
the dipole moment constructed from the timelike Killing

a)Supported in part hy the NST contract PHY 76-81102 with the
University of Chicago. Present address: Département de
Physique, Université de Clermont-Fd 63170, Aubiére,
France.

DVisiting Scholar. Permanent address: Département de Mathé-
matiques, Université de Clermont~Fd. 63170 Aubiére,
France.
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field and the Komar integral constructed from the axial
Killing field. What is the relation between these quanti-
ties? On intuitive grounds, one might expect the dipole
moment to “point along the axis,” and its norm to

equal the value of the Komar integral. However, de-
tailed analysis of this issue is complicated not only
because the two notions refer to two different Killing
fields but also because whereas the Komar integral in-
volves an integral on space—time, the dipole moment is
4 vector at the point at infinity on the (three-dimen-
sional) manifold of orbils of the stationary Killing field.

Recently, Ashtekar and Hansen® have introduced the
notion of the total (ADM) 4-momentum® and angular
momentum of isolated systems in yet another way.
Their definitions make no reference to isometries at
all; these quantities are constructed by examining the
behavior of the Weyl curvature at large spacelike
separations from sources. This construction may be
summarized as follows. First, a notion of asymptotic
flatness at spatial infinity is introduced. In effect, a
space—time is said to be asymptotically flat provided
one can “attach” to it a point analogous to the
Minkowskian (¢ such that the metric obtained by a suita-
ble rescaling of the physical one admits an extension to
this point which is smooth in “angular directions” and
has only finite radial discontinuities in its first deriva-
tives. (These discontinuities turn out to be a measure
of the total energy—momentum of the given space—time
time. ) In the second step, using asymptotic conditions,
the group of asymptotic symmetries at spatial infinity—
called the Spi group—is obtained. In its structure, the
Spi group closely resembles the BMS group®. it is a
semidirect product of an infinite dimensional Abelian
group (of Spi supertranslations) with the Lorentz group,
it admits a preferred four-dimensional normal Abelian
subgroup, but neither a preferred Lorentz nor a
Poincar€ subgroup. (However, it does differ from the
BMS group in an important respect: while the BMS
supertranslations correspond to free functions on a
2-sphere, the Spi supertranslations correspond to free
functions on a timelike three-dimensional hyperboloid. )
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In the third step, asymptotic gravitational fields are
introduced. These are represented by two second-rank,
symmetric, tracefree tensor fields E,, and B,, on the
hyperboloid /) of unit spacelike vectors in the tangent
space at {®, “the point at spatial infinity. ” The informa-
tion about the “1/7°® part” of the Weyl curvature of the
physical space—time is contained in this pair of fields
on /), In the last step, one uses these asymptotic sym-
metries and asymptotic fields to construct conserved
quantities. ® The 4-momentum P, may be regarded as

a vector at ¢°. Its definition involves Spi translations,
i.e., the elements of the preferred four-dimensional
normal subgroup of the Spi group and the asymptotic
field E,,. (The corresponding quantity constructed from
B, which would represent the “magnetic analog of the
gravitational charge” vanishes identically!”} To intro-
duce angular momentum, an addilional condition is re-
quired. If B,, =0, i.e., if the “1/r® part” of the physi-
cal Weyl curvature contains information only about the
4-momentum as one intuitively expects it to, and if the
“1/+* contribution to the magnetic part” of the asymp-
totic curvature is well behaved, one can define the total
angular momentum Vanishing of B,, causes a reduction
of the Spi group to the Poincaré, and angular momen-
tum then arises as a linear mapping (involving the

“1/v* part”) from the Lorentz Lie algebras of this
Poincaré group to the reals. In the finished picture,
angular momentum is represented by a skew, second
rank tensor M,, at ;® which “transforms” in the familiar
way under the action of Spi translations. ® One can also
construct, in the usual fashion, the spin vector S;:

S,: :éabch”MCd, where £, is the alternating tensor at
i°. Like the 4-momentum P, the spin vector §, is a
fixed vector at ¢° it is invariant under the action of Spi
translations.

The availability of these apparently distinct notions
of energy—momentum and angular momentum raises a
number of questions. Fix a space—time (M, ¢,,) satis-
fying the asymptotic conditions at spatial infinity. *?
Then, one has available the 4-momentum P, and the
angular momentum M,, at i°. Let us now assume that
the space—time admits a stationary Killing field /¢,
i.e., a Killing field which gives rise to a2 Spi time
-translation. What then is the relation between the
Komar scalar and the 4-vector P, at i°? Is P, necessar-
ily timelike? If so, is the “asymptotic rest frame>
selected by the Killing field /* the same as that selected

by P,? Consider, next, the notion of angular momentum.

Does the presence of [* automatically imply the vanish-
ing of B,, required for M, to be well defined? Does the
spin vector S, at i “project down” to the Hansen dipole
moment defined at the point at infinity of the manifold
of orbits of /? Let there exist, in place of {*, an axial
Killing field R®. Does it then also follow that B,, =0 at
i*? 1f so, what is the relation between the Komar scalar
involving R¢ and the spin vector S, at i“? The purpose
of this paper is to answer these and related questions.

The plan of the paper is the following. Section II is
devoted to preliminaries, Various facts about the
conformal completion involving the point /” at spatial
infinity are recalled and the asymptotic properties of
Killing fields available on space—times admitting this
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completion are discussed. In Sec. III, asymptotically
flat space—times admitting translational Killing fields
are considered. It is shown that if the 4-momentum P,
is nonzero, such a field can not be spacelike at infinity.
Under the assumption that it is timelike, P, is shown
to be proportional to K,, the vector at {® which corres-
ponds to the Spi translation induced by the Killing field.
Finally, the proportionality factor is shown to be pre-
cisely the Komar scalar constructed from the Killing
field. In Sec. IV, we examine angular momentum.
Given the stationary Killing field, B,, is shown to vanish
and an expression is given for the spin vector S, in
terms of the asymptotic value of the twist of the Killing
field. This expression is the natural “lift” to {“ of the
Hansen dipole moment, defined at the point at infinity
of the manifold of orbits of the Killing field. Finally,
nontranslational Killing fields are considered, Under
the assumption that the 4-momentum P, is timelike, it
follows that the action of the Killing field on the tangent
space at i° must be a spatial rotation in the 3-plane or-
thogonal to P,. It is shown that B, must gain vanish and
that the resulting spin vector S, must point along the
“axis vector” at ¢° defined by this rotation, its norm
being equal to the Komar integral constructed from the
Killing field.

1. PRELIMINARIES

Definition 1: A space—time (M, o) Will be said to be
asymptotically empty and flat at spatial infinity provided
there exists a space-time (M, g.,) which is smooth
everywhere except at a point /i where M is C”! and g,
is C*, together with an imbedding of M in to M (with
which we shall identify M and its image in M) satisfying
the following conditions:

(1) J({*)=M - M;

(ii) There exists a function 2 on M which is C* at /,
smooth elsewhere, such that on M, g,,== Q%%,,, and, at
i, ©=0, V.2=0, and V,V,Q=25:

(iii} There exists a neighborhood ¥ of i“ in M such
that in M~ N, g, satisfies the vacuum Einstein
equation.

Here, J(i) denotes the topological closure in M of the
set of points which are causally related to i° and the no-
tion of C’* differentiability is the same as in Refs. 3 and
9, (Thus, for example, the condition that g, be C* at
i¢ ensures that it is smooth in its “angular dependence”
and its connection, i.e , the Christoffel symbols, have
only finite ‘‘radial” discontinuities. For details, see
Ref. §.} This notion of asymptotic flatness is weaker
than the one used in Ref. 3; we have omitted the condi-
tions at null infinity since they play no role in the pres-
ent analysigs. Throughout this paper, we shall assume
that the physical space—times under consideration
satisfy these three conditions.

Given such a space—time, it is easy to show®.” that
the Riemann tensor R, , of the rescaled metric g,, is
such that Q'/?1_ . admits a direction-dependent limit at
i, Set Cln)=lim_ .02 C,,.,s El0)=C w07 and,
B, ()= *C,,. "%, where n" denotes the unit vector
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tangent to the curve of approach to i°, The fields E,,
and B,, are smooth, second rank, symmetric, tracefree
tensor fields on /), they carry information about the
“1/7% part” of the physical Weyl curvature. The Bianchi
identity on Cabcd yields the asymptotic field equations,
D,E,,.=0and D;,;B,, =0 on/. (The Ricci part of R,,,
only provides certain potentials for E,, and B,,.) We
shall refer to these asymptotic fields and equations
repeatedly in the next two sections.

Next, we wish to discuss symmetries. Fix a space—
time (M, &,,) satisfying Definition 1. Then, the group of
asymptotic symmetries at spatial infinity is the Spi
group. *? Given a completion (M, g,,) of (M, &,,), every
infinitesimal Spi symmetry is characterized by a pair
(F,,, K, (1)), where F,, is a fixed skew tensor at i° and
K, (1) a direction-dependent vector at i° satisfying K, (1)
=1im VX, where y is a C? scalar field. 10 Infinitesimal
Spi symmetries with F , =0 are the supertranslations;
their action leaves not only i° but also the tangent space
at /° invariant. If, in addition, XK, (1) happens to be
direction independent, the corresponding Spi symmetry
is a translation.

Fix a Killing field & on (M, £,,). &° will be said to be
a (ranslalional Killing field if the diffeomorphism it
generates induces!' a Spi translation at spatial infinity.
(It is straightforward to verify that if the induced action
of £isa Spi supertranslation, then it is necessarily a
Spi translation. ) £ will be said to be a »otational Killing
field if the induced'! Spi symmetry is a spatial rotation.
In this paper, we shall be concerned only with these two
types of Killing fields. In either case, the pair
(F,s K,(n)) at i° arises in the following way. Since v is
a h1lhng field on (M, Z,p), it is a conformal Killing field
on (M, 2.,). Hence, £ ( &%) is completely characterized
by the quadruplgt (S ’ ab - V[a‘ghly - 4va‘£a a Vad))
at any point of M, where indices are raised and lowered
using g,,.'% Then, F,,=1lim_ . F,, and K,=1lim_ . K,
characterize the Spi symmetry which arises from £°,
(The other two pieces of the conformal Killing data, £°
and ¢, vanish in the limit reflecting the fact that the
isometry generated by £° leaves both i° and the metric
g, at i° invariant, '°-1?)

Consider the case when the space—time admits a
translational Killing field /*. Then, lim, /=0,
lim, o F,, =0 and lim_,;.® =0. Using the fact that the
metric g,, is C*° at /°, a repeated application of the
I’Hospital rule yields the following information; (i)
lm_ e Q77" = - 3K+ (K. 7)5% (ii) the norm A=g, #P of
#is C*° at i°, with lim_ oV, 5 = fn, where f is a smooth
function onD and, (iii) 11m-,0521/2w =0, where, &,
_gabcd/f >Ve[® is the twist of the Killing f1e1d P, Next,
using the fact that in the vacuum region, &, admits a
scalar potential, &, =V w,® it follows that lim_ ,.27/20,
exists as a regular, direction dependent vector at i°.

Next, consider the case when the space—time admits
a rotational Killing field R*. Then, lim_,.R®=0,
lim_;.$ =0, and lim_,oF  is direction independent.
The differentiability of g,, at i° yields, as before, the
following asymptotic properties of Re: (i) lim‘icQ'l/zé“
=Fy,; (ii) A= 2,,R°R? is such that p=1lim_,.Q/ is a
regular direction-dependent scalar, and (iii) 26, admits
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a regular direction-dependent limit at i°, where G,
=EavesRPVR is the twist of R°. Finally, Einstein’s
equation implies a stronger condition on G, :0,

=lim_ ;o Q' /2§, exists as a regular direction dependent
vector at {° with the property that g, 7°=0

These asymptotic properties of Killing fields will play
a crucial role in the next two sections.

Il. THE ENERGY-MOMENTUM

Let (M, ,,) be asymptotically empty and flat at
spatial infinity, Let it admit a translational Killing
field #°. Then, we have

Lemma 1.1: On the hyperboloid J of unit spacelike
vectors at i°, the tensor field E,, must satisfy K™D E,,
=3 (K.n) E,, where, h,, is the natural metric on /},

D, the derivative operator on (4, h,), K,
=1im_,0l V V ™ is the vector at i° defined by the transla-

’l 4
tion 7% and K= h?K,.
Proof: B,y =lim_;oQ%C_ , n™n"
1 -3/2, omal/zgnol/2
=lim..Q%/2C,,, V"l zvnl/e,

since n°=1im_;ovRY2, Using the fact that 7% is a
Killing field on (M, %,,) it follows that

bn(emﬂl/z)(v“ngl/zﬂ
(VAmQI/Z)VAnQI/2

/_t[Q-glzcam
__% ':I)Qﬁ/zcambn
+ QC (Ve NI QY ),

The desired result in now obtained by taking the limit
of this equation at i° if one uses the fact that Q'/2C,, ,
admits a regular’® direction dependent limit at °, that
the presence of the Killing field # on M implies B,,b
must vanish at ¢° (Theorem 3, proved in Sec. IV) and
the asymptotic properties of P listed in Sec. I,

Lemma 1.1 implies that the presence of the transla-
tional isometry constrains the asymptotic gravitational
field E,, on,/ in a nontrivial fashion, This constraint will
be used to show that if /* is a space translation i.e.,
if the vector K, at i° is spacelike then E,, must vanish
identically. This would in particular imply the
vanishing of the 4-momentum P,. Thus, as one might
expect on intuitive grounds, physically interesting
space—times can not admit space translations if they
are asymptotically flat at spatial infinity.

Lemma 1.2: If e: :Eabﬁ“lzb vanishes on /), so must
E.,, where, as before, K is the projection of K* into

D.

Proof: Using the field equation D;,E,, =0 and Lemma
1.1, it follows that D,e = (K- 1)E,K’. Hence, if e
vanishes on/), so does (K°7)E,,K’. Since (K-7) vanishes
only on a set of measure zero of /), and since both
E,, and K’ _are smooth, it follows that Ea,,Kb_O Hence,
0=D,(E,, K™) =2(K ') E,,, whence E,,=0o0ny),

Remarks: (i) Using the field equation on E,, and
Lemma 1.1, it follows that e satisfies an hyperbolic
equation on (), h,,): D™D, e —e=0. Hence, it follows
that if e and its normal derivative to a 2-sphere cross
section of /) vanish on that 2-sphere, e must vanish
everywhere,
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(i1) Without reference to any isometries, one can show
that if E,, vanishes on a 2-sphere cross section, it
must be zero everywhere on/).

Theorvem 1: If the asymptotic field E_, fails to vanish
identically on /), # can not be a spatial translation,
i.e., the vector K* at i can not be spacelike.

Proof: Using Lemma 1.1, it follows that K"D e
=(K-'®) e on/), where, as before, e=E,K°K’, Hence,
along any integral curve of K“, the field e is given by
e=C(K K- (K*n?)*/2 where C is a constant on the
given integral curve, but can change from one curve to
another. Let K, be a spacelike vector at /°. Then,
cvery integral curve of K enters an arbitrarily small
neighborhood of some point at which K- K - (K- 1)?
vanishes. ' Since e is smooth everywhere on/), it
follows that the constant C must vanish for all integral
curves, whence, e=0on/). Lemma 1, 2 now asserts
that E,, must also vanish identically ony).

Rewmarks: (i) As one expects to be the case, the
argument is inapplicable when K? is timelike: in this
case, K-K— (K*9)® can vanish nowhere, since it is
bounded above by K-K. What is the situation when
K? is null? Now, there do exist points where
K:K~-(K-9)f =~ (K°7)® vanishes. However, it is no
longer true that, given an integral curve of K®, one can
find a point on/) at which ~ (K *5)? vanishes and whose
arbitrarily small neighborhoods are reached by the
integral curve. Hence, it appears that one cannot rule
out the possibility that space—times under consideration
admit a null translation; additional asymptotic conditions
at null infinity may be necessary for this purpose.

(ii) Note that the theorem implies, in particular, that
space—times which are asymptotically empty and flat at
spatial infinity cannot admit two translational Killing
fields. in this case, one can always obtain a space
translation by taking suitable linear combinations of
these Killing fields. This result is of relevance, e.g.,
to the issue of uniqueness of the vacuum state in
stationary space—times: If such a space—time satisfies
the present asymptotic conditions, there is available a
canonical vacuum state for linear quantum fields on this
space—time.

From now on, we shall assume that the available
translational Killing field is timelike; although the
analysis involving null translations is straightforward,
this case has little physical interest. The next step is
the investigation of the relation between this Killing
field and the ADM 4-momentum P,. We begin by showing
that the asymptotic rest frame defined by the Killing
field is the same as that defined by P,:

Lemma 2.1: The 4-momentum P, at ¢° is proportional
to the vector K, defined by the Killing field £,

Proof: Fix any vector V* at i® satisfying V-K=0.
We wish to show that P-V=0. By definition of P,, one
has 2P, V%= 2E03,V" dS® where V* =hiV® is the projection
of V° into the hyperboloid /), and where the integral is
taken on any 2-sphere cross section of /).%° Choose for
S? the 2-sphere cross section S defined by K*n=0.
Then, from Lemma 1,1, it follows that on S,
¥2y2D,(E, K" =0, whence, ¥7¥D,(E,K’{)=0, where
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Ya» == hy, + (- K"K,) 'K K, is the intrinsic metric on S.
The last equation states that the vector field Eabﬁ"yﬁ,
tangential to S, is covariantly constant thereon. Since
(S, yab) is of constant curvature, it now follows that
E,,K*" =0 on S, whence EabK“V” 0. Since K® is normal
to S, one has ZPaV" = [E,Veds? =0, —

Next, we wish to reexpress the norm of P,, i.e., the
total mass associated with the space—time, in terms of
the asymptotic properties of the Killing field. The
expression for mass involves the asymptotic value of
the Weyl curvature of the physical space—time.

Since vacuum equations hold ina nelghborhood of %, we
have, in this neighborhood, V v l Cd, . The kev
idea is to use (his relation to ve- c’xjwass “mass aspect”
in tevms of lhe Killing field i* and o use the asvmplolic
propeviies of the novin and lwisl discussed in Sec. II.

Levpna 2,2: The 4-momentum P, is given by
P, =m(~K K)"/*K, with m =~ . [,(1*},) dS, where
A, =lim_°V,%, S is the 2-sphere defmed by K1 =0,
and dS the natural volume element'® on $. (Here, the
Killing vector /* has been so rescaled that X
=lim_,. -3, =1.)

Proof: Set mi =~ P,(— K-K)"/?K", Then,
m ==} [oE K (~K K)24ds", Choosing for $® the
2-sphere S, one obtains

‘ /‘S E,t't"dS

1
m=—3

= -3 f lim_o[QY2C, , ™ {Q Q™) |ds
where n°=v'QY? is a vector field whose limit at ;°
yields the unit tangent n° to the curve along which the
limit is taken, and C,,, is the Weyl tensor of the
rescaled metric g,,. In terms of the physical metric
8., ome has m=-1[lim_°[QY/2C, - g Qe T i*1ds. We
now focus on the integrand. In the neighborhood of

© where gaza satlsfles the vacuum equation, one has

I"z‘” =R, 2P =V Vi . Next, using the expression

in terms of the norm and the twist of ¢,
AV L= F Vo + zfmpqt w¢, and the asymptotic pro-
pertles of A and &9, » is C’° at i° and lim_;.&, vanishes
at i°, one obtains m =~ 1fsn"7\ ds. G

Finally, we wish to relate the proportionality factor
m between P, and (- K°K)™/?K, to the value of the
Komar mtegral involving the timelike Killing field .
The integral itself is defined over a 2-sphere $% in the
vacuum region surrounding sources, the value of the
integral being independent of the choice of the 2-sphere.
Since the factor m has been expressed above in terms
of the asymptotlic properties of the Killing field, we
shall evaluate the Komar integral also on a “2-sphere
at infinity.”

Lemma 2.3: The value of the Komar integral, *+*°
M, =1[528 speg V2 dS°? equals m, the magnitude of the
4-momentum vector P,.

Proof: Fix any three-dimensional submanifold T in
M (C’! at i° and C™ elsewhere) which is orthogonal to
K¢ at i°, Consider a sequence of 2-spheres $% in T
which converges to the point i°. Then,
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where, S is, as before, the 2-sphere cross section of
[ defined by K1 =0, and where &,,., and V are,
respectively the alternating tensor and the derivative
operator compatAilzle with g,,. Here, we have used the
expression for v, /, in terms of the norm and the twist
of 1% and the fact that the volume element on S can be
obtained by rescaling the volume elements (induced by
&.5) on the sequence of 2-spheres by Q7 and then taking
the limit. Finally, using the fact that A is C° at i°,
lim_ Q7" exists and lim. ;.w, vanishes, one obtams
my==1/s T]")x das.

Collecting the results of Lemmas 2.1, 2.2, and 2. 3,
we now have.

Theorem 2: The 4-momentum P, is given by P,
=, (- K K)'/?2K_ , where, m, is the value of the Komar
integral and where K, is the (timelike) vector at ® de-
fined by the time translation # on (M, ,,).

Rewmarks: (i) Note that the results obtained above de-
pend quite crucially on the “fall-off”” properties of the
norm and the twist of the timelike Killing field. The
fact that these properties can be deduced directly from
basic definitions at i° therefore lends independent sup-
port in favor of the asymptotic conditions introduced
in Definition 1. In particular, although results relating
the ADM 4-momentum with the Komar integral have
been announced before, '° to our knowledge, their deri-
vation has always involved an imposition of asymptotic
conditions on the norm and the twist of the Killing field
by hand. Also, since a precise formulation of the notion
of the “asymptotic rest frame selected by the Killing
field” was not available in absence of i°, these results
were somewhat heuristic.

(ii) Using Lemma 1.1, one can easily show that in
presence of a time translatlon the “mass aspect”
E, Kk is sphevically symmetric on the 2-sphere S de-
fined by K- =0 (but nof on any other 2-sphere!). Us-
ing Lemma 1. 2 it then also follows that, if the mass
happens to vanish, so must E,, itself. We shall see in
the next section that the presence of a time translation
itself implies that B,, must vanish on J. Thus, at least
in the stationary case, the “1/#° part” of the Weyl
tensor in the physical space—time contains “only the
mass information, ”

IV. ANGULAR MOMENTUM

This section is divided in to two parts. In the first,
we assume that the given space—time admits a time
translation isometry and examine the relation between
the asymptotic properties of the twist of the transla-
tional Killing field and the spin vector 8, defined at i°
in terms of the asymptotic behavior of the Weyl curva-
ture. In the second, we assume that the space—time
admits a rotational Killing field and discuss the relation
between the corresponding Komar integral and the spin
vector 8,.
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A. Stationary space—times

Let (M, 3,,) be asymptotically empty and flat at
spatial infinity and admit a time translation {* as in
Sec. III. Then, we have

Theorem 3: The field B,, on /) must vanish identically.

Pyoof: Using the fact®® that B,, admits a scalar poten-
tial B, with B,,=D_D,B+ Bh,, one can show that B,
vanishes on /) if and only if B,K°K® =lim_ 0491/2*Ca,,,b,,

X fafPymy" = 0 where 7° -V”Q”2 [Recall that lim_;of,
=- 3K, + (K- n)n,. ] Using the fact that in the neighbor-
hood of io where the vacuum equatign holds, one has
\ AN _cha’"tm, it follows that B bK“K”—-411m o2 nenth
Proj. [(2A)!g,w™V,A - V,w,)], where Proj. stands for
the operation of projecting the indices of the tensor
field that follows in the 3-flat orthogonal to fs , and
where X and &* denote, as before, the norm and the
twist of . Finally, using the asymptotic properties of
X and &%, one obtains Ba,,K"K =0. C

Thus, the presence of the Killing field P ensures that
the “1/7% contribution to the asymptotic curvature is
purely electric. ” As noted in the Introduction vanishing
of B,, enables one to select a canonical Poincard sub-
group of the Spi group. *° (This situation is rather
analogous to that at null infinity: in stationary space—
times one can also select a preferred Poincaré sub-
group of the BMS group. ) This selection of the Poincaré
subgroup is the crucial step in the introduction of an
angular momentum at spatial infinity., Note, however,
that vanishing of B,, is not quite sufficient for angular
momentum to be well defined: it is necessary, in addi-
tion, that the “next order, ” (i.e., *“the 1/¥*’) contri-
bution to the magnetic part of the asymptotic curvature
be well behaved. (At least in principle, it may happen
that the “magnetic part falls off as, say, (¥*log#)™.”)
Nonetheless, Theorem 3 does indicate that in a generic
case, stationarity together with the asymptotic condi-
tions introduced in Definition 1 will ensure that the
total angular momentum is an unambiguous notion, In
the rest of this subsection, we restrict ourselves to
space—times for which this is the case.

Our next task is to relate the spin vector S, at i°,
defined by 8, =¢,,,,M°“P?, to the asymptotic behavior of
the twist. We have

Theorem 4: The spin vector S, satisfies' S, V*
=m/2[s(n,0") (M, V*) dS, where V® is any vector at i* with
V- P=0, w,=lim_;.Q"/2G, and S is the 2-sphere cross
section of ) defined by P.5 =0,

Proof: Set 8, =lim_;c *C,,.,. ™", Then, the tensorial
angular momentum M,, is given by®?® M,,F*°
=3 f B,, £°d8°, where F* is an arbltrary skew tensor
at i% £= £ Fom,, and where the integral is taken on
any 2-sphere cross section of /). Using the definition of
5, in terms of M,, one obtains, after some simplifica -
tion, S, Ve=m[5(V-7) (].l.m_,oQCabc,,t")'l)”dS‘d Next, using
the expression for second derivative of # in terms of
the curvature tensor of 2,,, the expression simplifies
to

x 1..1?01 (Qécdmnfm(nbebc;n)) s,
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Finally, using the fact that /23, admits a regular
direction dependent limit w, at /°, one has

S,VE=11/2 [5 (V1) & samn (= K - K)IK™ " dS°
= ))1/2}# M,V -n)dS. T

Remark: Hansen’s® dipole angular momentum moment,
defined under the assumption that the 3-manifold of
orbits of 2 is asympotically flat at spatial infinity,
also involves the asymptotic properties of the twist
field &,. Although no theorem exists to the effect that
the notion of asymptotic flatness used in the present
analysis is equivalent to that used by Hansen, on
intuitive grounds one does expect the equivalence to
hold in an appropriate sense. One is therefore led to
ask for the relation between the above expression for
S, in terms of w, and Hansen’s expression for the
dipole moment. We claim that there is a sense in which
the two expressions are the same. Apart from an
overall factor of »2/2, Hansen's dipole moment may be
regarded as the projection to the (conformally
completed) manifold of orbits of /* of the spin vector
S . 17

a

B. Axisymmetric space—times

In this subsection, we shall assume that the given
space~time (M, éa,,) is asymptotically empty and flat
at spatial infinity and admits a rotational Killing field
R in the sense of Sec. II. (Note that we do 7ol assume
the existence of a translational Killing field. ) We shall
first show that the presence of Re again implies that
B,, must vanish on /) and then analyse the relation
between the resulting spin vector S, and the Komar
integral involving R°.

Lemma 5.1: If R* denotes the Killing field on &, Pro)
induced by the rotational Killing field R?, LRBG,, =0 on

©

Pyoof: Set B, =QY/2%C, ., v"2'/?v"Q2% on M so that
Bab = hm-’ iOBab° Then! L}EBab :,2l d>Bab + 4Q*Cambn
XxVmeyQH/2 where & =1v _R™ The desired result
follows by taking the limit of this equation and noting
that lim_;.B,,, lim_;0Q'/2C,, ., and lim_;oV™"® yield
regular direction dependent tensors at i® and lim_;.®
vanishes. [

Lewtina 5.2: B,,R°R” vanishes on /) if and only if
B,, itself vanishes.

Proof: Since B,, is symmetric and satisfies D|,B,,=0,
it follows®:®!® that it admits a scalar potential f such
that B,,=D,D,f + fh,;; f is unique up to addition of a
fuction « satisfying D,D,a + ah,, =0. Using this gauge
freedom and Lemma 5.1, it is easy to check that one
can always choose a potential f which satisfies /z£=0.
Assume that this choice has been made, Then, a direct
computation yields B,,R°R”=1(D°u)(D,f) +fx and
B,,R’=[1(D°u)(D,f) +fu]R,, where £ =R°R, on /). Hence
if B,,R°R® =0, we have B,,R®=0, Using this result and
the field equation, D,B,,,=0, on /), it follows that
B, D’ =0. Finally, since B,, is tracefree and R* and
D, are mutually orthogonal (and vanish only on a set
of measure zero), it follows that B,, itself must vanish
everywhere on 0.0
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We are now ready to prove the main result:

_ Theorem 5: The presence of an axial Killing field
R® implies that B_, must vanish on /),

Proof The main idea is to use the asymptotic
properties of the norm £ and the twist &, of R® to show
that B,,R°R” must vanish on /); vanishing of B,, is then
implied by Lemma 5.2. We have: B,,R*'R’ = lim_;«§2%/?

X*C, o RERET = 1im,ioQ3/2£am"°I§“n’"n"VAn ﬁpi{ o Where,
as before, 7" =v™Q'/2, and we have used the expression
for the second derivative of the Killing field in terms
of the curvature tensor. Expressing the derivative of

R* in terms of L and §, one obtains

B,,R°R” = lim ;0% /2™n"

XProj. ((24)7g,,0 "‘\'7'mﬁ - VAbGa)

where “Proj.” stands for the operation of projecting
all indices of the tensor field that follows orthogonal to
ke, Using the fact that lim_;cQ/ and lim..©'/%6  exist
as regular direction dependent tensors, it follows that
B,,R°R*=0onf, "'

Rewarks: (i) Let us suppose that the ADM 4-
momentum P, is timelike. Consider an isometry in the
physical space—time which induces at spatial infinity
a nontranslational Spi symmetry, Since the 4-momentum
is necessarily invariant under the action of isometries,
it follows that the given isometry must give rise to a
spatial votation at i° (belonging to the rotation group
acting on the 3-plane orthogonal to P, in the tangent
space at i°); in this case, the space-time can not admit
a “boostlike” Killing field. Thus, if P, is timelike, and
if the space—time admits anv nontranslational isometry,
B,, must vanish on /).

(ii) The implications of Theorem 5 are the same as
those of Theorem 3, the presence of the Killing field
guarantees the “fall-off” property of the “magnetic part
of the asymptotic curvature required for the reduction
of the Spi group to the Poincaré, thereby indicating that
the (tensorial) angular momentum at {® will probably
be well defined. We now restrict ourselves to space—
times for which this is the case and examine the relation
between the spin vector S, at i® and the Komar integral
involving R%,

For simplicity, we shall now assume, in the main
part of the discussion, that P, is timelike and only
comment at the end on other possibilities, Consider
the timelike 2-plane in the tangent space at {° which is
left invariant by the action of R?% i.e., which represents
the axis of R®. (This 2-plane is spanned by vectors V*
such that F,V? =0, where, as in Sec. II,
F,,=lim_;.V,R,.) Let A* denote the unit vector in this
2-plane which is orthogonal to P,. Then, we have.

Lemma 6.1: The spin vector S, is proportional to A,.

Proof: The spin vector S, must be left invariant by the
action of R® in the tangent space at i° and is, by defini-
tion, orthogonal to P,. Hence the result. "~

Thus, what remains is only the computation of the
norm of the spin vector. We shall first express this
norm in terms of the asymptotic values of the norm and
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the twist of R® and then compare the re§ulting expres-
sion with the Komar integral involving R°.

Lemmia 6.2: 8, is given by S, =jA, where'®
j==-4/s47R,0,45®, where S is the 2-sphere cross
section of /) defined by Py =0, (Here, R® is assumed to
to be rescaled such that lim_;.V,R, =&,,.,P°A%)

Proof: S,A" = £, MUP’A® =} [2B,,£°dS’ by definition®®
of M,,, where, £ =PIBA?ly on/ and $% is any 2-sphere
cross section of J. Using the definition of 8,, it then
follows that S,& =f; - 2()™ D® glim_;o(Q%/ 27C 5 R%) dS ™,
where p=R-R on /). Next, using the fact that if R,, =0,
Vavac: cha
are well defined, and that o,*%°=0, one obtains after
considerable simplifications,

S,A° = s (L) P R,[L 170, (D°UD, ) - D?UD g, ] dS.

Finally, integrating the second term by parts and using
the fact that since 4 =R*R on /), D°D,p = 1 7'D*uD,p
~4yu, one obtains the desired result.

Using these results, one can now prove

Theovem 6: The spin vector S, is given by S, =j,A,,
wheve j, is the value of the Komay integral involving
Re,

Proof: In the terminology of Lemma 6.2, we only
have to show that j=j,. Consider, as in Lemma 2.3,
a spacelike three-dimensional submanifold of M, passing
through i°, and a family of 2-spheres 52 on this
submanifold, converging to the point {°. Then

Jn= jg Zé‘abcdvaRb aset
= f&zgabcd(ébva }I +%€ubwﬁm8n)ﬁ-l dSCd s

where, 52 is any 2-sphere in the sequence. Using the
asymptotic properties of R%, {i, and §,, and the fact
that on J, R¢ is tangential to S, it follows that

Jx= —4ls #R,0,dS*®, Hence the result, U

Remark: If P, is spacelike, Theorem 6 continues to
hold although the axis vector A’ would now be timelike
rather than spacelike. If P, is null, on the other hand,
some modifications are required. In this case, S, is
propovlional to P; S, =jP, where the “helicity” j is
related to the Komar integral as follows: if ﬁa is
rescaled such that F,, (=lim_;.V,R,)=,,P°A? for any
vector A? satisfying P*A =1, then j equals j,, the
Komar integral.

V. DISCUSSION

The analysis presented in the previous two sections
depends quite crucially on the assumption that the
physical space—time satisfies Einstein’s vacuum equa-
tion in a neighborhood of spatial infinity: It is only be-
cause R,, =0 near ¢° that we could recast the expressions
for energy— momentum and angular momentum involv-
ing the asymptotic Weyl curvature into expressions
involving the norms and twists of the available Killing
fields. Note that each of the definitions considered has
a direct but independent physical motivation. Thus, for
example, the definition of mass of a stationary space—
time in terms of the asymptotic behavior of the norm
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of the Killing field can be motivated using the fact that
the square root of the norm plays the role of the
Newtonian potential in the slow motion approximation,
while the definition in terms of the electric part of the
asymptotic Weyl curvature seems natural in the light
of the geodesic deviation, % which of course has a
purely geometric origin. Thus, each definition
emphasises a particular aspect of one’s intuitive
understanding of the corresponding conserved gquantity:
each has an apparently distinct origin. The fact that
these different notions actually agree in detail is a
reflection of the richness of Einstein’s equation.

Throughcut this paper, we have focused on asymptotic
flatness at spatial infinity. There are also available® !
definitions of energy—~momentum and angular momen-
tum in terms of asymptotic fields at null infinity.

How do these compare with those at spatial infinity?
Consider, first, space—times which are sialionary and
asymptotically flat at both null and spatial infinity.®
Then, the situation is the following, The Bondi—Sachs
4-momentum, defined at null infinity, is parallel to the
BMS translation induced by the stationary Killing field.
(Recall that the Bondi—Sachs 4-momentum is a linear
mapping from the space of BMS translations in to reals.
In stationary space—times, every BMS translation,
“prthogonal” to the timelike BMS translation induced

by the Killing field, is mapped to zero by the 4-
momentum. ) Now, one can show quite generally, i.e.,
even in nonstationary contexts, that there is a natural
isomorphism between the BMS translations and the Spi
translations. In stationary space—times, the
isomorphism sends the BMS translation induced by the
Killing field to the induced Spi translation. *® It therefore
follows, from Lemma 2.1, that the two 4~-momenta are
colinear. Finally, their equality follows from the fact
that the norm of each equals the Komar integral. Next,
consider angular momentum. Again, using the
isomorphism between BMS and Spi translations, one can
show?? that the spin vector defined at spatial infinity
equals the one defined at null infinity. In nonstationary
contexts, on the other hand, the situation is much more
complicated. First, a notion of angular momentum which
is free of “supertranslation ambiguities” is simply not
available at null infinity.? Hence, it seems difficult to
imagine a simple relation between, say, the spin vector
S, at i° and angular momentumlike quantities at null
infinity. In the case of energy—momentum, the situation
is somewhat better;, one expects that, if the radiation
“falls off” at a suitable rate as one approaches i° along,
say, future null infinity, the past limit of the Bondi—
Sachs 4-momentum should equal the ADM 4-momentum,
However, one still does not know the precise “falloff”
of the radiation field needed for this purpose.

Note added in proof:

1, Note that, unlike in the analyses involving pseudo-
tensors [see, e.g., R. Beig, Phys. Lett. A 69,
153 (1978)], we do not restrict ourselves to space—
times which are topologically R%, If the topology is
nontrivial, a given Killing field can give rise to several
distinct Komar scalars. In this event, the results in
the paper (Theorems 2 and 6) refer to the Komar
integrals evaluated on 2-spheres which, in the
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completed space—time, can be continuously shrunk to
i°%

2. The issue of the relation between the ADM and the
Bondi—Sachs 4-momenta, mentioned in Sec. V, has

been recently resolved (A. Ashtekar and A, Magnon-
Ashtekar; Preprint).
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Thermodynamical properties of a class of solvable statistical

models for hadronic matter
David E. Miller®

Department of Theoretical Physics, Y University of Bielefeld, Germany

The exact evaluation for the thermodynamical properties of relativistic quantum gas models for excited

hadronic matter using a statistical picture is carried out from the analysis of the grand partition function
for a general class of excitation spectra. Some special forms of these energy spectra for hadronic matter

are discussed for the physical content and the relationship to the known classical limiting cases.

I. INTRODUCTION

The basic development of the thermodynamical models
in high-energy relativistic hadronic systems is briefly dis-
cussed in the context of the presented solutions.

A. Relativistic gas

The kinetic theory of the monoatomic ideal gas using
the special theory of relativity was first investigated rather
early in this century. In the classical work by Jiittner' it was
found that an ideal gas within a large volume ¥ in the rest
system at an absolute temperature 7 (in atomic units
#i= ¢ = k, = 1) containing N particles, each of which pos-
sess the rest mass m, the momentum p, and the relativistic
energy (p* + m?)'?, yielded, after an integration over phase
space, a partition function proportional to the modified Bes-
sel function® K,(m/T'). Some years later the relativistic gas
was reconsidered for the effects of quantum statistics,’
whereupon it was found that this known solution was re-
placed by the series of such functions with the relativistic
fugacity 4 in the form

S kKy(km/T)A*.

k=1
In the years following, considerable further analyses and ap-
plications were done for these ideal relativistic gases* which
provide a rather finished description for these rarified inac-
tive systems.

B. Statistical hadronic models

Another side of relativistic statistical mechanics devel-
oped out of the statistical model® for high-energy interac-
tions in the center-of-mass system. Especially important in
the kinematical structure of the statistical bootstrap model®
is the solution for the ideal quantum relativistic gases with
the specified mass spectrum p(m). Motivated by thermodyn-
amical considerations, Touschek’ made a careful analysis of
relativistic phase space for the development of a truly covar-
iant statistical mechanics. In further analyses® it was found
that the difference between the invariant phase space and the
ordinary separately invariant momentum space generally
employed for particle physics is significant for the correct
thermodynamical functions. The most immediately obvious
contradiction in the use of invariant momentum space for
the thermodynamics is that it yields for massless particles

“'Heinrich~Hertz Fellow 1977-78.
"Now also a the Center for Interdisciplinary Research at the University of
Bielefeld.
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the wrong temperature dependence for the photon gas.

Since we are considering a variable number of particles
in a given spatial volume V, we shall use structurally the
previously developed approach® for the grand partition func-
tion as the beginning point, especially including the usual
assumption’ for the *“physical” partition function.’ This ba-
sic quantity may be found from rewriting the sum over the
discrete momentum states p,, as an integral over the phase
space measure do(p,m) so that

Yexpl —Bp.}— Jexp{ — Bptdo(p,m). 1.0

This process of summing over these discrete four-momen-
tum states p, with an inverse temperature four-vector 3
means 3, p., which is rewritten as 3p,—/p in the continuous
case. For the time being, we shall assume that this sum may
always be replaced by an integral—this excludes such con-
siderations as Bose condensation.

In a more thorough investigation in the high-energy
limit the phase space measure do(p,m) is usually separated
into a mass spectrum p(m)dm and a part dependent upon the
phase space variables—the four-dimensional volume and
momentum, which may be written together as df2 (x#p*).
After a little analysis using the properties of the rest frame®
where only the time component of 5# comes in, we rewrite
the integral in (1.1) as

fp(m)dm fd.()exp{ — BE(2)].

The properties of the mass spectrum p(m) is well known
from the asymptotic properties of the statistical bootstrap
model,*'® where it has the asymptotic form

p(m) =cm “exp{bm}. (1.2)

Furthermore, it is known that within this model the predic-
tion of a highest or “ultimate” temperature® relating with the
inverse of b can be proven'® for a = — 3. This result is as-
sumed in the high-energy limit where E ({2 ) asymptotically
approaches m. It is possible to make further simplifications
on the evaluation of the phase space integrals for the case of
noninteracting point particles in a large volume V, where-
upon the four-dimensional volume reduces’ to the usual
three-dimensional volume Vd *p, and for E (£2) the energy
spectum H (w) to a simple form dependent upon w, the single
particle energies (p* + m?*)'*. We now describe the single
particle energy spectrum H (w) as the collective state of
quasiparticles of the excited hadronic matter through a sta-
tistical picture in the rest frame of the total system.
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C. Generalized energy spectrum

The generalized energy spectra provide the structure
for the total energy of the excitations of hadronic matter.
The basic assumption for this quantum many-particle model
is that the density matrix elements may be diagonalized in
such a way that the form of the energy spectrum can be
written as a expansion in all the integer powers of the single-
particle energies. This situation allows us, for the general
complex energy variable z within some region of the complex
plane containing the positive real axis, to make a Laurent
expansion for the energy spectrum in the explicit form

Ho= S a7 (1.3)

With this assumed energy spectrum we are able to inspect

the structure of the complex integral using a given measure
df (z),

f df (z)exp| — BH (2)},

for its analytical properties. This study must be carried
through under the necessary physical conditions which are
imposed by the related real valued integral. This case, which
corresponds to the expansion in Hermitian operators, will be
our main interest here.

First we would like to see what may be simply under-
stood from the structure of (1.3) out of the evaluation of the
grand partition function which is formally defined for identi-
cal noninteracting particles 7 as

EWB) =[] + yexpl —BH )}, (1.4)

where ¥ is a factor which distinguishes between the various
statistics (¥ = + 1, Fermi; ¥ == — 1, Bose). At this point it
1s necessary to restrict the problem to include known special
solutions.

The special cases of this general formal structure,!
which have been previously investigated, give some specific
predictions for a range of real values of particular coeffi-
cients a,, . For the sake of completeness we shall briefly state
some of the necessary properties for real values of the coeffi-
cients. It is to be remarked that we find the usual grand
partition function'? for the ideal relativistic gas® when all of
the g, vanish except fora, = 1 and a, = — (u 4+ m), where
4 is the real chemical potential as given by the Gibbs free
energy per particle. It must be further stated here that a
necessary requirement for the replacement of the summa-
tion over states by an integral as in (1.1) with the form of the
mass spectrum in (1.2) requires that the energy spectrum for
real values at high energies asymptotically approach the
mass m. For this reason we redefine'’ our series and varia-
bles, especially for real values in the form {a, }—{c, } for
z—smy, so that

Hp)=m 3 ¢y’ (1.5)

has the proper relation to the decomposition of the phase
space and mass integral. For the time being we shall consider
only the explicit contribution of the energy spectrum to the
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phase space integrals. Under the assumption that ¢,, ¢,540 it
may readily be seen that for the real values of y the conver-
gence of the integral for = (¥,£) in the thermodynamic limit
may be assured by ¢, >0 for n>2, with no restrictiononc
for n>1. Using the properties of the integral representation
of (1.4) we find that in the thermodynamic limit

1

1im_:71n5(V,ﬁ):g’"‘ $ D e, ae

2 Lol k
where g is a phase space factor for the internal quantum
numbers and the phase space integral becomes

IL,(B)= J »dyy(yz — 1)"expy — kfm i eyl
1 noo- %
(1.7

We see in (1.6) and (1.7) a direct analogy with a cluster ex-
pansion'’ in nonrelativistic statistical mechanics where

k = 1yields the simple ideal relativistic gas or single-particle
term, and the following term & = N contains the clusters
with N particles with the forefactor ( — )* ' which de-
pends on the type of statistics.

D. Procedure

Finally, we make a few remarks about how we shall
develop and solve this problem as formulated in Eq. (1.6)
and (1.7) for hadronic matter at high energies. The fact that
we are primarily interested in real values of the expansion
(1.3) is similar to working with real values of the spectra of
the observables in quantum mechanics once one knows that
the operators have been diagonalized. This similarity means
that the really strong assumption is made when it is allowed
a diagonal form in terms of an expansion of single-particle
energies. We shall point out later the significance of some of
the powers in this expansion. In the following section we
shallcarry out theevaluation of In= (3 ). Directly thereafter it
will be shown how some aspects of these results may be un-
derstood. The conclusions report other related work in theo-
retical physics.

Il. EVALUATION FOR THE GENERALIZED
ENERGY SPECTRUM

The properties of the generalized energy spectrum stat-
ed in Sec. C of the Introduction are further elaborated upon
in order to arrive at the general solution, which is comple-
mented by some remarks and special cases.

A. Thermodynamics

The general form of the thermodynamic potential ex-
pressed in Eq. (1.6) is similar to the cluster expansion for the
classical interacting gas, for which ( — »)* = 'I,(8)/k yields
the structure of the cluster integral b, (8 )z * in the expansion
with z, the classical fugacity. As it was mentioned above, the
ideal relativistic quantum gases involve the replacement of
1, (B) by the form’® K ,(km/T)/k. We now want to propose
our extension to the expansion (1.6) under the conditions on
(1.5) for the convergence of the integral I, (8 )in (1.7). At this
point it is proper to propose the restrictions on the ¢, consis-
tent with the @, in (1.3). This proposal means thatc, = 1 and
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¢, = — (u + m)/m so that the term ¢y always dominates
overallthec ,py "terms. For the positive integers n > 1 we
must in general demand that ¢,, >0, which always brings as a
result faster convergence for I, () from the dominant an-
harmonic terms. It may be possible to relax this inequality
for some ¢, <0 under the restriction that there must exist
somec,. > 0for whichn’ > n. The general convergence prop-
erties of the complete “‘cluster’ series (1.6) is a much more
difficult problem, and will only be considered in certain re-
stricted cases.

B. Evaluation of the grand potential

We shall now state in a precise form the general results
of the explicit calculation of the integral /, () given in Eq.
(1.7) for the evaluation of the thermodynamical functions of
(1.6). These somewhat more general results will be further
qualified by a series of remarks and special cases in the fol-
lowing sections.

Main statement: With the general energy spectrum giv-
enin (1.5), the evaluation of the thermodynamical functions
from (1.6) through the calculation of (1.7) under the above
proposed assumptions on {¢; | may be stated in its most gen-
eral form as

1.B) = (kmB)" z(k’”’”" S b, liel]

==

G (nj.km BYkmpB) ", (2.1a)
G(nj,kmf3) =T (nj 4+ 3,kmf3)
— S UKkmBYIT (nf — 21 + 3,km B).
IR
(2.1b)

The coefficients b, {c,] ] depend directly upon the set {c, }
of coefficients in (1.5) and the properly formed products
thereof. The incomplete gamma function I” (a,x) as well as
the other notation with the double factorials are defined in
Appendix A. The details for the explicit evaluation of this
main statement are accordingly presented in Appendix B.
With this result we shall proceed further by making some
remarks aimed at deepening our appreciation of these find-
ings. It is, however, necessary for us to be particularly
strongly warned about the dangers of the limit m3—0,
which in the form of (2.1) is not obvious how to carry out,
and must be considered separately for various special cases
of the given spectra in (1.5).

C. Remarks on Bessel functions

This main result as expressed in Eq. (2.1) may be en-
lightened by a few remarks on some interrelationships be-
tween these series of the incomplete gamma functions I' (a,x)
with the exponential integrals E, (x) and the modified Bessel
functions K, (x) where a and v are real numbers, # a positive
integer and x a positive real variable. It is generally possible
to consider many of these results through analytic continu-
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ation under certain restrictions into the complex plane. Al-
though this process is consistent with our original expansion
of H (z) in (1.3), we shall, for the time being, leave such
considerations.

Remark 1: Special representations for K(x) and K,(x)
in terms of the incomplete gamma functions are given as the
following:

Kix) = x'Q[f(S,x) ~ SuRrG - 21,x)], (2.2a)
=1

Ki(x) = x"[F(Z,x) ~ Sunire - 2l,x)]. (2.2b)

[N
These relationships will be important in identifying the
terms in later work.

Remark 2: K(x) is best represented through E |, (x) as

Ko = SWIE,  (ox. (2.3)

I 0
A general formula may be derived from the Schlifli integral
representation’ in the given form.

Remark 3: Forv> — L we have
KW= — YT 1@y
x2'C (v + 1/2)

S b, T 2v — 20x)],

=1

(2.4)

where the coefficient b,(v) must be determined. Equations
(2.2) and (2.3) may be found as special cases of (2.4) through
the use of the correct recurrence formulas.

D. Interpretation of terms

In this section we want to physically interpret the struc-
ture of the terms a,z" appearing in Eq. (1.3). The interpreta-
tion for the terms @, and @,z in (1.3) is clear from our discus-
sion in Sec. 1.C, where they represent the terms naturally
appearing in the relativistic free gas and include no informa-
tion about the analytic structure of the hadronic collective
excitation spectrum. We recall that g, can be directly related
with the chemical potential 4, which disappears when there
are no conserved particle numbers in the case of the photon
gas of massless particles a, = 0. Because of the appearance of
the inverse temperature 3 in the grand partition function
(1.4), the logical choice for @, is 1. Our next consideration
comes for the terms of the form a _ (p* + m*) ™ "2 in (1.3).
Such mometum space “potentials’ relate'* directly with the
Fourier transforms" of the Lennard-Jones type of poten-
tials. It is known, for example, that under certain limiting
conditions these Fourier transforms in coordinate space are
responsible for the long-range behavior necessary for the
phase transitions of the van der Waals type. We shall consid-
er this point further in later work. The other terms with the
positive powers a,(p? + m?)"’* for n > 1 can be regarded as a
sort of ““anharmonic’ corrections in the excitation spectrum.
This interpretation is particularly meaningful for the case of
small m where the a,z term relates directly with harmonic

David E. Miller 803



oscillator so that the higher powers in (o> + m?) "? contrib-
ute directly to the anharmonicity in momentum space.

lll. ANALYSES OF THE SOLUTIONS

The general solution which was given in the main state-
ment (2.1) of the preceeding part will be further analyzed
here for some special cases of physical interest.

A. Special forms

In this first section we shall list some special cases of the
coefficients ¢, in the expansion of the excitation spectra (1.5)
under the general assumption that ¢, and ¢, are not both
identically zero. It is generally possible for us to find the
fitting expressions by using the proper relationships between
I"(ax), E, (x) and K (x) as remarked above. Furthermore,
for simplicity we shall use 4 = exp{mfic,}
= exp| — @+ m)}|,c,=1and x = fm.

1. The case for the ideal relativistic quantum gas' is
readily found by including only ¢, and ¢, as

[ (x)=A "K,(—"ﬁ. 3.1
kx

The relationship to the main statement (2.1) is obvious from

the remark (2.2a). This form (3.1) may then be replaced in

(1.6) in order to find the thermodynamical functions after

making the appropriate choice of y for the statistics.

2. For the case where we have the only additional coeffi-
cient ¢, == ¢', which is nonzero, we may explicitly write out
the integral /7, (x) in (1.7) in the form

k

[, (x)= i——[K;(kx) — ¢ "kxK (kx)
kx

o o ’ "4 2
(— ¢ 'kx) ko

+ 3

E (k
n 0 ("I + 2)' { " X)

X [ E(x)— SUE, . ,,(kx)”. (3.2)

1=1

We can see directly here how the additional coupling ¢’ af-
fects the cluster structure as it was elaborated upon in the

preceeding part. This particular structurein (3.2) relatesto a
special limiting case, which we shall investigate afterwards.

3. The Yukawa type of expression'' is given by a nonze-
ro term of the form ¢, = ¢” as the only additional coefficient
(c., = 0). For this energy spectrum the evaluation of the inte-
gral yields

_ C» kx)n b1

I, (x) :A—k[K,(kx) + 5: (
k kxt e (1)

><kx[E2,,(kx) — SWE,, zn(kx)” (3.3)

=1

We notice a general similarity in form between (3.2) and
(3.3). However, in (3.2) we have the additional K,(kx) term
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as well as the odd £, (kx). These terms turn out to be quite
important to the physical structure.

4. The so-called “anharmonic” terms with ¢, 40 for
some positive 7 can be in general written as

ko - "o .
IA(X):A— Z E“—k{—)_ Z bni”Cn”Kl 0,/(kx)’

X 00 n! i
3.4)

where b, [ {c,|] depend on products and powers of the var-
tous coefficients of {¢, |. The special case of (3.4) for i =2

may be readily worked out.™

From these special examples of the generalized energy
spectra we are now in a position to see that any particular
solutions relating to (2.1a,b) can be found for the ¢, terms
as generalizations of (3.2) and (3.3), while for the ¢, terms
these expressions can be directly derived out of (3.4). With
this knowledge we shall come to a discussion of some limit-
Ing cases.

B. Limiting cases

The study of some particular limiting cases brings out
some special aspects of these models. For these limiting cases
it is somewhat more convenient to work with the original
expansion (1.3) since the limit x—-0 can then be treated in
two ways for F--0 (the high-temperature behavior) and
m--0 (system of massless particles). The interpretation of
these two limits is physically different. For a finitely massive
particle system the high-temperature limit results in the clas-
sical ideal gas. However, for massless particles the thermo-
dynamics becomes that of blackbody radiation obeying a
Stetan—Boltzmann 7' law. If, however, we would take the
form (1.5), the two limits would become equivalent.

1. We now examine (1.3) for the limit m—0. It is clear
that the single particle energy w(p) as (p* + m?)""* becomes
w(p) = |pj. For the usual photon gas we have in (1.3) only
a, = 1 and all the other terms identically zero including a,
because of the masslessness. This case for 7, () may be im-
mediately solved to find the Stefan-Boltzmann form. The
additional *‘anharmonic” terms a,, for positive 7 can be put
in and solved under the above stated conditions, but they
seem to have little physical relevance since one does not ex-
pect the photons to couple to themselves. However, a special
case, which is finite for m—0, involves only ¢., = «® in addi-
tion to «,. Under this assumption we may solve for the k
cluster integral as #7—0 to find

1,(8) = u'K.(2kup3). (3.5)

This form of the cluster integral shows that the coupling u
has taken over the role of the mass for the massless particles.
This result means that the particles which couple througha_,
are qualitatively different from photons, in that they possess
a real clustering property. The further terms in the series for
H(y)oftheforma ,z " possessthe known “infrared”
singularities in the small mass limit. This situation is clear
from the consideration of the term ..z, which for m—0
yields the usual Coulomb structure and its expected infrared
divergence. The further terms, a_,z7%, @z, etc., diverge even
more strongly in this limit.
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2. The other limit m—» o is very important for heavy
resonances. For this case the factorized form of the excita-
tion spectrum (1.5) is more convenient. When we assume
that every order in the negative powers in (1.5) is coupled in
the same way so that all the terms ¢ _ , have the simple
power form {¢/m)(c’/m) " where ¢ and ¢’ are two given con-
stants, we have the additional term in the energy spectrum of
the type (¢/m)In[1 — (c'/my)]. Thus the k-cluster integral in
(1.7) then becomes

1]

@ - kf3c i
1) =a* [Cawr— (1= ) e e
! my
The evaluation of this integral follows the form of (2.1)
which may be explicitly evaluated as

(kcﬂ) (13— nkx)

1L, (B) =

n

(k[)))z n=1=0

— S UG —n— 21,kx)], 3.7

=1

where b, (k¢f3) is in this special case of the form

b, (keB) = keB (ke + 1)‘..9@1—_1), (3.8)
nl

which comes directly from the above power form of ¢ _

-

3. We now consider another case for this large mass
limit where only the positive powers ¢, enter. When we as-
sume the particular structure of the additional terms to c,
and ¢, to be of the form ¢, as (¢”m)"/n, then the total ex-
pression is of the form given by

H(y) =com + cimy + clexp{c"my} —c"my — 1).

3.9)

Again we are able to carry out the expanded integral (1.7) as
k n

LBy =a*explkpe) S "k x o, 10y

n=2~0 'Xl\n

where X, means m[kf (1 - cc”) — nc”]. This solution is
regular except in the neighborhood of zero. Because of the
properties of the modified Bessel function®'” around the ze-
ros, we find that at any such point the thermodynamics re-
duces to
N T.—T\-3

lim —In= (V,T)~<——> , (3.11)

™o V Tc
where T, takes the form & (1 — cc”)/mc” from the zero
points of K,(X, ). Itisinteresting to note that T, relates with
the ratio of & to n for nonzero n, which means that the “criti-
cal” temperature is determined by the additional binding-or
coherence n due to the additional structure in (3.9) in com-
parison with the cluster size &. In simple terms, this means
that T, is the relationship of the cluster size coming from the
symmetry as compared to the structure from the coherence.

C. Physical interpretations

Although it would be possible at this point to do a more
thorough analytical investigation of some additional special
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cases including the limiting forms, it is perhaps more infor-
mative to briefly look more deeply into the explicit math-
ematical structure of the above considered terms as typical
of the others. Surprisingly enough, a numerical investigation
of these integrals 1, (x) turns out in most cases to be quite a
lot simpler than one would think. This situation arises from
the fact that the K,(x) and E,, (x) both have rather workable
asymptotic forms," which for small values of the couplings
¢, usually lead to rapid convergence for the higher powers.
This analysis for the Yukawa term' of Sec. IIIA.3 above
shows that the main convergence difficulties in (3.3) for very
small ¢” come for x around unity, which means that the
thermal energy is of the same order as the mass energy, so
that neither the x--+0 photon gas nor x— oo classical ideal gas
limits come into play. However, as remarked above, one
must be careful in this case with x—0 because of the infrared
problems. For the sake of more explicit calculations of phys-
ical interest, we mention a particular model. In order to pre-
serve the properties necessary for the thermodynamic limit
of a statistical system,'* we propose a combination of the
terms arising from c_, and ¢, so that ¢’ > 0 and ¢” <0. This
choice can be seen to give the proper repulsive hard-core and
attractive long-range behavior using the Fourier transforms
of these expansion terms as derived in Appendix B. A more
detailed treatment of this model with a careful discussion of
the mathematical and physical properties will be carried out
elsewhere.

D. Mathematical extensions

The last point of consideration in this part is the exten-
sion of these analyses to complex variables. Although the
analytical structure of (1.3) is designed for an expansion of
the function H (z) of the complex variable z, the evaluation of
the integral of the type I, (x) in (1.7) with the necessary con-
vergence conditions upon it would be greatly complicated by
the presence of the singularities and the multivalued struc-
ture found for such functions in the complex plane. It may,
however, be appropriately remarked here that the term a,
could readily be taken as complex, which would effectively
make A complex as in the Yang-Lee theory of phase transi-
tions.'* Other terms may be included in principle as complex
variables, since many of these integrals can be under the
proper restrictions extended to the complex plane. However,
the intention of our main result in (2.1) would then be drasti-
cally changed.

IV. GENERALIZATIONS AND CONCLUSIONS

In this concluding part of our work we want to assemble
the various calculations to make some specific predictions
for the thermodynamical functions. We are able to fully car-
ry out this program only after bringing together the phase
space parts, which were evaluated above, with the integra-
tion over the mass spectrum in terms of a total grand parti-
tion function Z (V,3,4 ). After writing Z (V,8,4 ) we shall
point out its significance to some problems in hadronic mat-
ter as well as possible further work in this direction.
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A. Mass spectra

Up until now we have concentrated upon the analytic
properties of the phase space integral I, (8 ), treating the
mass of the particles as a constant. This approach, however,
1s very unrealistic for high-energy physics where one very
seldom has a single type of interacting stable particle, but is
usually confronted with a large number of unstable particles
decaying, forming resonances, and interacting to form
bound states. This situation may be generally described by a
mass spectrum p(sm). We shall now briefly look into the ther-
modynamical functions resulting from these calculations.

The origin of the mass spectrum arises primarily in the
applications to relativistic statistical physics in the area of
multiple-particle production for hadronic systems. For such
systems one often employs the specific mass spectra p.,(m)
and p_,(m) for the Fermi-Dirac and the Bose—Einstein statis-
tics respectively. The general thermodynamical treatment of
this problem was first developed by Hagedorn®” for the anal-
ysis of the decaying fireballs consisting of many types of par-
ticles and resonances. We may regard the simplified system
considered in detail above as possessing the simple delta
function mass spectrum so that there exists only a single
stable particle of mass m,, the lightest hadron. With this idea
of extending our system to include a mass spectrum we may
rewrite (1.6) for the total partition function as a functional of
the mass spectrum Z [p(m);(¥,3,4 )] in the expansion de-
pending upon the statistics from y as

V“an],
P K -
:(Eg?) Zék—(«;/)k f dmp () (m' ), (4.1)
7 K m,

where A is the relativistic correspondent of the activity or
fugacity for the hadronic matter. The usual statistical boot-
strap model*'" demands that the individual mass spectra all
have the form (1.2).

The thermodynamical functions may now be calculated
whenever the excitation spectrum can be specified within the
above stated conditions. The pressure is immediately calcu-
lated from (4.1). For the massive particles the average parti-
cle density may be calculated in the usual way'? through a
differentiation with respect to 4 as 4 (9/94 ) InZ (V.,5,4),
which yields a second expansion in the powers of 4.

There has been a considerable amount of work using an
S matrix approach for the interacting relativistic gas. It is
found that for this system one can develop an .S matrix for-
mulation of the cluster expansion in statistical mechanics.®
This approach has been further developed to study the possi-
bility of phase transitions in large hadronic systems.

B. S-matrix approach

It is important throughout the present work not to mis-
take the energy spectrum H (w(p)) of the excitations in ha-
dronic matter with the formal Hamiltonian operator, which
itself contains all the various energy contributions including
those absorbed in the mass spectrum as well as those regard-
ed by us as interactions with the hadronic medium. Thus
H (w) can be interpreted as the energy “left over” from p(m)
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that does not go into pure particle production, but remains
as an interaction with the hadronic medium. Such an energy
spectrum only has meaning as quasiparticles or excitations’
of the interacting hadronic system, not as singly produced
hadrons. However, this structure reduces to the real particle
formalism in the case where the particles decouple from the
medium.

During the course of this work we have made some
rather strong assumptions on the excitation spectrum
H (w(p)) in the form mH (w(y)), which assured the necessary
structure for the statistical bootstrap model.”® A change in
this assumption or omitting it altogether could drastically
alter the known critical phenomena associated with the
model of hadronic matter.

C. Critical exponents

At this point we want to state briefly a few of the critical
properties of some models for hadronic matter. From the
calculated analytical structure of the partition function in
the statistical bootstrap model®'° a singular structure is
found relating to the parameters @ and b in (1.2). When the
related gas model with a mass spectrum p(m) is considered, a
set of critical exponents?' may be associated with this singu-
lar structure in the thermodynamic limit. These ideal have
been further developed in work on the quantum relativistic
gas models? including p(sm), for which an equation of state?
has been recently found. Furthermore, a general type of clus-
ter model has been introduced for statistical mechanics at
high energy density.* It has also been recently found that the
presence of a coupling between the fireballs in a slightly
modified statistical bootstrap model can give rise directly to
a phase transition which is characteristic of this model of
hadronic matter.'

D. Concluding remarks

Finally we want to make a few concluding remarks co-
cerning the physical nature of our general solution given in
(2.1a,b) along with the special cases mentioned in Sec. II1.

1. Qur above proposed model, which is characterized
by an energy or excitation spectrum H (w(p)), has the general
effect of introducing a binding together of the clusters
formed by the statistics in the ideal relativistic quantum gas.
This structure appears quite openly in the special cases dis-
cussed in Sec. ITI.A, where, in addition to the known ideal
cluster terms K,(Ax)/kx of the relativistic gas, we also havea
series in the powers of the relevant couplings. This effect,
which is particularly apparent in the examples 2 and 3,
makes a direct contribution to the collective structure of the
hadronic matter. In order to understand this contribution
more clearly, we shall elaborate more specifically upon the
structure of the model suggested at the end of Sec. I1L1.C.

2. The general properties which are derived from a
model with¢’ > 0and¢” « Obear a resemblance to the known
interaction potentials of atomic physics after performing a
Fourier transformation into coordinate space. From the spe-
cific evaluations of the Fourier transforms at the end of Ap-
pendix B we may describe the corresponding interaction po-
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tential ¢ (r) for this model in the form

()=

We can immediately see that in the limit m—0 the repulsive
part with ¢’ > 0 goes over to the form 4m¢'/7*, which is similar
to the atomic potential arising from the centrifugal barrier,
and the attractive part with ¢” < 0 becomes 27°c” /r, the sim-
ple electrostatic Coulomb potential. The situation now has a
basic similarity with the well-known binding structure of the
diatomic molecules, for which it is possible to make a de-
tailed analysis for the thermodynamical properties of a gas
containing separate translational, rotational, and oscillatory
degrees of freedom.? In this sense it may well be possible to
envision our relativistic gas expansion as forming a binding
or a coherence between the “elementary’ excitations in the
hadronic matter which in a special sense have a likeness with
a gas of harmonic oscillators in equilibrium.?

”

’ 2
d7mc Kimr) + 27%¢” mr 4.2)
r

3. The primary result of this work is the development of
the mean field type of picture for the description of the bulk
properties of hadronic matter. When we consider specifical-
ly the model suggested above, we see that the basic structure
necessary for the mean field description is present in the
potential (4.2), in the small mass limit with its repulsive core
and its long-range attractive part. These features seem tobe a
direct reflection through the Fourier transform of the origi-
nal expansion of the energy spectrum (1.3) in the one-parti-
cle energy w(p), which arises primarily out of the fundamen-
tal relativistic invariance of p, p* = m’.

4. Another model which seems to have a rather direct
relationship to our energy spectrum arises in the description
of phase transition to the spontaneous coherent state?” as
found from the Dicke laser model.? In fact, it is found that
the form of the radiation field energy H (@) can be written as
(1 ~ w;/wz) with the extra inclusion of an additional
(w, /w)* term from the retardation effects.” This first expres-
sion is equivalent to our energy spectrum with an ¢_, term in
the limit /-0 as discussed in Sec. IIL.B. Further work in
this direction has shown how to use a pseudospin model
based on the Dicke model in order to describe the phase
transitions in nuclear matter.* This model already envisions
some of our future goals.

As a final remark in this work we may state that we have
considered how to evaluate the equilibrium thermodynami-
cal properties of some relativistic quantum statistical models
for bulk hadronic matter.
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APPENDIX A: DEFINITIONS OF SPECIAL
FUNCTIONS

We shall state here the definitions for some quantities,
which have been used throughout this work.

1. The double factorial is defined as

nl = n(n — 2)(n — 4)-, (A1)
which for even numbers becomes

@mt = (2n)(2n — 1)--(4X(2), (A2)
and for odd numbers becomes

2n — D= 2n — 1)2r — 3)-(1), (A3)

under the requirement that 0! and ( — 1)!! be unity. In our
particular notation we introduce !/!

— 3
= = (A4
QHm
2. The incomplete gamma function *' I" (a,x) has the
integral representation given by

I“(a,x):f drt™ le " (AS)

It relates to the ordinary complete gamma function I (a) for

a0, — 1, — 2, by*

o _ k+ Ltk

rey=r@- 3 (=D x
o (a+ k)k)

and fora =0, — 1, — 2,-., — n - in the limit x—0 as

I (a,x)

(A6)

(—'In+l x n—k— n n
=+[k20(—1)kku K 1~}-xln)c-+-0(x)].

(A7)
3. The exponential integral'® £, (x) is defined by
Ew= | Fe—n (A8)
"

4. The modified Bessel functions® of the second kind
K, (x) have the integral representation®

/2T ()

K="y

J.wdte""(tz —D2 (A9
1

forv> — L.

5. The asymptotic forms for the functions used above
have the following structure's*':

(a) for x— oo the exponential integral becomes

Ew~tio D )

x x?

(A10)

(b) for x— oo the incomplete gamma function is given
by

I(ax) = el—_xa[l + a; 1 n (@— 1/1(2(1—2)+ ]’
x
(Al1])

(c) the modified Bessel functions in the limit x— o are

2
G~

David E. Miller 807



2 —_ 2 __
(4n* — 1)(4n* - 9) N ] A12)
2(8x)°
(d) while in the x—-0, the form is
2" n— 1)![ x? ]
K, (x)~ 1 — + . Al3
) " 4n — 1) ( )

6. An important relationship between the exponential
integral and the incomplete gamma function is

Ex)=T0—nxx" . (A14)

APPENDIX B: EXPLICIT EVALUATIONS

1. We shall now furnish the details of the evaluation of
I, (B )in (1.7)in the form (2.1). Tt is to be first noted that the
deviations from I” (a,x) integral of (A5) come from the pres-
ence of (* — 1) and the nonlinear terms in the exponential.
Because of the range of integration (1, ec) it is much more
efficient to expand the form y(1 — 1/y°)"* in the powers
(1/y*}". This expansion we perform

7

(I—yH=1- YUl 3’. B
I

from which the form of (2.1b) is clear. The direct expansion
of the exponential excluding the linear term forms the sum-
mations in (2.1a). In order to insure that these expansions

are integrable we provided distinct criteria on ¢, in the pre-
vious section (Sec. I1.A). The coefficients b, , are combina-
tions of the coefficients ¢, in the expansion (1.5) and do not
depend upon the quantity A 3. We separate these terms out
in such a way as to find the integrals for I (a,x) of (2.1b).

2. The ideal relativistic gas may be found as special case
which is known'- to find the K,(4x). This result may be relat-
ed to (2.1b) by making the above expansion (B1), which is
the content of the first remark (2.2a). When the same evalua-
tion is done for the phase space* we find (2.2b). The further
special cases worked out in Sec. I1I.A may be found in a
similar way with the replacement of £, (x) for I" (1 — n,x) as
stated 1n Appendix A. 6.

3. Finally we consider the explicit evaluations of the
expressions discussed in Sec. II.D which may be directly
found from the tables of Fourier transforms. From these
evaluations we may directly calculate the coordinate repre-
sentations of the interaction potentials ¢ (r) as a function of
the distance » from a given point. The general form of these
Fourier integrals'>* for ¢ {r) are given from real (rational)y
as

47 z , s

80 =(37) [“dppt + my ysingr. @
For the particular terms of interest we find that the half-
integer negative powers are given by the integral®

Vi 4

f B vt (7K mn)],
R (pz + mz)” t1/2 2nmnr(n + 1/2) dr "
(B3)
and the whole integer powers have the form*
J‘{Xdp pSin{pr} — (— 1)"77- d” (e mr) (B4)
0 (pz + mz)lz + 1 n!zn + lmn dmn
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A more general expression® forallv> — 1,v=£3/2,5/2...is

Vo @myr

. K (mr).
1"(; —v)

J dpp(p® + m?" Yisinjpr} =
4]

(BS)

For our particular calculations the corresponding coordi-
nate space potentials ¢, (r) fora ,(p* + m?) ~"/* with
n = 1,2, and 3 respectively are readily found to be given by

o) =3k omr) (B6a)
v

dr) = 2, (B6b)
¥

b4r) = 87K (mr) (Béc)

From these terms we can see that other similar forms may be
likewise calculated from (B3)—(BS5) with the exception of the
positive integer powers, which fail to fulfill the necessary
criteria for Fourier integrals."*
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We quantize the full component electromagnetic potential so that a version of the Haag-Kastler axioms
applies. The resulting quasilocal theory is viewed as a gauge theory in the spirit of Doplicher, Haag, and
Roberts. Interaction with a classical current is described and found to yield no surprises. Lacking a

rigorous scattering theory for the electromagnetic field, we construct a rigorous analog of the asymptotic
Hilbert spaces for quantum clectrodynamics proposed by Kulish and Faddeev and Zwanziger. On this
basis we are able to find the representations of the gauge group that are associated with each charge
sector i the asvmptotic space. These representations correspond, in a sector of charge g, to the

subsidiary condition d*4 (x)= - ¢ D(x}

1. INTRODUCTION

In a series of previous papers'-** we endevored to estab-
lish an alternative formalism for the quantization of the elec-
tromagnetic field. This formalism suffers from defects when
compared with conventional Wightman field theory,® never-
theless the approach has some merits. In particular, it dem-
onstrates that Fermi's original method® for quantizing the
electromagnetic field can be recast in rigorous form and sug-
gests that it is not improbable that a definite metric formal-
ism, which retains most of the features of a manifestly covar-
iant theory, may exist for the electromagnetic field in
interaction.

1.2.3

This paper is concerned with applying the formalism to
some problems to which the indefinite metric approach®
does not appear to be well suited. In Sec. 2 we recast the
resulis of Refs. 1-3 in the Haag—Kastler framework of quasi-
local algebras.” Our aim here is to present the free electro-
magnetic field as a gauge theory in the spirit of Doplicher,
Haag, and Roberts.*” This section of the paper corrects and
amplifies some remarks in Ref. 3. In Sec. 3 we apply the
Weyl algebra approach developed by Shale'® (and based on
Cook") to the example of the quantized electromagnetic
field interacting with a classical current. There are no sur-
prises here and the results of Refs. 10 and 11 for the scalar
Bose field carry over without difficulty to the full four-com-
ponent theory.

Our main results are contained in Sec. 4 and 5. Here we
are concerned with producing rigorous analogues of the as-
ymptotic Hilbert spaces for quantum electrodynamics pro-
posed by Kulish and Faddeev'? and Zwanziger." We accept
the results of Refs. 12 and 13, which are based on perturba-
tion theory, as largely correct, believing that they represent
at least qualitatively the asymptotic structure of quantum
electrodynamics. Our attitude here is that, because charge is
a conserved quantity, and heuristically at least, gauge trans-
formations of the second kind have generators which evolve
freely, results obtained on charge sectors and gauge transfor-
mations in an asymptotic Hilbert space for quantum electro-
dynamics will remain true in interaction.

The conclusions we come to are essentially the same as
those of Zwanziger,"' the main point being that the Lorentz
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condition ‘4 (x) = 0 cannot hold in any sense in a nonzero
charge sector (a result which is reinforced by the indefinite
metric arguments of Ferrari, Picasso, and Strocchi’®). In
fact, in a sector of charge ¢ we find the subsidiary condition
tobe 34, (x) = = — gD (x), where D is the usual commu-
tator function for a scalar zero mass field. This has the corol-
lary that the algebra of quasilocal observables appears to
vary depending on the charge sector in question, in contrast
to what happens for global gauge groups (see Doplicher,
Hagg, and Roberts®).

This work is intended as a preliminary step in develop-
ing a definite metric approach to quantum electrodynamics
which is suited to an analysis of charge sectors and the gauge
group along the lines of Doplicher, Haag, and Roberts.®!*

2. C*-ALGEBRA OF QUASILOCAL
OBSERVABLES FOR THE ELECTROMAGNETIC
FIELD

Let X ;" = {keR *}k,>0,k? =0}. Let & be the space
of C “ functions with compact support in R * taking valuesin
R “ Each pair of functions (f,g)e % X & definesa function on
X, by

— _L___ : kX g3 2.1
$(K) (27)‘/2f[wf(X)+lg(X)]e dx, Q1

where @ = [k|. If we define

1
(277.)1/2

where k-x = ©x, — k-x), then é is an R *-valued solution of
¢ = 0and ¢ (x,0) =/(x), ¢(x,0)=gx).
Let M, denote the real linear space of solutions & of the
wave equation so constructed from initial data in /. The

Poincaré group acts on M, by (Z—»«;Aﬁ’,

b= —— [ Lo 4 3w e
2w

where
é'(x) = AU (x —a)), 2.2)

with (a,A ) a typical Poincaré group element. It is wellknown
that M, is invariant under this group action. Furthermore
M, has a Poincaré invariant symplectic form
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A k -
BG40 = + [ £X 440870 — §7008 ),
We introduce two Poincaré invariant subspaces of M,:
N, = {eM, | #¢,(x) =0},
T, = {<1§€Mo I q;“(x) =d,y(x) where y = R*—R }.

It is not clear a priori that N, and T, contain very many
elements. To see that N, and 7, are “sufficiently large” we
introduce on M, a “complex structure” by setiing

(J19)(k) = — igd (k),
where g = diag(1, — 1, — 1, — 1). (Note that J does not

leave M, invariant.) Then M, becomes a complex pre-Hilbert
space if we define the inner product by

(b4 =B(J 4" +iB@d).
The inner product  , > is not Poincaré invariant, however
the representation (2.2) and M, extends to the completion M

of M, as an indecomposable representation by bounded
operators.'

The closed subspaces N and T of M defined by the
conditions

k#¢ (k)=0 and ¢,k)=kyk), y=X,—C,

respectively, are Poincaré invariant. If we denote by P, and
P the projections onto ¥ and T, then Py = P, — P, projects
onto the subspace of M consisting of radiation gauge solu-
tions of Maxwell’s equations, i.e., if (I;E(PN — P, )M, then
k-d(k) =0, ¢o(k) = 0.

Proposition: Nyand T, are densein NV and T respectively.
This result is easy to prove if one observes that elements of T,
are constructed by taking y: R *—R, Dlx = 0, with initial
data C * of compact support. Then al,XETo and, as T, is
Poincaré invariant and the representation of the Poincaré
group in T'is irreducible, T, is dense in 7. Similarly ¥, con-
tains 7; as well as elements of S of helicity + 1. The only
proper closed subspace of M invariant under the Poincaré
group, containing T and elements of helicity + 1is ¥ (see
Ref. 16). So &V, being invariant, is dense in V.

Now we construct the algebras associated with each of
these spaces. If gSeMo, denoteby &, the function on M, taking
the value 1 on ¢ and zero elsewhere. In the usual way form a
*-algebra 4(M,) by taking the complex linear span of the
d,’s with

(ZA,8,)*=3.4,6 ,

and

8404 = expl — (i/2)B (.6 )16, , 4-
Construct 4 (M,), the C *-algebra of the CCR over M.} 1718

Local algebras are obtained by taking for each & CR *,
open and bounded, the algebra A(¢7) consisting of the linear
span of those 8, such that, for some spacelike hyperplane P,
the initial data for ¢ on P has support in Pn/7. Clearly
A(M,) = u, 4 () where the union is over all bounded open
sets in R “.

The algebra 4 (#7) [the completion of A(7) in 4 (M,)]
is the local field algebra associated with ¢ and we have
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A4 M= UALE).

We may similarly associate algebras 4 (V,) and 4 (T;) with
the subspace N, and T, of M,, and hence define algebras
A NL) and A (T(7)) by
AANL(Y = A (N)nd (7),
ALT(ON =ALT)nA ().
Now the elements of 7, act as automorphisms of 4 (#,) by
A—8,A46 _, Aed (M,), yeT,.
In particular,
Os—00,0 ,=e" Bo.g 8,

A straightforward calculation shows that this last expression
corresponds to the heuristic one, 4,4, + d,y, where 4,, is
the field operator in a given representation of 4 (M) and y is
the real valued solution of Ly = 0 such that ¥ =4, y.

The linear space T, is therefore represented as an addi-
tive group by inner automorphisms of 4 (M,). We call T, the
gauge group. To investigate its properties and to determine
the quasilocal algebra of observables for this theory we go to
a particular representation.

Let o(¢) = exp[ — 4B (¢,J )] be the generating
functional of the Fock representation p,. of 4 (M,). This
defines a state on 4 (M,) which we will also denote by .
Noting that p,(4 (1)) is a commutative von Neumann al-
gebra, we can decompose the Hilbert space . ,.of p. as a
direct integral by “diagonalizing™ this algebra. This may be
done explicitly as follows.

Denote by 7" the orthogonal complement of N in M.
Introduce the normal weak distribution i (i.e., cylinder
measure) on 7! with characteristic function
U—exp| — 4B (¢.J, )], YeT. Define H.. to be the Hilbert
space which carries the representation of 4 (N,) given by the
state o, whose restriction to 4(V,) has the form, for each
LeT!,

0.(ZA8,) = Y Aexp[ — 5C(8,8) + iB(§,0)].
where J

Clb8) = ~ f 65(K)d, (K)d 'k/ 2.

Define the Hilbert space

Hy.= f Hdu(©),

to be the completion of the space of cylinder functions F on
T such that £($ )eH, (note that ali the spaces H. may be

chosen to be identical as the states o are obtained, one from
another by the action of the automorphism

a8, 0 peM,, ie., 0. = g,°a;) in the norm

IFl = [ 1P @),

where || || denotes the norm in /.. The Fock representation
P acts by
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Pf‘(‘s.b)F(;):ps‘(aé)F@)’

for geN, where p, is the representation corresponding to O
If ¢T,, this reduces to

pr86F &) =e PEDF (),

so that 4 (7;) is diagonalized. For those elements ¢ lying in
T M, we have

PrGIF () =expl — 1B EI ) — iBWJIDIFC + )

(noting that J,¢<T'). It is straightforward to check that this
is indeed equivalent to the Fock representation (cf. Ref. 19).

From this realization of the Fock representation one
observes directly that o, is a pure state on 4 (), that
p 4 .(T,))" is the center of p.{4 (N,))", and in fact that
P4 AN = pAT))". Therepresentationp, | 4 (Vo) is
therefore miltiplicity free. Furthermore we see that
prd (No(#)) = ppd()Np (A T0)).

What now is the algebra of observables for the electro-
magnetic field? We cannot regard 4 (N,(/)) as the algebra
of observables localized in ¢ since it contains elements
which create from the vacuum unphysical states in the Fock
representation. In order to guarantee that the gauge degrees
of freedom are eliminated, we need a representation of
A (No) in which the elements of the gauge group 7, act as
scalars. Since 4 (T5) is the center of 4 (N,) this will occur
wherever we have an irreducible representation of 4 (V,).
Note that every irreducible representation of 4 (), on re-
striction to 4 (T,), defines a character of this algebra. A
physical interpretation of these characters has been pro-
posed by Zwanziger." To discuss it we need to make contact
with more conventional notation. Let p be a representation
of 4 (M,) such that A—p(8,,) is continuous in A€R. Then
p(8,) = expid (¢) where 4 (¢ ) may be interpreted as the
electromagnetic potential smeared by ¢. In the special case
where ¢eT, say ¢,(k) = k, y(k), then 4 (¢ ) may be seen to
represent the operator 4, (y), i.e., the supplementary con-
dition operator #4,,(x) smeared by y. Hence the algebra
A4 (T,)is essentially the algebra generated by the supplemen-
tary condition operators ¢4 ,(x) and each character of
4 (T,) corresponds to a choice of supplementary condition.
Before pursuing this argument further let us determine the
set of all characters of 4 (T), i.e., its spectrum as a C *-
algebra.

Because p,.is a faithful representation of 4 .(M,) we can
identify the elements of 7! with a subset of the spectrum of
4 ,(T,), dense in the weak topology. In fact we have the

Lemma: The elements of the spectrum of 4 (7;) are in
1-1 correspondence with elements of the algebraic dual of
T

Proof: Note firstly that all elements of 7 * define charac-
ters of A4 (7). This is because the realization of p - given
above sets up an isomorphism of 4 (7,) with a C *-algebra of
continuous functions on 7', and hence the elements of 7+
define evaluation functions in this algebra. So in particular,
the zero element of T'is such a functional, call it 7,. Givena g
in the algebraic dual of T, we may extend it to M, by defining
it to be zero on those elements of M, not in 7,. Then the map
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a5 P8, peM.,

extends to an automorphism of 4 (M,)"” and hence of 4 (7).
The composite character 7, = 7., of 4 (T;) exists and so
we have a map, {—7, from the algebraic dual of 7, into the
spectrum of 4 (7;). Now suppose 7 is any character of

A (T,). As the elements of 7' are dense we can find a net
7. —7 with £ €T, We may write 7(8,) = expi{ (¢ ) for
¢eT;, where {:Ti—R satisfies {{(@ + ¢') = {(@) + {(#). To
show that ¢ is an element of the algebraic dual of 7, we need
only show that {(1¢) = A{(p) for A€R, and $eT,. But
expi (A4 ) is the limit of both [expid (¢ )] and

[expif (Ad )] and furthermore expid{ (¢ )—expil (4).
Hence § is linear, completing the proof.

Returning to the general argument, Zwanziger" pro-
posed that if 7, is a character of 4 (75), then & should be
related to the value of the charge (admittedly thisis a restate-
ment in our language of a nonrigorous argument in the in-
definite metric formalism). In particular, if =0, then we are
trying to impose the usual supplementary condition
(9“A# = 0 which, on the basis of Refs. 13 and 14, we would
expect to hold only in the charge zero sector.

We will return to this discussion of charge sectors and
characters in Sec. 5; for the moment, we will assume that we
are considering the case §=0. It then follows that if / denotes
the two sided ideal of 4 (V,) generated by the kernel of the
character 7,, our candidate for the quasilocal algebra of ob-
servables is the quotient A (V,)/1. It follows from Ref. 1 that
this algebra is isomorphic to a subalgebra of 4 (§') where §
has the symplectic form induced by B. Physically, therefore,
A (N,)/I has the properties of an observable algebra, since it
depends only on the transverse components of the electro-
magnetic potential. Noting that the ideal 7 is the kernel of the
representation p, of 4 {V,) (0 denotes the zero element of
T4, we will henceforth write 1 as kerp,.

Observe from the definition of p, that the corresponding
state o, is Poincaré invariant. Consquently kerp, is Poincaré
invariant and hence the Poincaré group acts by automor-
phisms of A (N;)/kerp,. There is a local structure on
A (Ny)/kerp0 defined by setting

A7) = (B (N(£)) + kerp,)/kerps,

for each bounded open set # C R *. From the fact that Poin-
caré transformations act on 4 (M,) by

@y 458100
we have

A AN =4,AC + a),

A (A NLOD) = A NAL + a)),
and hence

Ay () =ANAL + a).

As 0, is Poincaré invariant these automorphisms are imple-
mented in the Hilbert space H, of the representation p,. Fi-
nally we note that, as

pr(4 NLEN) Cpp(4 NN

where ' is spacelike separated from , we have
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[(A(2)N(F)] = 0.

Putting the above together, we conclude that the algebras
A (M,) and 4 (N,)/kerp, both satisfy a version of the Haag-
Kastler axioms.’

The gauge group T, shares some of the properties of the
global gauge groups of Refs. 8 and 15. We shall not discuss
these here but refer the reader to Ref. 3.

Finally, it is not difficult to show that 4 (¥,)/kerp, is
also isomorphic to the Weyl algebra which is normally used
for the electromagnetic field,**' namely that constructed
over the space of functions

‘F;l v 8p¢v - 8‘,(]3#, ¢€M0-

Finally we remark that the above procedure suffers
from a number of deficiencies. The most serious, from a tech-
nical viewpoint, is that the local C *-algebras above depend
rather critically on the choice of test functions M,. It would
be desirable to replace them by local von Neumann algebras,
however we have not yet found a convenient means for doing
this. To a lesser extent there is the difficulty that Lorentz
boosts are not implementable in the Fock representation px
of A (M,). This means that our electromagnetic potential is
not covariant. However this problem can be overcome by
using a covariance algebra construction® as described in
Refs. 1 and 2 which produces a covariant, though reducible,
representation of 4 (M,).

3. INTERACTION OF THE ELECTROMAGNETIC
FIELD WITH A CLASSICAL CURRENT

We follow here the treatments of Shale'® and Cook'' of
the classical source problem for the case of a scalar Bose
field. We suppose thatj: R *—R *is a given classical current
distribution, and we seek the corresponding time evolution
automorphism of 4 (M,) and of 4 (N )/kerp,.

Let us suppose initially that  is sufficiently smooth and
vanishes sufficiently rapidly at infinity for the definitions
below to carry through. We will lift this restriction later.
Denote by +—7 (¢ ) the one-parameter group

(T'(t) )(k) = exp(Jwt )¢ (K), deM, (3.1)

which gives the free time evolution in the one-particle space
M. (Here J, denotes the usual complex structure of multipli-
cation by /.) The corresponding automorphism group
t—a(t) of 4 (M) is given by

aolt)8,=S70rs (3.2)

If j is constant in time [i.e., j(x,,X)=/(x) for all x,€R ],
then following Shale'® we can define the interacting dyna-
mics to be given by t-—a(t) = vt )y, ' where ¥, is the
automorphism

¥/(64) = exp[ — iB ($.47'))18,
of 4 (M,), and A is the generator of t—T (2).

All of the results of Ref. 10 now carry over to this exam-

ple. Wenote that a(f ) isimplementable in the Fock represen-
tation of 4 (M,) if and only if the Fourier transform of j,
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(k) = J'e“‘"‘j(x)d X,

is in M. Denoting by w(z ) the automorphism a(f )aqz )" of
4 (M,) we define the Méller wave operators by

lim  w(t),

-+

w, =
and observe after Ref. 10, that if o is a generating functional
for A {M,), the generating functional w(z )*o [the * denotes
the dual action of automorphisms on the state space of

A (M) or equivalently, on the generating functionals] con-
verges as I-> + oo in a suitable sense to

w jp = 7/1/7

Thus the scattering operator S = w.w- is trivial, as is to
be expected. Consider now the problem of infrared diver-
gences. When the Fourier transform of}/ is too singular at the
origin in momentum space to be an element of M, we find
that a(z ) is not implementable and we have the usual infrared
problems. However the case of the full four-component the-
ory differs from that of the scalar or radiation gauge theory.

To see this we impose the condition that the currentj be
conserved. For a time-independent source this means
Jo(x) = 0 and V-j(x) = 0. Then y;, as an automorphism of
A(T), acts as the identity for

B(dA ) = } f ‘;—;'j k7, 00) — &Y ()
=0 as k#j,(k) = 0. (3.3)

Thus 7, leaves the ideal kerp, fixed and consequently defines
an automorphism y; of A by

YA84 + ketpo) = (¥5,) + kerp,,  deN,. (3.4)

This is just a restatement in our formalism of the well known
fact that a conserved current produces a gauge invariant
interaction.

It follows from this observation that it is only the trans-
verse components of j (i.e., those in 2 Af ) which contribute
to the evolution of the observables, and consequently the full
four-component theory gives the same time evolution as the
radiation gauge treatment.

The second point to note is that the full four-component
theory automatically includes an infrared cutoff for the ob-
servable algebra. This is a consequence of the elementary

Lemma: If $eN,, then ¢ vanishes at the origin in mo-
mentum space.

Proof: We have &“agﬂ(x) = 0 which implies for the initial
data that

6 (0,x) = — V-$(0,x).
But from (3.1)

¢0(0) =

i - \
oy f¢0(0,x)d X
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i

= (2,”.)3/2

f V-$(0,x)d *x

=O’

as & has compact support on the surface x, = 0. But
k*¢,(k) = 0 so that, for example, k,é,(k,;0,0)-

= k,¢:(k,,0,0)(k, > 0). That is ¢,(0) = #,(0) = 0, and simi-
larly for the other components.

By noting that the initial data for e, have Fourier
transforms which, as function of k are analytic, we can ex-
pand ¢ as a Taylor series about the origin and using the
Lemma and (3.1) we obtain the estimate

|#.K) | <a(l +O(k)), p=0,1,2,3.

Thus provided j is at worst a tempered distribution and
the Fourier transform

Jtk) = fe"k'*f'(x)w‘x

of j is of the form ~ 1/w as a function on X ;" near k = 0 we
have

|B<¢,A-'f)|<2f Y] L <

Hence the infrared cutoff built into elements of N, al-
lows us to define a(t ) as an automorphism of 4 (V,) even for
singular currents j, and hence we obtain, using (3.3) and
(3.4), a one-parameter group t—a(t) which gives the dyna-
mics of the algebra of observables 2.

The above analysis carries over to the case of a time
dependent source. In this case, we follow Cook'' and define
the evolution in terms of a propagator,

a(s,t) =Y
where 7, is the automorphism of 4 (M,) defined as follows.
First set

1
(277. 3/2
and then define

J(tk) = f e ™ (e, x)d *x,

f
=i [ @ewod
and hence
7;.(64) = exp[iB ()10,

This will be well defined whenever j, €M and in fact (by the
preceding analysis) in certain more general cases.

Now we show how the interacting fields at time # may
be defined in terms of the asymptotic fields at f = + «.
Suppose that the state of the system at time 5 is given by a
generating functional o. Then at time ¢ > s the state will be
given by the functional a(z,s)*o, where

(@(1,8)*0)8,) = 0 fa(t,s)'8,)

= ofa(s,t)d,).
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In order to define asymptotic fields we need to show that the
automorphism a( — ,t), for example, exists and that for
each generating functional o, a(¢,5)*o converges pointwise
to a(t, — « )*o. If j is a Schwartz space function, then it
follows that

86, = [ v [ @r@8,m.

Clearly therefore, in this case, lim, ,  _a(s,t) =a(— oo,t)

exists where a( — «,t) is defined via

BG )= | dn [ @

More generally, the automorphisms a(s, ),

$,/€RU| — o0, o | exist whenever the function /4, is integra-
ble on R * for all geM,. Finally, the scattering operator is
defined by s = 0( — w0, ).

(3.5)

Because the elements ¢V, vanish at k = 0, the scatter-
ing operator and the propagators will be defined as automor-
phisms of 4 () for currents j such that j , behaves as 1/w
near the origin in momentum space for all 5,2. Furthermore,
if j is conserved it follows from either (3.5) or

B(»9)= %f (e 0e,K) — f,()é,(kd 'k

that a(s,? ) acts as the identity on 4 (7;) and hence defines an
automorphism of the observable algebra,

A = A (Ny)/kerps.

Finally these automorphisms are implemented in the Fock
representation of 4 (M,) provided j, €M for all

s,¢eRU{ — o0, }, in which case one can deduce easily from
(3.5) that the fields at time ¢ are related to the asymptotic
field at t = — o by the usual Yang-Feldman equation

A,(x) = A4;2(x) + fj#(X')Dret(x —xd X',

4. ASYMPTOTIC HILBERT SPACE FOR
QUANTUM ELECTRODYNAMICS

Recently Kulish and Faddeev'? and Zwanziger'* have
sought to formulate the asymptotic dynamics of quantum
electrodynamics so as to ensure that the $ matrix is free from
infrared divergences. Their work is an outgrowth of that of
Kibble*'-** and Chung.?* Our interest in this question is rath-
er different.

Heuristic calculations suggest that the generators of
gauge transformations of the second kind evolve in interac-
tion like a free field [these are the operators ¢4, (f) where f
is a test function]. Thus we might expect that properties of
the gauge group which hold in the asymptotic Hilbert space
for quantum electrodynamics will persist in interaction.
Naturally we would like to prove a theorem along these
lines. However, this does not seem to be possible at present.
So, in order to obtain information about charge sectors and
their relationship to the gauge and the algebra of observa-
bles, we construct in this section a rigorous version of the
asymptotic Hilbert space for quantum electrodynamics pro-
posed in Refs. 12 and 13. The essential difference between
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the space described here and those in Refs. 12 and 13 is that
we quantize the electromagnetic field asin Sec. 1 rather than
use the indefinite metric.

One question we do not attempt to answer is whether
our results are consistent with a perturbation theory based
on our definite metric quantization. However, recent work
suggests that this should indeed be the case.”

We introduce firstly the Fock space for the electron/-
positron field. We will follow Bongaarts.*?” Let H be the
complex L ? space of functions /:R *—C * with inner product

4
v = S [ Fg00dx
=1
Introduce the Fourier transformed space of functions on
X * ={peR* | p* = mg,p.,s0},

where m, is the electron/positron mass and

F0) = f F@)e™d /20 + mA)

Introduce the projection operators 7., - onto the posi-
tive and negative energy solutions. They are given by multi-
plication by matrix valued functions ¥ , (p)on X "uX " (see for
example, Ref. 28). So we may write

0= | terr@ie

te Py @@l e/ +myn (@40

Using the charge conjugation operation C we may identify the
space of negative energy solutions, F_ say, with the space H.
of positive energy solutions, as Cy, = y.C. Let

H’ = H, o CH.. This is the physical one-particle space, and
to distinguish the two spaces in the direct sum we write H,
for the particle space and H,, for the antiparticle space, CH..

Now form the antisymmetrical Fock space # ,over H ',
CoH' aH' @H &

Then the annihilation operators C (f), feH ' are given by ex-
tension of the operator which maps the vacuum {2, to zero,

FI<fif >0 and

z Signo(f,1, ® - ® f i)

permo

F—’\/’; Z Signofof iy gy ® -+ & f o)

for all finite sets f,,--f,€H '. Annihilation of particles and
antiparticles is given by the operators C (v,f) and C (y.Cf)
respectively, feH, while creation is effected by their adjoints.

Now for each configuration of ingoing or outgoing elec-
trons and positrons with asymptotic momenta P, a = 1,---n;
g, b = 1,...m respectively, we introduce the space

r(p)C'@--@7.(p,)C ' @y.(g,)C*
@"'@Y*(qm)c4®K(pl;---pmq!)--'qm)’ (42)
where X (p,,...p,.9.,...¢,,) may be chosen in two ways. Kulish
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and Faddeev define it as follows. Let % Pt denote, for each
peX *, the Hilbert space carrying the representation p;* of
A4 (M) determined by the generating functional

o7 (¢) = exp[ FieB (1,,4)]0:(4),
where — e = electron charge and (1) (k) = ip,/p-k
(p-k = pok, — p-k). Let # denote the direct sum
Fp® @ xS, ®F, ). 7 isessentially the nonseparable
space introduced by Kibble to handle the problem of in-
frared divergences.?"?* Then K (p,,++,p,,q1,4,,,) 1S the space
®,7 5 &@,7, regarded as asubspace of . Alternati-
vely, our interpretation of Zwanziger’s space leads us to set
K (@yp,pq1q,,) equal to the Hilbert space carrying the
representation of 4 (M,) determined by the generating
functional

0, (&) = exp[ — ieB (1, 408)10£(8)

when 7,  is the function

epl eqs
o (k)= — < ) + .
pt 2 k)T 2
We will adopt the second definition of K (p,,,0,,,g1,**,¢ )
for the remainder of the paper, as it appears to us to be less
artificial than that of Kulish and Faddeev. This choice in no
way affects any of the conclusions of Kulish and Faddeev.

Denote by H,, (9,9, ) the space defined by (4.2) with
the second choice of K (p,,++p,.q1,++q,,). Form the direct
integral, denoted H,, ,,,, of the spaces H, ,.(p,.q,) over
XXX X" (n+ m factors), H, ,, consists of equivalence
classes of functions F on X *X - X X " such that

(a) F (pl""’pn’ql’"'!qm)EHn,m(pa’qb)’

(b)f F @upotird)||%ndpda < oo,

where dp denotes

n d ‘pa R m d ‘q
] dq ls H _—7_—b—7-?
@1 2pg + m)" bt 2(gp + m)
m, = electron/positron mass and the norm || ||, is the ex-

tension of that given on functions of the form

pl""’pmqh""qm Hf‘l(pl)@ "'@’f;i(pn)
@gl(ql)@ "'@'gm(qm)@' u(pu’qh)
by

| [ )

X T1 8495 Y*v8(q,) | u(p..q,)i’dpda.

[Here {£,}, {g, | are elements of H,, H,, respectively and
u(pwqb) iS in K (p1""’Pn’ql""’qm)']

Finally the asymptotic Hilbert space is the direct sum

o H

nm=0

& =

n.m

where H, ,is by definition and Fock space . .. of the photon
field. The physical interpretation of the vectors in this space
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is most easily established by defining a unitary operator from
F,®.F pinto .. To do this we associate with the vector

Cyf)*-Clrf)*C (r.Cg)*-C(y.Cg,)* M2
8 0,(8,)02,.

[where |f,], {g,} have Fourier transforms (4.1) in H, geM,
and f2.is the vacuum in .# ] the element

PusPwsd g, *’y*(p)fl(pl)@ o @
.0, Y (0,)@y.(q)C8(q:)@--@y.(q,)CE,(q,)

® {exp] —iB(n, ,.¢ )1Pp.0. 8 )ﬂpﬂ'q}_} 4.3)

of .«/. Here 2, . is the cyclic vector in K (9,041, 4 ,)-
It is straightforward to check that this extends to a norm
preserving linear map U of ¥ ,® % onto .&/. It is not diffi-
cult to show that the linear span of the functions of the form
(4.3)isdense in .7, so that this map U'is actually an isometry
from.” ,®.% ,onto.&/. We note that U is a rigorous version
of the map given in Ref. 13 by Eq. (A9). The interpretation of
elements of .o as states corresponding to a certain number of
particles and antiparticles is now clear. Perhaps not too im-
mediately apparent however, are the reasons for choosing
the functions 5, . A fuller discussion of their origin is given
in Refs. 12, 29, and 30. We remark only that the expression
7. (k) = ep,/p-k is the Fourier transform of the current due
to a point electron moving with 4- velocity v, = p,/m,.
Hence, loosely speaking, the function 7, , represents the
effect of the asymptotic electrons and positrons on the elec-
tromagnetic field.

One of the main results which Kulish and Faddeev wish
to establish is the form of the asymptotic dynamics for the
fields in .«/. Contrary to the claims of Ref. 12 however, the
expression for the time evolution (Eq. 10) does not define an
operator on their asymptotic Hilbert space. This is essential-
ly because the L * normofk—7, , (k) divergesforlargek. To
be fair, However, Kulish and Faddeev point out that they
expect ultraviolet divergences to be eliminated by a renor-
malization. In any case, since we expect this asymptotic
space to be a good approximation to asymptotic QED only in
its infrared behavior we could overcome this difficulty by
introducing a momentum cutoff as follows.

Let fbe a real function on R which is identically one on
a neighborhood of zero and zero on a neighborhood of infin-
ity. Then we introduce a new asymptotic Hilbert space .o/’
defined in the same way as .o/ except that we replace 7/, , by

the function %/, _ defined by

JPatds

S (k-p)p;
k— — e b
‘?7 Pk /2

. f(k-q,)q,
qh'k

It is then straightforward to write down an operator on ./’
corresponding to that given in Eq. 10 of Ref. 12. The difficul-
ty with this procedure is that all the results of this and the
next section are then cutoff dependent. However, see the
remark at the end of Sec. 5.
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5. REPRESENTATIONS OF A (N,) AND CHARGE
SECTORS

In this section our aim js to write down the representa-
tion of A (&V,) which defines the algebra of observables of the
electromagnetic field. Recalling the discussion of Sec. 1, this
means finding a representation of 4 (&,) in which 4 (7)
acts as a scalar. As with the free field, the representation p of
A4 (M,) described in Sec. 4 decomposes as a direct integral of
representations of 4 (V,). This decomposition is achieved by
decomposing, for each asymptotic momentum distribution
PP pdissq,, of electrons and positrons, the representa-

tionp, .-

Pp.q(0s) = exp[iB (7, 4.,8)] J; Pc(84)du(S).

We will choose for our representation of 4 (N,) one of
the representations occurring in this decomposition. Our
only criterion here is that Lorentz transformations be imple-
mented. (We note that for the same reason that the asymp-
totic dynamics cannot be defined in .« without a momentum
cutoff, so translations are not implemented in ./, again con-
trary to the assertions of Ref. 12. So, the closest approxima-
tion we can make to Poincaré invariance is to demand that
Lorentz transformations be implemented.)

Consider therefore the generating functional

Ty g G—XD[iB (1], 0,8) + 3iC(8,:8)),  deN,,
which defines the representation

Progy s Ss>EXPLiB (1,40 J0o(8y)] (5.1)
of 4 (N,). This occurs in the above direct integral decompo-
sitionof p, , .

Now we perform the same construction with the repre-

sentations p, , as we did with the representations p,, .
(n+ m)

namely, form the direct integral over X * X XX to

get a representation p,, ,, say. Denote by ,5 the direct sum
&, (,5,,',,1 where ,5(,'0 is by definition p,. The representa-
tion p of 4 (N,) acts on a space B which can be obtained by
replacing in the definition of ./, the space

K@i p,q1q,,) by the space 7", . . which carry
the representations a‘;p,,a,x

We first check that the Lorentz group automorphisms
of A (N,) are implemented in B. Given the function

[)1 "“’pu’q“""qm “_)y’(pl)f"(pl)@ o @ 7/*(pn)fn(p")
@ V«(Q|)Cg1(41)@’ @ 7+(qm)Cgm(qm) ®pp(,.q,,(6¢ )‘Qp‘,‘q,.’

in B (¢eN,, [, g,H and 2,  is the cyclic vector for g, , ,
a = 1,.n, g =1,-,m), then a Lorentz transformation A
takes it to

ph‘“’pn’ql’n"qm —""}/’(p‘)j‘;(pY)@ o @y*(pn)sf:l(pn)

@ 7’+(91)(g;(‘]1) @ @ y*(qm)Cg:n(qm)
@ f;p,,.w(a A ((Stb ))"(}P(.vqh’

where £(p,) = S (A)f (A P 84(d) = S (A)8,(A "'4s);

(5-2)
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and A—S (A ) is the usual Dirac spinor representation of the
Lorentz group. Observe that p, . can be realized in the re-
presentation space of p, as the representation

8,—>exp[iB (77p‘,.q,,’¢ )1p8,),  PEN,,
so that

/; pmq,,(a/‘ (5¢ ))'épm,,
= exp[lB (77/1 P ‘q,_9¢ )] V,4p0(5¢b)'{20s

where A— ¥, implements « , in the Hilbert space carrying
po. From this it follows immediately that (5.2) extends to a
unitary operator on B and implements the Lorentz group
automorphisms of 4 (N,).

Now recall the discussion of Sec. 1. If B is to carry a
representation of an observable algebra, then the gauge
group T, must be represented by scalars. To see that this is
the case, restrict;; to A (T,). Observe that for each
Pirosl s sG s ;;pm restricts to the character

8,—expll, ()], veT,, (5.3)

where

() = — (0 — m)e f (TR — ¢k )]d k/20,
(5.4)

and ¥,(k ) = k, y(k).

Thus ,5 restricted to 4 (7T5) is constant on the subspaces
on which (#n — m) is constant. Now charge sectors can be
introduced in the obvious way, namely, we say that a sub-
space of .« or B is the charge sector of charge g if itis a
maximal closed subspace on which (n — m)e = ¢g. Hence ;5
restricted to 4 (T) is constant on each charge sector. When
n = m = 0 observe that [, , = 0, that is,

Py | ALT0) = po | A(Ty), and so on the zero charge sector
p defines a representation of 4 (N,)/kerp,. For all ns£m the
kernels of the characters determined by /, ,, are all equal, and
so the kernels of the representations p s

(@ = 1,,n,b = 1,-,m,m=£n) are all equal to some ideal, say
J, of 4 (N,). Thus in a nonzero charge sector p defines a
representation of the algebra 4 (N,)/J.

We interpret this to imply that the algebra of observa-
bles in a nonzero charge sector must be A (N,)/J, which
differs from the zero charge sector observable algebra
4 (No)/kerp,. Note that [, is invariant under the Lorentz
group automorphisms of 4 (7,) so that the ideal J is also
Lorentz invariant. That is, the Lorentz group acts as auto-
morphisms of 4 (N,}/J in the obvious way. Finally, using
(5.4), we see that in terms of the potential 4, this choice of
observable algebra amounts to setting

w

d#'4,(x) = — (n — m)eD (x),
which is the result we wished to establish.

We conclude with the observation that 4 (N,)/J and

4 (Ny)/kerp, are “connected’” by an automorphism of
A (No). Namely, if we let

“k) = —i(n — m)ek"/k ],
then B(y, ,..¥) = [, ,.(¥) for ¢eT;, and the automorphism
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Yy : O5—exp[iB (¥, .4 )15, of 4 (N,) has the property
that

A c(NO)/J:pO(yn,m(A c(NO)))
(cf. Refs. 8 and 15).

Remark: If we were to carry through the construction
of this section with the cutoff function 7, . then it is not
hard to see that (5.2) still implements Lorentz transforma-
tions. Translations are also implemented (but depend on f)
so the Hilbert space carries a representation of the Poincaré
group. Unfortunately the representation of 4 (V,) is difficult
to describe. However, suppose the cutoff is removed by
choosing an increasing sequence {f,} of cutoff functions
which are C~ functions of compact support, such that f,—~»1
as n—oc. Then if ¢ is a region of space~time such that
k—f,(k-p) = 1 for ke” (p fixed), then it is not hard to see
that the states on 4 (N(+")) determined by 77, ,  restricton
A AT(7)) to the characters given by (5.4) for p,, g, in some
bounded region of momentum space. It is therefore tempting
to suggest that as n— «, these cutoff states converge to a
state on
4 (N,) which restricts on 4 (T) to (5.3). Although we have
not carried through this analysis we believe this suggestion
to be correct, thus lending support to the relation

a“A,u(x) = - qD (x)

as the appropriate subsidiary condition in a sector of charge
g.

6. CONCLUSIONS

We have presented here some applications of our pre-
viously developed formalism. They suggest that a definite
metric axiomatic approach to quantum electrodynamics is
possible, and give some indication of how one might begin to
modify the work of Doplicher, Haag, and Roberts® to ac-
commodate gauge groups of the second kind, We have seen
that the supplementary condition 3’4, (x) = 0 does not hold
in nonzero charge sectors. The next step in this programis to
produce an axiomatic framework in which properties of the
gauge group T, and charge sectors, analogous to those ob-
tained here, can be proved directly for quantum electrody-
namics itself.

APPENDIX

The following question was raised by the referee. If
#4,(x) = — gD (x), then Maxwell’s equations &'F, . = j,
must be replaced by

FE, =), —d(4,), *)

.
and the “compensating current” gd D (x), if due to charges
“at infinity,” has the peculiar property of being strongly lo-
calized at the origin. What is the explanation of this
peculiarity?

The current ¢gd D (x), arises from the choice of the func-
tions 7, . whose localized nature is explained by Zwan-
ziger® in great detail (Ref. 30, p. 3484). This point was also
touched on by Feynman' see (Ref. 31, footnote p. 445). We
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refer the reader to these papers rather than repeat the discus-
sion here. We emphasize that one of our aims in this paper
was to demonstrate that Zwanziger’s arguments' and the
possibility #4,,740 fit naturally into our algebraic frame-
work, this being independent of the specific condition
#A4,(x) = — gD (x) which arose from the theoretical de-
scription of a particular physical process, namely the tradi-
tional scattering experiment.

The remainder of this Appendix is devoted to explain-
ing how the analysis of this paper might be expected to carry
over to QED itself in an attempt to clarify the implications of
the referee’s question.

To begin with, one needs a definite metric axiomatic
approach to quantum electrodynamics which could accom-
modate our quantization of the free field and the equations
(*). In such an approach we would be given a Hilbert space
on which would be defined electron/positron fields, a cur-
rent j,,, and self-adjoint operator-valued distributions 4,, re-
presenting the electromagnetic potential. (An indefinite
metric version of what we have in mind appears in Ref. 32.)
These fields would be related by L4, = j , and as the opera-
tors 3'4,,(f') are not zero we would have (*). Now construct
the algebra .* generated by the smeared electron/positron
fields and the operators expid (f*) as " ranges over the test
function space. This is a fie/d algebra in the sense of Ref. 8.

The vectors in H do not define physical states of the
system nor does the £*" appearing in (*) define the observ-
able electromagnetic field. (This point can be understood in
the context of the indefinite metric formalism of Ref. 32
where Maxwell’s equations hold only on a subspace of the
space on which the potential and current are defined.)

Following Bucholz* it seems probable that in this ap-
proach a scattering theory for the potential 4, can be rigor-
ously established. Assuming this to be the case there will
exist asymptotic fields 4 ;"'(x). Now one can define the C *-
algebra./ generated by exp[id'4 ;"'(f)] as franges over the
test function space. If it could be established that .’ is Abe-
lian and that the operators expid'4 ;)"'(f) define gauge auto-
morphisms of the asymptotic fields, then we would have all
the structure necessary to carry through the analysis of Sec.
l.

Namely, decompose H as a direct integral over the spec-
trum of ./~ and thereby obtain a direct integral of representa-
tions of % n”"". Assuming the time evolution is gauge invar-
iant (that is, lies in ") this decomposition would persist in
the interaction. The points of the spectrum of .7~ would de-
fine superselection sectors and as before we would try to link
these with the charge sectors. It is unlikely that a relation as
explicitas #'4 ;,"(x) = — ¢D (x) could be proved, neverthe-
less we expect the points of the spectrum of ./ to be interpre-
table as classical current distributions (see Zwanziger’s argu-
ments in Ref. 13). Given that a charge sector can be defined
in this context we could proceed fo determine the form of
Maxwell’s equations in each charge sector. We would expect
on the basis of this paper and Ref. 13 something of the form

FF(x) = (%) + 00,
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where /}"'(x) is a c-number current. Of course one might try
to include /2"'(x) in the source j (x), so that Maxwell’s equa-
tions are satisfied. However, perturbation theory suggests
that this expedient would produce infrared divergences. The
point is that scattering theory is an idealized situation, the
sources specfied by the points of the spectrum of .7, being c-
numbers, are never dynamic and so must relate to accumula-
tions of sources which are asymptotic (i.e., effect but are not
effected, cf. Ref. 31). As such they describe that part of the
system being left out of the dynamical discussion, namely the
long-range Coulomb effect of the asymptotic charged parti-
cles, which, in electrodynamics, cannot be neglected.
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Formal analytic continuation of Gel'fand’s finite dimensional
representations of gl(n,C)?

F. Lemire® and J. Patera

Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
(Received 5 September 1978)

The article contains three results: 1. It is shown that among the 27" nl{(n 4 1)! discrete series of
representations of the Lie algebra gl(n,C) of complex nX n matrices described in the literature, the
majority are not representations at all. Thus for n =3 and 4 one has respectively 12 and 45 series of
representations instead of 18 and 180. II. In addition to the p-+1 discrete unitary series of
representations of u(p,q) [the Lie algebra of the group U(p,q), p> ¢, and p + g = n] there exist other
discrete series of gl(n,C) which become unitary when restricted to its real subalgebra u(p,q). For n =3
there are four such series all corresponding to the chain u(2,1) Du(l,1) O u(l); for n =4 there exist six
such series for u(3,1) and four series for u(2,2). Furthermore, some of the gl(n,C) series whose
restriction to the real case do not provide unitary representations in general, do contain (infinitely many)
particular representations which are unitary. Such unitary representations are contained inside of two of
the four sertes for n =3 and inside of seven of the 27 series for n =4. III. Some properties of
indecomposable representations of the Lie algebras for the groups of inhomogeneous transformations are

shown using the discrete series of gi(n,C).

I. INTRODUCTION

The explicit representation theory as given by Gel’fand
and Tseitlin for the groups U(#) and O(n) and later extended
by Gel'fand and Graev to some representation of Gl(n,C) is
undoubtedly the most suitable form of the theory for exten-
sive computations. It is therefore important to investigate
the limits of its validity. In the present paper we are con-
cerned with this question.

In a paper by Gel’fand and Tseitlin' every finite dimen-
sional irreducible representation of gl(n,C ) is described by
labeling the basis vectors and giving explicit formulas for the
representatives of a generating set of gl(n,C). In a supple-
ment to a later paper? on this subject Gel’fand and Graev

present a systematic study of formal analytic continuationsJ

of both the labeling and the generating operators of these
representations. The goal of this paper is threefold. First we
shall show that, contrary to the claim of Gel’fand and Graev,
a sizeable proportion of these analytic continuations are not
representations of gl(#,C ). In fact we give a necessary condi-
tion to these operators to satisfy the commutation relations
of gl(n,C). Secondly, we consider the restrictions of these
representations to the real forms u(p,q) of gl(»,C), determin-
ing in particular all these restrictions which are discrete uni-
tary irreducible representations of u(p,q). Finally, we shall
indicate by an example some further applications of these
formal Gel'fand representations to determine interesting
classes of explicitly defined representations of certain subal-
gebras of gl(n,C). In order to make this paper as self-con-
tained as possible, we begin with a brief outline of the materi-
al presented in the supplement to Ref. 2.

Asis well known, every finite-dimensional irreducible representation of the Lie algebra gi(#,C ) of the group GL(~,C ) of all
nonsingular # X n complex matrices is specified by a set of n integers m,,, > -->m,,,. The representation space H has an orthonor-
mal basis labeled by all possible triangular arrays (patterns) of integers,

m in mZn

ml,n —1 m2,n —1 o m

my,
where the components m;; satisfy the inequalities
for i <j<n.

my>m;; 1 2M;y

n—1l,n—1

m

nn

The algebra gl(n,C ) consists of all complex n X n matrices and has the standard basis {e,-jli,/' = 1,2,~-,n}, where ¢, denotes
the n X n complex matrix with 1 at the intersection of the ith row and jth column and zeroes elsewhere. The commutation

product of this algebra is then given by

[eper;] = Ojuei — 5:‘/"@
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by the Ministére du I’Education de Québec.
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where 6 is the Kronecker delta function. Thus in order to specify a representation of gl(n,C) on H, it suffices to define linear
operators E, (representative of ¢;) on H satisfying the commutation relations (2). In fact, it actually suffices to define only the
representatives Eyy, E, . _, and E, _ , ;, since the other operators can be obtained from these.

Gel’fand and Tseitlin give explicit formulas for these generating operators as follows: For any basis vector £(m), where m is

the label given in (1), we have

E& (m) = (r, —ri_ ) (m), 3
wherer,=m, ; + -+ my fork=12,-nandr,=0,
Epy £ (m)=aj_ & (m_ )+ + a1 (miZ ), )
where m) _ | denotes the array obtained from m replacing m;, _,bym,, _, —1,
7 . [ HL (my — M _1— i+j+ l)nf'(=_12(mk,k =My~ +7) ]1/2
oo W dmi y—my_y—i+j+Dmy, —my_—i+)) ’
Eirafm)=bi_ &(m_ )+~ +bET1E(m2Y), )

where »7), _ | denotes the array obtained from m replacingm;, ,bym,, |+ 1, and

b{;k,:[—

A detailed derivation of these formulas as well as an
effective description of the operators of irreducible finite di-
mensional representations of the groups GL(n,C) and U(n)
is given in the paper of Gel'fand and Graev.? (Another deri-
vation of these results is given by Baird and Biedenharn.*)

In a supplement to the Gel’fand and Graev paper the
labeling patterns given in (1) are slightly altered and the gen-
erating operators £, E, , _ ,and E, _ , defined to operate
on the new basis vectors in the following way: To each
k =1,2,-,n — 1 we assign a pair of integers {i,,i; | where

i €10,1,k },it€] 1,2,k + 1},and i, < il ()

For each such set of indices one defines a Hilbert space

H {i,,i;. ] having an orthonormal basis labeled by the set of
all possible triangular arrays of integers where the top row is
fixed and the other components satisfy the foliowing set of

inequalities,
(l) m}k>m]‘ + 1.k for j<k<n,
Q) m_ it Imyem o+, for j<iy,

Q) my >muem; g for iy <j<i}

@ m = emgem g, — 1 for 20

M
(by convention we set m,, ., , = + o and
My, 24 1 = — o). The original finite dimensional space

corresponds to the case where /, =0 andi;, =k + 1 for

k =1,2,..,n — 1. All other spaces defined above are infinite
dimensional. The operators E;,;, E, , _,,and E, | , are
then defined on A {i,,f; | by the same formulas (3)~(5), as in
the case of the finite dimensional representation, on noting
that the argument of the coefficients @, , and b, , are
taken to be (w/2)N, where NV is the common number of nega-
tive factors under the radial signs in the expressions for &, _
and b7, _ . Itis clear that these operators map any basis
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f_ (my, — m 1 —1 L L i G P mi_—i+j—1) ]1/2

o (my _ —my_(—1i +m oy — m _—i+j— 1)

f . .
vector of H {i,,i; ] into a finite linear combination of basis

elements of the same space H {i,,i} }. In a formal sense these
operators on H (i,,i; } represent analytic continuations of
the finite dimensional operators. It is claimed that in this
manner, for each set of indices {i,,i; }, one obtains a series of
irreducible representations of the algebra gl(n,C ) on the Hil-
bert space H {i,i} }.InSec. Il we show that this claim is false
for a sizeable proportion of these sets of indices.

Leaving this problem for the moment, we now outline a
second set of results in the supplement to the Gel'fand and
Graev paper which we wish to expand upon. For any fixed
nonnegative integers p and ¢ with p>g and p + ¢ = n, we
denote by U(p,q) the group of all n X # complex matrices
which preserve the Hermitian form

'X1'2+ lx2l2+"'+ [xplz"' lxp+1|2—"'— Ixn|2'

Since U(p,q) is one of the real forms of the group GL(n,C ), its
Lie algebra u(p,q) is a real form of gl(n,C). A representation
of the algebra u(p,q) is then said to be unitary iff the gener-

ators of the representation are all skew-Hermitian. Gel’fand
and Graev show that among the representations of gl(n,C)
defined above, there exist p + 1 series of irreducible unitary
representations of u(p,g). This result follows by selecting a

basis of u(p,q) consisting of

154 for k =1,2,---,n,
ek, — elk, l.(ekl + elk)’ for k,1<p or k,1>p, (8)
ey +ey, Key—ey) for k>p and I<p,

and observing that the representatives of these basis ele-
ments on the space H {i,i; } are skew-Hermitian iff we have

(1) Ei\t = Ekk’ fork = 1,2,~~~,n,
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and

E, 4w  for k#p,
—E

p—Lp

@ B = { for k=p. ©)

These conditions are equivalent to requiring that the coeffi-
cients & are real for all k=4p and allj = 1,2,...,k, and that &,
are purely imaginary forj = 1,2,...,p. By inspection the only
sets of indices |/,,i}, } satisfying these conditions are the
following:

=0, ii=k+1, for k<p,

i,=1€{0,12,.p}, i;=1+1, (10)

=1 ii=l+k—-p+1, for k>p.
In each of these p 4 1 cases one observes that the labeling
formalism yields an explicit description of the branching
rule for the canonical chain of subalgebras u(p,q)
Du(p,g — 1)D--Du(,0) D--Du(l). Note that the opera-
tors E, for i,j<u leave the top n — p + 1 rows of the labels
invariant, and hence the subalgebra of u(p,q) consisting of
linear combinations of operators from { E|#,j<u} can be
viewed as operating only on the bottom g — 1 rows of the

labeling arrays. It is in this sense that we associate a chain of
subalgebras of u(p,q) with the given basis labels.

In Sec. III we show that the restriction of other repre-
sentations of gl(#,C') to u(p,q) also provides discrete series of
unitary irreducible representations of the Lie algebra u(p,q),
which in some cases correspond to different chains of

Il. ANECESSARY CONDITION FOR EXISTENCE
OF A DISCRETE SERIES OF gl(n,C)

In this section we show that for certain sets of indices
{i1wi% }, allowed by condition (6), the generators Eyy, E, ;. _ |,
and £, _,, defined on H {i,,i; } do not provide representa-
tions of the algebra gl(n,C). In fact, we claim that a necessary
condition for these operators to satisfy the commutation re-
lations (2) and hence provide a representation of gl(n,C) on
H {i,i;} is that for each k = 2,3,...,n — 1 we have

e ik #1 i — 1ulie + Lip — 2Ju[ink — 1. (1)

Here [a,b ] denotes the set of integers {a,a + 1,-,b }; by con-
vention [a,b] =9 ifb<a.

To illustrate this condition consider the case of n = 3.
Gel'fand and Graev claim that for each fixed set of integers
my;>m,5>my, their construction yields 18 inequivalent irre-
ducible representations of gl(3,C); one representation for
each of the 18 different sets of indices (see Table I). Of these
18 sets of indices, six do not satisfy condition (11). To be
specific, consider the particular case (i,,i5) = (0,3) and (/,,/])

= (0,1). These values are clearly within the range allowed
by (6), but forbidden by (11) because i} = le[i, + 1,i} — 2]
= [1,1]. From Table I one reads off the inequalities imposed
on the elements of an array belonging to the space
H {(0,3),(0,1)}. Namely, for any fixed integers m,,>m,,>m,,
one has

subalgebras. R Myu2m>my,  My2Pn>my, My — 1omy,. (12)

Consider the vector

mi; m ms;
23
m= m, My §(0,3),(0, 1)},
my; — 1
TABLE [. Gel'fand representations of gl{(3,C) and their restrictions.
(i) (0.2) ©,1) 1,2)

(i.,4%) myzmgzm,; my — 1>m, myzmg;+ 1
0,)= Unitary Not a Not a
EIRVL NPT - su(3)Dsu(2) representation representation
My 2m,, 2.
0,2)= Unitary if Unitary Unitary
mpzm.zm;. m = my su(2,1)Dsu(l,1) su(2,1) Dsu(l,1)

mo.- 12my, su(2,1) Dsu(2)

0,N= Unitary Not a Not a

my,— lemzm, — 1 su(2,1)Dsu(2) representation representation
m., — lem..

(1.3)y= Unitary if Unitary Unitary
my2m o+ 1 My = m., su(2,1) Dsu(l, 1) su(2,1)Dsu(l, 1)

Mme My zm.

su(2,1) Dsu(2)

(1.2)= Unitary Never Ngver
moema+ 1 su(2,1)Dsu(2) unitary unitary

m. - lem,,

2.3)= Unitary Nota Not a »
myzmo+ 1 su(2,1)Dsu(2) representation representation

mo+ Lam,em, + 1

822 J. Math. Phys,, Vol. 20, No. 5, May 1979

F. Lemire and J. Patera 822



where the elements m,, and m;, have reached their highest values compatible with (12). Then

mas ms,
My 4 (13)

nys
Egzm =aym) = aé( my;—1
M350
which differs from zero as long as 12 > m,,. If, however, m,, = m,, then necessarily a) = 0; otherwise the array m; on the right
of (13) would not satisfy the inequalities (12). Substituting the values 7, = m,;, my, = myy, and my, = my, — 1 into the expres-
sion for al, one verifies that both the numerator and denominator of a} contain a factor equal to zero. In order to avoid a
contradiction one is forced to define that a} = 0 whenever the numerator contains zero, regardless of the denominator. Indeed,
that convention is tacitly adopted in Ref. 2. The point we want to make here is that even then a contradiction is not avoided. It

can be shown as follows:

(Ep, — EDE(m)=(02m,, —m; —msy; + Dé (m), (14)
and
{Ey E5)E (m) = [(‘1;)2 — (b ;)215("1)
. (my, — my)(my, — my + 1)
((mm m; + 1)(”112 my; + 1) (mlz m”)(mu Tt 1)
_ _ (my, — my; + D(m, — my + 2) 1
— (my myY(m,; — myy + 2) N (0 — 1+ 2) )§ (m). (15)

Algebraic simplification of the coefficients verifies that [E,,,E3;]§ (m) = (Ey, — Es3)é (m). Now, however, if we assume that

m,, = m,;, we have
(En — E33)§ (m) = (2m23 —my — my + I)§ (m), (16)
and

[E23,E32]§ (m) = - (b i)zg- (m)

N ( — (s — ooz, — iy 2) P £ D0 s ) )§ (m). (17
(my — myy + D(my; — myy + 2)

[Note that the term (a})? of Eq. (15) does not occur in Eq. (17).] Equating the coefficients in (16) and (17), we obtain

(myy; — my; — 1)(my; — ms; + 1) = 0, which is impossible, since m,,>m,;>m,,. We may thus conclude that the operators E,-j
defined as above on H {(0,1),(0,3)} donot provide a representation of the algebra gl(3,C). The problem arises here in the passage
from Eq. (15) to Eq. (17) as m,,—m,;. In particular the coefficient (a})? tends to (m,, — m,, + 1)(my, — myy + 1)£0as m,—m,,
whereas in the limiting case of m,, = m,; this term must vanish due to the constraints on the arrays of integers belonging to
H {(0,3),(0,1)}. This problem can be resolved in the context of this formalism only by insuring that whenever m,, = m,, we also
havem,, = m,, = m,,; this condition, translated in terms of the indices, implies that if ({,,¢5) = (0,3) we must have (i,,/]) = (0,2).

In the general case, although the coefficients are much
more complicated, we arrive at essentially the same problem.
Whenever the set of indices {i,,/; } allows an array in which
my =m; | wemustalsohavethatm; , ;—Lim,, |
orm;, 1, 1+ 1=my=m, +l,(mordertopreservethe
continuity of the coefficients aj and b, at the boundary val-
ues of the arrays belonging to H {i,,i}, }. This condition can
easily be translated into condition {11) on the set of indices.

For n = 3 one can directly verify that if the set of indices
{ixi} | satisfies condition (11) the operators E;; defined on
H {i,i; } do provide a representation of the algebra gI(3,C).
For n arbitrary, however, we have been able to give a proof of
the sufficiency of condition (11) only in certain special cases.
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Hl. DISCRETE SERIES OF UNITARY
REPRESENTATIONS OF u(p,q)

As noted earlier, Gel’fand and Graev have shown that

the restrictions of certain of these series of irreducible repre-
sentations of gl(n,C) to its real form u(p,q) yield discrete
unitary irreducible representations with the Gel’fand bases
corresponding to the chain of subalgebras u(p,q)
Du(p,g — 1)+ Dufp,0). In this section we show that it is
possible to obtain additional unitary irreducible representa-
tions of u(p,q) corresponding to this same chain of subalge-
bras as well as other chains of subalgebras.

In terms of the Gel'fand basis of the space H { (i,,i%)},

we have E | = E, and moreover, E ' = E [ = E, where T
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and + denote transposition and Hermitian conjugation, re-
spectively. We now wish to investigate under what condi-
tionswehaveE,! = +E, ,, Byformula(4)wehave
B, i§(m)=al_\£(m_ )+ +ai=le(mi=,
where the coefficient @, _ ; is either real or purely imaginary,
depending on the set of indices {(i,,7;)}. (Note this is inde-
pendent of the particular array.) Thus, if @/, _, is real for
J=12...p~1wehaveE}, | =E, , andifd, ,is
purely imaginary forj = 1,2,...,u — 1 we have
E}, = —E, ,, Bysimply counting the number of
negative factors in the expression for ¢, _ | we can determine
whether a{, _, is real or purely imaginary. This determina-
tion is then displayed in the following scheme:

J<b, Looa<j<iy o B S
J>h, real imaginary real
i, _,<j<i,,_, imaginary real imaginary
Iy, <] real imaginary real

Using this scheme we can conclude that

(DIf @, _ iy ) =) and (G, of, 1)
="+ 1),thenE/, | =FE

n— Ly

@) If(2) (i,u - z’iy ~2=(0/)and (i,u - l’i;; ) =),
Or (0) (U, sy ) = (bjt — Dand G, it ) =01+ 1),
or () (, iy 5) = Ot — D) and (i, _ it ) = (bl + D),

+ —
thenE,, = —E, ,,

In all other cases one finds that in general, the coeffi-
cients of E, , & (m) contain both real and purely imagi-
nary terms and hence £/, = + E, _, . If, however, we
place particular restrictions on the values of the defining
constants m,,-,m,, of the representation it is still possible
tohave E,}, = +E, ,,. Later we describe this situa-
tion for n = 3 and 4.

Consider now any sequence € = {€,,€,,...,€,} where
€, = lande¢ = + 1 fori=2,3,..,n [This sequence can be
understood to be the signature of the u(p,q) invariant form.]
We shall say that a set of indices {(i,,/;)} such that
E. _1=¢€ ,€E, |, foru=23,. niscompatible with
the sequence {€,,...,€,}. If e,= + 1foralli = 1,2,...,n there
is exactly one compatible set of indices, namely i, = Oand i,
=k+ 1fork=12,.,n— 1. If v<nthenthereare v + 1
distinct sets of indices compatible with the sequence
{€1,....€,] wheree, =..=¢€,= + lande, = =¢,
= — 1. These are precisely the sets of indices (9) considered
by Gel'fand and Graev, where one takes p = v. Finally for
each other sequence there are two compatible sets of indices.
Note that the sets of indices compatible with any sequence
satisfy condition (11).

Choose some p < n and restrict attention now to those
sequences which contain either p or ¢ = n — p terms equal to
+ 1. Toany such sequence we associate a set of generators of
a representation of the algebra u(p,q) as follow:

{E, |1n=12,.,n]
U[I(E,l - E;t - ],,u.)’E‘u,u a+ E,u — 1

INTIE |
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| for all u with €, 6, = —1},

E

w— Ly

V{iE,, _++E,_)E

s — 17

| for all u with €, 6, = +1}.

For any set of indices {/,,i; ] compatible with the given se-
quence each of these generators is a skew-Hermitian opera-
tor on the space H {(i;,;)}. Therefore, assuming the suffi-
ciency of condition (11), these operators provide a discrete
irreducible unitary representation of the algebra u(p,q) on
the space H {(iy,i;)}. If weset p; (resp. g;) equal to the num-
berof -+ ’s(resp. — I’s)in the truncated sequence | e,,-.-,ej] ,
then the Gel’fand basis of this representation space corre-
sponds to the chain of subalgebras

u@,g) D@, _ g, _1)22Du(l).

ble representations of u(p,q) the unitary condition depends
solely on the set of indices {(4,,i;)} and is valid for all possi-
ble choices of the defining integral parameters m, ,>->m,, ,,
i.e, for all irreducible representations of the series. We now
observe that some other sets of indices also yield unitary
representations, but only for certain values of the parameters
m,,>-->m,,. Forthecasesof n = 3andn = 4 we have tab-
ulated these additional series of unitary representations by
specifying for each such set of indices the restrictions on the
values of m,,>.->m,, and the sequence to which it is
compatible.

nn

To illustrate the results of this section let us again con-
sider the case of n = 3. In this case there are four possible
sequences (1,1,1), (1,1, — 1), (I, — L) and (1, — 1, — 1),
each of which will be treated separately.

The sequence (1,1,1) gives rise to the real subalgebra
u(3) of gl(3,C) and the only compatible set of indices is
{(0,2),(0,3)}. Not surprisingly, this set of indices provides us
with the unique finite dimensional unitary irreducible repre-
sentation of u(3).

The sequence (1,1, — 1) gives rise to the real subalgebra
u(2,1) of gl(3,C) and there are three compatible sets of indi-
ces, namely {(0,2),(0,1)}, {(0,2),(1,2)}, and {(0,2),(2,3)}.
The associated representations of these sets of indices are
precisely the three discrete unitary irreducible representa-
tions of u(2,1) described by Gel’fand and Graev. In the de-
composition of each of these representations with respect to
the subalgebra u(2,0) generated by
{IE\E ., i(E,, + E,),E,, — E, } we observe that the second
row components (m,,,/m,,) label the infinite number of finite
dimensional irreducible unitary u(2) subrepresentations.
Thus the Gel’fand basis formalism corresponds to the chain
of subalgebras u(2,1) Du(2).

The sequence (1, — 1,1) also gives rise to the real subal-
gebra u(2,1) of gl(3,C), and there are two compatible sets of
indices {(0,1),(1,3)} and {(1,2),(0,2){. The Gel'fand bases
for the two associated representations corresponds in this
case to the chain of subalgebras u(2,1) Du(l,1). In fact, if we
decompose these representations into their irreducible com-
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ponents with respect to the subalgebra u(1,1) generated by
{iE\JEp,i(E12 — En),Ey; + En}, we find that the compo-
nents (m,;,Mm,) of the second row label the infinite dimen-
sional unitary irreducible u(1,1) subrepresentations.

Finally the sequence (1, — 1, — 1) again givesrise to the
real subalgebra u(2,1) and there are two compatible sets of
indices {(0,1),(0,2)} and {(1,1),(1,3)}. Asin the previous
case the Gel’fand labeling corresponds to the chain of subal-
gebra u(2,1)Du(1,1). »

A summary of these results for the case n = 3 is dis-
played in Table I a similar analysis of the case n = 4 has also
been carried out with the results given in Tables II(a), II(b),

and II(c).

IV. EXAMPLES

In this section we illustrate the results of Secs. IT and 111
by considering the following specific examples where for

simplicity we assume that m,; = m,, = m3; =0.

1

A. Space in which operators do not provide a
representation of gi(3,C)
The space H {(0,1),(0,3)} has a basis consisting of

bt O]

Using the formulas (3)—(5) we have
0 0 0 0
(E»— Eaa)g( ) = — Zé'( Z )’

whereas
0 0
[Eza;En];( ) =0.

Thus on this space [E,s,Es.]5E:; — Es;, i.e., these operators
do not yield a representation of gl(3,C).

B. Representation of gl(3,C) whose restriction
to the real forms u(3) or u(2,1) are not unitary

The space H {(1,2),(1,2)} has a basis consiting of

TABLE IIA. Gel'fand representations of gl(4,C) and their restrictions. Assume (i,,i)) = (0,1), i.e., my, — 15m,,.

{0.3) ©.2) ©.n ()] 1.2y 2.3)
(W) muEmzmy mozmgzmy my— 1muema— 1 myzm o+ 1 myzm o+ 1 myzm.+ 1

(Fnil) mazpm,m. ma — 1zmy, mo— 13my, my>myzm. ma—lzmy, m+ 1>muam, + 1
©4
My, M, Not a Not a Not a Not a Not a Not a
M3 My representation representation representation representation representation representation
myzmaz2my,
0.3
Muzmazmy, Not a Unitary on Not a Not a Not a Not a
My 2y, representation su(3,1)Dsu(2,1) representation representation representation representation
my, — Lom, Osu(l, 1}
©.2)
M2, Nota Not a Nota Unitary on Not a Not a
My — Lomuzr, — | representation representation representation suf2,2} Dsu(2, 1) representation representation
My — 1zma Dsu(l,1)
©.1)
My — Lemaem, — 1 Not a Not a Nota Not a Not a Nota
my — 1>muzm, — 1 representation representation representation representation representation representation
my — lzmu
{1.4)
mizm+ 1 Not a Not a Nota Unitary on Not a Not a
MMy, representation representation representation su(3,1) Dsu2,1) representation representation
M zmazme su(l,1)
(L3)
mozm,+ 1 Not a Never Not a Never Never Not a
Moz me > my representation Unitary representation unitary unitary representation
Moy — Lama
(L2)
mozm+ 1 Not a Not a Not a Never Not a Nota
my, — Lompzm, — 1 representation representation representation unitary representation representation
my — 1>ma
24
myzm.+ 1 Not a Unitary on Nota Not a Not a Not a
M+ 1empzm, + 1 representation su(2,2) Dsu(2,1) representation representation representation representation
M M2 My, Dsu(l,1)
2,3)
myzm.+ 1 Nota Never Not a Not a Not a Not a
my+ 1zmaem, + 1 representation unitary representation representation representation representation
my — 13m.
3.4
myzm,+ 1 Not a Nota Not a Nota Not a Not a
my+ 1zmu>my, + 1 representation representation representation representation representation representation
Mu+ Izmusm + 1
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TABLE IIB. Gel'fand representations of gl(4,C) and their restrictions. Assume (i\,i]) =(0,2), i.e., m,;>m, >,

) ©@.3) 0,2) 0,1y 1,3) (1,2) 23
(id3) M2 memy My m sy, my — 1>my>m;, — 1 mipzm, + 1 myzm; + 1 myapm+ 1

(£413) my 3y my, my — 1>m;, my — Lzmy, myzmy3my, my, — 15my, my+ Lemyom + )
0.4 Unitary on
myzm,>m,, su(4) Dsu(3) Not a Not a Nota Not a Not a
ML 2 M2 My Dsu(2) representation representation representation representation representation
gz M2 M
©,3) Ifmi = my = my If my = my = m,
M2 M2 My unitary on unitary on Not a Not a Not a Unitary on
M2 My 2 Moy su(3,1) Dsu(3) su(2,2) Dsu(2,1) representation representation representation su(3,1) Dsu(2,1)
My — lzm, Dsu(2) Dsu(2) Dsu(2)
{0,2) Ifm =m,
mu>m.z>m, unitary on Not a Unitary on Never Not a Nota
me— 1>mu>em,—1 su(3,1) Dsu(3) representation su(2,2) Dsu(2,1) unitary representation representation
My — tem, Dsu(2) Dsu(2)
o1n
my ~ 1emuz2m, —1 Unitary on Nota Not a Not a Not a Not a

ma— 1zmyzm, —1 su(3,1)Dsu(3) representation representation representation representation representation
M — 1zm Dsu(2)

(1,4) If ma = mo = my. I myy = mo=my

muzm.+ 1 unitary on Not a unitary on unitary on Nota Nota

M2y 2 My, su(3,1) Dsu(3) representation su(3,1) Dsu(2,1) su(2,2) Dsu(2,1) representation representation
Mmuzmazm,, Dsu(2) Dsu(2) Dsu(2)

(1,3) fm,=m.,

mazm+ 1 unitary on Never Never Never Unitary on Never
M2y 2, su(3,1) Dsu(3) unitary unitary unitary su(2,2) Dsu(2,1) unitary

my — lem. Dsu(2) Dsu(2)

L2

mazm+ 1 Unitary on Not a Never Never Not a Not a

my — 1emoeme—1 su(3,1)Dsu(3) representation unitary unitary representation representation
My — 12m. Dsu(2)

2.4) Ifm =my,

muzm+ 1 unitary on Never Not a Not a Not a Unitary on
mu+ tzmuzm, +1 su(3,1) Dsu(3) unitary representation representation representation su(2,2) Dsu(2,1)
MMz me, Dsu(2) Dsu(2)

2.3

myuzm+ 1 Unitary on Never Not a Not a Not a Never

ma+ temyzm 4+ 1 su(3,1) Dsu(3) unitary representation representation representation unttary

My — lam,, Dsu(2)

(3.4

mpz2m, + 1 Unitary on Not a Not a Not a Not a Not a

m+ 1omuzmy + 1
my+ lzmizm,+ 1

su(3,1)Dsu(3)
Dsu(2)

representation

representation

representation representation representation

[§(x , y)‘ x>1ly< —1 and z>x+l].

By direct calculation one can verify that the operators de-
fined by formulas (3)~(5) provide an irreducible representa-
tion of gl(3,C) on this space. However we also observe that

(7, eslC L)

- _(x(x+ Dx+2)z—x—-1) )1/2
x—y+Dx—y+2)

T ()
)

(L s

- —i( A ===y —DEz—=y) )‘/2
x—=y+Dx—y

L el )
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E32

l
(all factors under the radical signs have been made nonnega-

tive). Thus E ;5 %= + E.,, and consequently the restriction of
this representation to either u(3) or u(2,1) does not consist
solely of skew-Hermitian matrices, i.e., these restrictions are
not unitary.

C. Representation of gl(3,C) whose restriction
to u(2,1) is unitary but not equivalent to any of
those given by Gel'fand and Graev

The space H {(0,1),(1,3)} has a basis consisting of
0
{§(x )i x>1 and z< — 1.
z

By direct calculation one can see that the linear operators
defined by formulas (3)-(5) provide an irreducible represen-
tation of gl(3,C) and moreover that the restriction of this
representation to u(2,1) is unitary. This representation is
however not equivalent to any of the unitary representations
of u(2,1) listed by Gel’fand and Graev. This follows immedi-
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TABLE 11C. Gel'fand representations of gl(4.C ) and their restrictions. Assume (f.4]) = (1.2), i.e, m2m, + 1

0.3) 0.2) [CA)] (1,3) (1.2) @3
.47 masmgzm. mimazm,. my~ 1>myeoma -1 my2mn+ 1 m,zm,+ 1 my,>mp, + 1
[{RA] MM m, m.—1om, mo— 12my, MM ma— tzm, me 4 pmupma+ 1
(0.4)
myazm,.zmy Not a Not a Not a Not a Not a Not a

muzm;zm, representation representation representation representation

myzm.zm,

representation representation

0.3

mzmazm, Not a Unitary on Not a Not a Not a Not a
Mz zm, representation su(3,1)Dsu(2,1} representation representation representation representation
my — lom, Dsu(l, 1)

0.2)

mez2m.>m,, Not a Not a Nota Unitary on Not a Not a

M — Somyzm. — | representation representation representation su(2,2) Dsu(2,1} representation representation
my - lzm., Dsu(l,1)

0,1}

my, — Ipmuzm, —1 Not a Not a Nota Not a Not a Not a
my—tamzm,— | representation representation representation representation representation representation

m, ~ Lzm,

(1.4)

mzm,+ 1 Not a Not a Not a Unitary on Not a Not a

P My Em, representation representation representation su(3,1)3su2,1) representation representation
MMz, Dsu(h,)

(L3

muzm,+ 1 Not a Never Nota Never Never Nota
mypmazm, representation unitary representation unitary unitary representation
ma—l>m,

L)

muam,+ | Not a Not a Not a Never Not a Not a

my = 1zm, zm,—1 representation representation representation unitary representation representation
m,—13m,

24

m>m, + 1 Not a Unitary on Not a Not a Not a Not a

M+ 12muzmy + 1 representation su(3,1) Dsu(2,1) representation representation representation representation
mzm. zm, Dsu(l,1)

2.3)

mazmat 1 Not a Never Not a Nota Nota Not a

Mo+ lzmuaem.+ 1 representation unitary representation representation representation representation
my— lpm,

3.4)

myzme+ 1 Not a Nota Nota Not a Not a Nota
m,+1zm,zm+ 1 representation representation representation representation representation representation

mu+ 13mzme+ 1

ately on comparing the weight space decompositions of these
representations.

basis consisting of

0 y
(. )
z
and the matrix element a} and b } are identically zero. There-
fore, by writing out the finear operators on this space one can

directly verify that the generators of the representation are
skew-Hermitian when restricted to u(2,1) and hence the re-

y<—1 z<y — 1]

D. Unitary representation from a series which is
in general nonunitary

In general, the representations of gl(3,C) associated
with the set of indices {(0,2),(0,2)} do not restrict to unitary
representations of u(3) or u(2,1), however if we take
my; = my; = my; = 0, thenthespace H {(0,2),(0,2)} hasa

presentation is unitary. Moreover, the Gel’fand basis is asso-
ciated with the chain of subalgebras u(2,1) Du(2) and by
considering the weight space decomposition, this represen-
tation is not equivalent to any of those specified in Ref. 2.

V. REPRESENTATIONS OF NONSEMISIMPLE SUBALGEBRAS OF gi(n,C)

The explicitly defined Gel’fand representations of gl(n,C ) offer possible avenues to study the representations of other
subalgebras of gl(n,C ) in a detailed manner. As an example consider the group G of inhomogeneous transformations consisting

of all 3 X 3 complex matrices

__[a 0
g_z 1k

where aeGL(2,C) and zeC?. The elements of G can be viewed as operating on the two dimensional affine space
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{(xp,1) | x,peC | where (x,5,1)g = ((x,y)a + z,1). The Lie algebra L of G, considered as a subalgebra of gl(3,C ) has a basis given
by fe; [ i=1,2,3; j =1,2}. Consider an arbitrary, finite dimensional representation (p, V) of L. When viewed as a representa-
tion of the subalgebra gl(2,C), the space ¥ decomposes into a finite direct sum of irreducible representations, say

V=W &- oW, Define two operators N = p(e;,) and M = p((e,, — e,, + 1)e,, + ey,¢,,) on the space ¥ and note the following
properties:

(1) By an extreme vector of ¥"'we mean any vector ve¥ such that p(e,,)v = 0. Since [p(e,,),V ] = [p(e,),M ] = 0, we find that
N and M map extreme vectors to extreme vectors.

(2) Denote by (S > the gl(2,C ) subrepresentation of ¥ generated by aset SC V. Then for any nonzero extreme vector veV we
have

Dim{Nv) = Dim{v> +1 or Nu=0,

and

Dim(Mv> = Dim{»> — 1 or My =0.

(3) Combining remarks 1 and 2 with the fact that [N,M ] = 0 we find that N and M are commuting nilpotent linear
operators on V. This in turn implies that for any fixed nonzero extreme vector veV the set of all nonzero vectors of the form
N*#M *vis linearly independent. { The operators N and M are clearly simple modifications of the Nagel-Moshinsky operators
[cf.(4)] ]

Consider now ¥, = {({ N*M “v, | v, is an extreme vector of W, and u, v are nonnegative integers} >. It is clear that W, C ¥,

and ¥V, isan L subrepresentation of V. We shall now explicitly construct a representation of L equivalent to V; using the Gel’fand
representations of gl(3,C).

Let d + 1 denote the dimension of the space W, and let & be the smallest nonnegative integer such that N “v,540 and
N*+1p, = 0. Denote by (p,,U) the restriction to L of the unique finite dimensional irreducible representation of gl(3,C ) labeled
by the sequence m,; = k + d, m,; = k and m,; = 0. Let U’ equal to the L subrepresentation of U generated by

k+d k
m:( k+d—v k—pu ,where N“M *p, =01.
k+d—v

Weclaim that V,and U /U’ are equivalent L representations. In fact, by the properties of N and M listed above we find that
as a gl(2,C) representation

o

Vo= s ® (N*M™v,),
M,V nonnegatice integer
s.t. N'"M v,0

where (N*M*v,) isa (d + 1 + u — v)-dimensional irreducible gl(2,C ) subrepresentation. The corresponding decomposition
of U/U" as a gl(2,C) representation yields

k+d k 0
U/U'= z e<§( k+d—v k—pu )+U’>,
k+d-—v

,v nonnegatice integer
s.t. N'M v, 50

where

k+d k 0
<§( k+d—v k—u )+U'>
k+d—v

isa (d + 1 + u — v)-dimensional irreducible gi(2,C') subrepresentation. Thus ¥,=U /U’ as gI(2,C) representations.

To complete the verification of the equivalence of ¥, and U /U’ as L representation it suffices to observe that the map ¢,
given by setting

k+d k
¢(N“M”v1)=Ky,§( k+d—v k—p + U,
k+d—v

where the coefficients K, are constants defined by the equation

k+d k 0
Pl(eaz)ﬂpl((en —ep+ ey + e;zen))vg( k+d K ) + U’
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k+d k

=K, £ k+d—v k—p

k+d—v

0

+ U/,

can be extended in a natural fashion to an L representation equivalence between V,and U/U".

Itis easily seen that the L representation U /U’ and hence V, is indecomposable and one can explicitly write out the matrix
elements of the representations. Thus we have a very explicit presentation for a wide class of finite dimensional representations

of L.

This technique has a wide range of possible applications which would appear to be worthy of further investigation.
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The scaling limit of the 42 field in the anharmonic

oscillator?
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We prove that the rescaled and renormalized g’ process for H, =[p ’+gg*+(1—g)q ’J/2 tends to the

Gaussian process for the Harmonic oscillator as g tends to infinity.

. INTRODUCTION
The double-well potential
Vig)=¢glg’ — (1 - 1/8)/2

is studied in the scaling limit g— « . The associated stochas-
tic process, ¢(t ), has an infinitesimal generator

1 d:?
H, = ~2—[ i + V(q)],
and in this limit, the process decomposes into a tensor prod-
uct of a Bernouilli process and a Gaussian process. The Ber-
nouilli process labels tunneling (*‘instantons”) between the
potential wells, while the Gaussian process labels fluctu-
ations within a well (*‘spin waves™). It was shown in Ref. 1
that g(¢ ), appropriately scaled, tends to the Bernouilli pro-
cess, 1.¢., a spin-3 Ising model in the real line. A similar result
was obtained by Ref. 2 for the limit of a ¢* lattice field theory.

In order to find the Gaussian process, we use test func-
tions which vanish on the Ising part of the measure. Thus we
are led to consider functions of g which vanish at the minima
of the potential, namely ¢ — E (¢°) or g[g> — E (g%)]. These
random variables converge as g— o to the standard Gaus-
sian process associated with the harmonic oscillator.

We define for the former the random process at time
>0

Q)y=e "Q,=e "(10)"¢ — E(@)].
We prove in Sec. II-1V that for all r>0 and N

Xli{n E[Q(1)Q,(12)Qy(t))]

= E[q(t)q(t)-q(,)],
where g(t) = e ~ g and H, = L( — d*/dq* + ¢).

A similar result can be proved along the same lines for

Qg(t) —e” lHugamzfmq[qz _ E(qz)]'

Thus we see that the complement of the Ising part of the
measure consists of two disjoint Gaussian processes corre-
sponding to harmonic oscillators. It should be noted that
these processes are exponentially smaller (in the sense of en-
ergy levels) than the main Bernouilli part.

“Supported in part by the National Science Foundation under grant
PHY76-17191, by the National Research Council of Brazil (CNPq), and
by NASA-Goddard Space Flight Center grant No. NSG 5034.

®"New York University and Pontificia Universidade Catolica do Rio de
Janeiro.
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The phenomena of a measure decoupling into an Ising
and a Gaussian part seems to be quite general. A harder
result of this type was proved by Glimm-Jaffe-Spencer for
some two-dimensional ¢* quantum field theory models.’ In
that case the result was proved in low temperature (g— oo )
for the field g itself—and the Ising part of the measure is a
correction on the main Gaussian part. There are indications
that at the critical temperature (i.e., for g, such that the gap
between the two lowest eigenvalues of H, vanishes) the field
¢* has a Gaussian behavior. In our one-dimensional case the
critical temperature and the zero temperature are indentical
(g, = ), and the Gaussian part becomes a correction on the
main Ising process.

Similar results hold for the n-dimensional spherical os-
cillator H, = 4[ — 4 + gr* 4 (1 — g)r’].* We omit the state-
ments and the proofs of the corresponding theorems since
they are obvious generalizations of our results and methods.
(We remark only that in the proofs we use the one-dimen-
sional momentum operators instead of the radial momen-
tum operator.)

Il. THE BEHAVIOR OF THE RENORMALIZED
AND SCALED g2 PROCESS

Consider the Hamiltonian operator defined on .*'(R),
3l +gg' + (1 —2)g’),

adding a constant
H, = i{p+¢lg® — (& — 1)/28)}.

(The self-adjointness and other properties of H, are studied
in Ref. 1.)

The potential of this Hamiltonian has two equal mini-

ma at (+ 1/V2)(g — 1)/g=( + 1/V2) for large g. The
behavior of the eigenvalues and eigenvectors as g— oo is
studied in Ref. 1.

We rescale it through the change of variables x = ay
where a = [2(g — D]

Then the eigenvalue problem for 2.7 (R),

1 d? ( , 88— 1)2]
—| — xx—2 " I2Kx)=en(x), xeR,
2 [ dx? +é 2g ) )
is transformed into
1 d:? s 1 )2]
—| - —— |2 (e
2 [ dy? + v(y 4v (@)
= [2(g — 1)]e2 (ap),
© 1879 American Institute of Physics 830



where

v=g/[2¢ — DI'?,
Let us establish the notation

H, = i[p* + v(¢* — /4] onSF(R).

We will denote its eigenvalues by E® < E | « E %..- and corre-
sponding eigenstates by 2°%02 .22 .

v—0 asg—w.

Notice that close to its minima (given by

», = + 1/72Vv) the potential behaves like (y=1/2Vv)
b2 )
——) =v|y— — y —
dv 2\/1/ 2\/1/
1 )2
—( Vv

Thus in the translated variables j = y — 1/2\/v the eigen-
value problem H, ¥ (§) = EW (§) becomes asymptotically

1@+ )V =EV.
Since the eigenvalues of this harmonic oscillator are
given by n + 1, n = 0,1,2... the results of 1 become in this

scaling

lm(l]Ezf— hrrC)JEzJ‘“1 = llm/l)’ =j+4, j=012,..,(la)
lim[[2% — @i, = lim|[2 ¥+ — @i =0, (IL1b)
v-—0 v—0

where ¥/ and ¥/° are given in (II1.27). The eigenfunctions

of H,=4(p* + ¢*), the harmonic oscillator, satisfying
H)=ELd, j=0,1.2,.. (E{=j+ 1), will be denoted
by 25,42 b,

Our problem stems essentially from the desire to under-
stant the behavior of

q\?en,vKz - <‘Q quﬂ ?/>‘

Now, it is proved in Ref. 1 that, for our /_,
lim(4vK2°¢n % = 1.
30

So we see that g2, ,~¢* — (4v)". Notice that at the “bot-
tom” of the potential wells (say, at the rightmost one)

q'_\_fl/2\/v + 4q,

== () )

qren v/

Sincethe two “wells” becomedisjoint as v—0it becomes obvi-
ous that (after a rescaling) ¢2.,, , behaves like a ¢ operator for
the harmonic oscillator. This is actually the contents of
Theorems 1-3 which follow. We recall that in the original
scaling the weak operator limit of g7, , as v—0 is zero.
Loosely speaking, this is due to the fact that g7, ,, is zero

831 J. Math. Phys., Vo). 20, No. 5, May 1979

close to the region of highest probability density,
g= 4 1/2Vv.

Through a Legendre transformation, we introduce
Q.= v‘”qren Y and its conjugate momentum P,, where

[HV’Q ] -

Theorem 1:

lim{22Q 2 =N kg"nly, for kln=0,12,-
10

Theorem 2: For 5,>0,i = 1,2,...m — 1, m = 1,2,3,.,

lim(250,e =" Qe Qe QM0
v—0
Honog2 3>

Theorem 3: For s;>0real numbers, jeN,i = 0,...
meN-°,

~<.Qoqe"”qe

,m_la

. I "
lim — ——.——<2°%0 e
v 20 Jsh sl s’
X Qe Qe 0.0%
d & 9
= —<.(2 oge ~ Hoge = sHoq O
a5’ dsi ds °

For the sake of completeness, we return to the original
parameter g. Then ¢, ,=¢* — {2 2°2 >,
lim, <2329 =4 a=a(g) = [2g — 1)] has the
property lim, . a = 0. By means of a simple rescaling the
theorems above become, for =gy H,.

Corollary 1:

Nm (2 24 [(38) *Grn )92 2> =<2 5g7 2 (>

g
for k,/,m = 0,1,2,-..

Corollary 2: Fors,20,i=12,.,m — 1
lim <02 9(48)" *grenge " (20)"
B8+

‘H”(%g l/qugen,g!) (g)>

szH(,".e — S, |anﬂ 8>

quen,g'"e -
= {0 Sge ~*Hge

Corollary 3 is analogous to Corollary 2 above.

Up to now we were working within the subspace of an
even function on R, or equivalently on [0, oo ) with Neumann
boundary conditions (reflective barrier) at 0. If we work in
the space of odd functions on R, or equivalently on [0, o)
with Dirichlet boundary conditions at 0, all the results above
have similar counterparts, obtained by replacing
Ve BY $q05cn.-

Finally, we can add a weak “external field” to H , i.e.,
consider

[/I\V =H, + c(v)x.

If ¢(v) = o(v), all the results above still hold. An explicit
computation using parabolic cylinder functions' shows that
if e(v) = O (1) the results are not valid any more
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Il. PROOF OF THEOREM 1

Lemma 1: Let

=37 + (g7 — 1/4v)], (1L 1)
Q. =vUg — <% ), (111.2)
P, =v"(pg + gp). (I1L.3)

Then for all neN there exist polynomials in A, 4, ,(f,),
and B, ,(H,), with nonnegative coefficients which are
bounded as v tends to zero, such that

(1) ”HVQ :UH é HA v,n(Hv)v” ’
(”)”Q :iU” <”Bv.n(}‘{v)‘vn’
where ve(R) may depend on v.

(I11.4)
(111.5)

Progf: The proof is done by inductiononn. Whenn = 0
there is nothing to be proved. We assume that the result is
true up to n — 1. In order to prove that it is true for n, we
need the two commutator equalities

(H,0,)= —iP, (I11.6)

[P,Q.] = — i4v'?Q, — idv{2% 422 %, (I1L.7)

We use (I11.6) and (I11.7) to establish the following
equality:

H,Q7=20n~Dn(Q7 1+ W20,

—inP,Q. "+ QH, (11L8)
In fact,
n—1
HQI="S QYH,0,10"“ ' +QH,
K=0
n—1
= — i Y QPO QIH, an.9)
k=0
Now,
QipQi <1

k1
- 3 o PLQIQL K PO
=%
= 4 AQ L+ W GDEL D + PO
(111.10)
Substituting (II1.10) in (II1.9) we establish (II1.8).

Let us proceed with the induction for (ii) first;

QW =<Q: 0,307 'v). (ITL.11)
Using (111.2) and (@ + b y’<2(a* + b?), we obtain
1 1 2
2 2 _ QO(z___)ao]
0t =g <@t - )%
2
<2[V(q2 — L) + {2 (V)V“’(qz — —1—)!2 ‘3)2].
4v 4v
(111.12)

The last term is estimated using the Schwarz inequality, and
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SO

0 3,@[211,, 40 ?,v(qz - 4#)!2 05292
2 g

<MH, + E)]. (111.13)

Sincelim, £ 9 = Litiseasy to use (I11.13) and part (i) of

the induction hypothesisin (II1.11) to obtain (I11.5) for n.
To prove (i) we use (I11.8) and obtain

HH\Q :{U”<2(R — })n(vl/z”Q: - 11)”
+ [K2%g 010"~ ))) + | Q H |
+n|P.QL .

(111.14)

Since the Schwarz inequality yields
{2%g20% =<0 Su(g> — 1/4)N % + Ly 2 QEY)V + 4
(111.15)

and lim, £ °® =1 we can use (II.4) of the induction hy-
pothesis to bound each of the first three terms of the right-
hand side of (I11.14) in terms of [|C, , (H Jo|| witk
m=n—1n—2n+ 1. Weestimate the [ast term of
(I11.14) as follows,

Pl =(2gp — i)(2pq + i) = v(4gp'q — 1).
It is easily verified that

29p%q = qp’q + (gp’q)* = (§°P’ — i29p) + (’q" + i2pq).
{IL.17)

(111.16)

This gives us
Pl=2v(p'q’ +g'p) + 3v.
now

wp'qt + ¢'p?)

S G N (S G ol
-a{afe-50) (- )]“(L%

— 21/1/2[Huv1/2(q2 _ _1_) + 1/l/z(qz o Zl_)H ] + H

4y
(I11.19)

(11.18)

Since for self-adjoint operators H and D = v"¥(¢* — 1/4v)
theinequality (H — D )*>0implies HD + DH<H?®+ D’,we
have

(P’ + gp)<2 P H L +v(g* — 1/4v)) + H,
<vH:+2H) + H,
<@+ HHL+ . (I11.20)
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Substituting (I11.20) in (II1.18), we obtain

1P.Q L~ tolf”

<8(v+ v+ D@L Wil + |H.Q7 ")
(I11.21)

Each term of the right-hand side of (II1.21) can be estimated
by ||C,(H,)v||? using the induction hypotheses (i) and (ii).
Using the equivalence of norms in R™ it is easy to combine all
the estimates in (I11.14) in a single inequality of the form

1H#,Q W< || 4,.(Hvl, (I11.22)
where 4,,,, is a polynomial with nonnegative coefficients

which are bounded as v tends to zero. The proof of the
lemma is complete.

Lemma 2: For all m,/eN,
Qg — /4]0
is bounded as v tends to zero

Proof:

V(g — 1/4v) = Q, + {2 vV (g* — 1/4v)2 %>,
(I11.23)

(e - L)]"0%) = $cicarorm—an
=0

4v ——j

clawr(e L)ty
4v

(I11.24)

The result follows from Schwarz’s inequality and Lemma 1,-
part (ii).

Lemma 3: The generalized Laguerre functions satisfy

Hmdyie,Q T = 269724, Y k]lmeN.
v—0

Remark: The generalized Laguerre functions that we
use are a complete orthonormal set of eigenfunctions of the
eigenvalue equation

1P + I(x — 1/4vx)e(x) = Ag(x). (I11.25)

The eigenvalues are A ) = n + 4 + 4a — (16v), neN,
where

a=1i(1 + 1/16v*)'", (I11.26)
The corresponding eigenvectors are
V) =(—= 12T+ 1)/TF@a+n+ 1]
X (3x2)*2 + e =¥/ 3(4x?) (I11.27)

and
Yoox) = 0 ()Y (x) — 0 (— )Yy — x),

where 6 (x) is the Heaviside function and L ¢ are generalized
Laguerre polynomials. Notice that lim,, ,,A 7 =n + §. Fora
more complete discussion see Ref. 1.
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Proof of Lemma 3: Due to parity consideration it suf-
fices to prove that Vk,/,meN,

lim2 J " Y0 Y (x)dx

- f T 050X L(xdx, (111.28)

where we used the fact that ¢*°(x) = ¢*°(x) for x > 0 to drop
the superscripts e and o (even and odd). The proofis divided
in three parts.

Part 1: We claim that V &,/ meN,
) * 1 m/2
lim2 f 1/1{‘,():)[———():2 — 2(1)2] P (x)dx
-0 0 8a
—+ oo
= J 0 5e)xm02 L(x)dx, (I11.29)

where a=a(v) is given by (111.26).
Infact, for I =25 ¢*(x)[(1/8a)(x? — 2a)*]"" ¢! (x)dx,

using (I11.27) and performing the change of variables
x%/2 =y, we obtain

I=(— 1)+ kW/[[(@+k+ DI@+1+ D}

i 1 m/2
x f y“e*ychv)L;’(y)[E@_a)z] dy.  (L30)

Essentially, the proof uses the fact that
Ve " V=exp[ — (¥ — @)*/2a] as a tends to infinity. We

change variables again: (y — a)/\/; =x.
I=(— D)Xk @+k+ Dl @+1+ D

2- m/?_ea]na _a ch e — Vax + ain(l +X/\/;)L Z('\/ax + a)
— Va

XLV ax + a)x™dx. (11L.31)

We estimate the exponent

fla)=— \/ax +aln(l + x/\/;). Since f010<z <1,
In(1 - 2)< —z —2%/2, we have f,(x)> — Vax +a(x/

\/a —x/2a) = — x*/2 for — \/a <x<0.
For x>0 and a>a’,

= [ runar - —fz(u %)

a

X t 9 _
<—J;t(l+\/_7) dt =f(x)

a

It is also clear that lim,__e’*™ = ¢ = */2 ¥xe( — \/a, )
and

X_va )(x)e ~Vax +aln(1 + x/Va)
— a, oo
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e~x1/2 XQO,

e Va'x +aIn(l + x/Va')
s

< (111.32)

x>0,a>a’.
Now Eq. (5.5.4) of Ref. 5 states that

lima~"2L %V ax + a) = [( — 1)"/n!] He (x).
(111.33)
This implies that all the coefficients of the polynomial in x,

a "L ﬂ(\/ax + a), tend to the corresponding coefficients
of [( — 1)"/n!] He,(x). In particular, they are bounded func-
tions of @ in any interval e€[a,, » ). Fix a,, and take a > a,.
The remarks above imply that we can find an integrable
£(x)>0 such that the absolute value of the integrand is esti-
mated by this g(x). Using the Lebesgue dominated conver-
gence theorem,

limI = lim {a**//[kMN'T@+k+ Dl @+ 1+ D]}”7

a--—-oc d->oc

+
X g?Ina —apy —m/2 f e ~*"He, (x)He,(x)x™dx.

- o

(I11.34)

Changing variables (x/ Vo= y) and using the definition of
{2 (x), we obtain

I= 1im{27Tak+1/[r(a+k+ 1)F(a+1+1)]}'/2€a]"a_a

a-—co

~+ oo
X 0 5e)x™2 §x)dx.

— oo

(II1.35)

An application of Stirling’s formula shows that the lim-
it in (I11.35) is 1, so (II1.29) is proved.

Part 2: We claim that
im( (P g%y — <2 W g2 P)=0.  (1136)
v—0

In fact,
1 1
Oe 12| 2 Oe) _ (0O 1/2( 2___)0?/)
WVV (q 4v>¢”> < A U

= [{wes - aw(a - )]

(oo~ L))

. , . 1)2,0,\172
<[lg%e — 29! 2(<¢% v(qz - —) ¥ )
4v

S )20 0> 1/z>‘
4v Y

Since® lim|[¢%' — 2 9] = 0 and the second expectation in
v—0

n ( Q S,V(qz _ (111.37)
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(II1.37) is bounded by (£ °), which tends to 1/V2 as v
tends to zero, (I11.36) will be established as soon as we prove
that the first expectation in (I11.37) is bounded as v tends to
Zero.

Using the inequality (x + y)*<2(x? + y?),

(e — =) )

ol (o))

d

<2(8av)[<1//‘3"’ gla (¢ — 20)21//9‘“> + (Za _ 7:;)2].
(I11.38)

Using (II1.27) we see that lim,_,;8av = 1 and

lim, o(2a — 1/4v)* = 0. Finally (II1.29) for k =/ = 0 and
m = 1 yields the boundedness of (II1.38), which establishes
(111.36).

The equality below can be proved by means of essential-
ly the same arguments used for (I1I1.36):

im (g% 2g*y%°> — 2av'?) = 0. (I11.39)
v—0
Finally, we combine (I11.39) and (II1.36) to obtain
lin(1)(2av“2 — v 02 %02 %) = 0. (111.40)
Part 3:
PeQ T = Py [vHg* — 2a)
+v2a — (2P, (11141)

We expand (I11.41) in powers of m. From (II1.40) and
lim, (v/8a)? =1 we get

lim(yseQ 7Yy
— lim(ybe (v — 20)]70

= lim<yE°[(8a) " (g* — 2a)]"¢>. (I11.42)
v—0

The proof of the lemma is completed using (II1.29) in
(I111.42).

Theorem 1:
lﬁ%<ﬂ *Qu0 =<025" 20, ¥ klneN.
Proof:
K2FQ S — (P Q i
<R — e,Q10 25| + [Kgee QU2 Y — v
<22 — el Qe + el N2 — vl
It is proved in Ref. 1 that [|2 2% — ¢ and |22/ — ¢%°||

tend to zero as v tends to zero. The term ||Q "2 ¥ stays
bounded by virtue of Lemma 1 and the fact that
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lim, ,,E?% =1+ 4 (also proved in Ref. 1. Lemma 3 guaran-
tees the boundedness of ||Q 7¢*|| as v tends to zero.

Theorem 1 follows from the above estimate and from
another application of Lemma 3.

IvV. PROOF OF THEOREMS 2 AND 3

Lemma 4: Let P, be the orthogonal projection on
(2°%02,...,0" '}*(These vectors were defined in Sec. IT as
the eigenvectors of H, with corresponding eigenvalues
EC°<E !<E?%..) Then the following inequalities hold:

@)

—tHp o (E?

(i1)

H7e ™<(m/t)"e ™™, ¥meN, >0. (1v.2)

Proof: Using the spectral theorem, (IV.1) is obvious,
and (IV.2) follows from the inequalities /, >0 and
sup,.ox™e ~ Fg(m/t)"e " "

Lemma 5: LetkeNand ¢, >0,i=1,.
m,My,....,m, €N'. Let

e, =l “PEQ e

VY neN, 120, (Iv.1)

...k, and
—1, LH.

XPRQ e MPEQ QO 1v.3)

where each P¥ stands for either P,,or P, =I—-P,
(i) There exist ¢ = ¢(¢y,-..,f; ,/M,,...,/m; ) Such that ekgc.
(ii) If the leftmost PF is P, ,
(ie,e “P¥=e~ “"P ) then for any given € >0, there
exist 8 = 8 (¢,,...,L;,M,....,M ,€) and
N = N(,,....t;,m,,....,m,€) such that for any v satisfying
0 <v<6 and any n>>N we have ¢, <€.

Proof: We prove (i) by induction on k. For k = O there is
nothing tobe proved. Let us assume that (i) is valid for k — 1,

—4H,
ex<lle ™) 1P¥|
X[|Q e~ PHpEQ T e PO D).

Using H, >0 and (ii) of Lemma 1, we have

. DH, 72, =t DH, /2

ek< HBv,mA(H\')e B
XP¥Q T e~ MHpRQmQ Q).

We now use the triangle inequality and Lemma 4, part (ii), to
obtain

ex<dylle” “ OHpEQT e~ MHpEgmQ ).

Finally, we use the induction hypothesis, and part (i) is
proved.

We prove (ii) now, using Lemma 4, part (i),

e, = “e—t‘HV/ZP e_‘k”‘A/2P“Q:,"ke*lk M,

v,

XP¥QTe te ™ "HpEO MO
<e — LE /Zue — !,,H,,/ZPgM‘Q T,ﬂ 8”

835 J. Math. Phys., Vol. 20, No. 5, May 1979

Since EM<ET* !, VYmeN, and lim, £
=lim, ,E*"*'=n + L, and application of (i) yields (ii).

Theorem 2: For s, >0,i=1,2,....m, meN,

im0, ™ Qe " 0,00
=<f25ge =" fge = > g2 3).

Proof: Consider the correlation function (s;>0,

=1,..0),
S=(05Q.e" 0™ e T 0 00

If all 5, are zero, i = 1,...,/, then the theorem is just a particu-
lar case of Theorem 1. Thus we may assume that at least
some s, is positive, and we can rewrite S as follows, for ¢, > 0,
i=1,...k,

S=<niQre Qe Q0. (VA
We make the substitution e ~ “+ = ¢~ “¥ P, + P, (see

Lemma 4) for n to be specified later, and expand Sinto a sum

of several terms. There will be one term where all the e ~ “/**
are multiplied by P, , < i.e.,
S =% 7e P, Qe P, QT %, (IV.5)

and a sum of terms of the form
S*=(NOPRQ e~ HpiQ e~ HHpELO™QON  (IV.6)

where P# are P, and P, and at least one Ji stands for a
P, ,. Using Schwarz’s inequality and Lemma §, (i) and (ii), it
is easy to show that given € > 0 there exist § > Q and NeN
such that for all >N and 0 < v<§, we have |S%|<e for all
such terms

As to (IV.5) we write the full eigenfunction expansion,
;D2 0 2 2
S'= 2 <.Q 00702 2 vexp( — t,E*)

X2Q Y exp( — LE 22 QT2 9.
av.7
Using Theorem 1 and lim, £ % = £, we obtain

[(n - )2 .
> (.ng’"f) >expl —LEL

Ly, 'A

IimS'’ =

v

X<2Eq™2 5> exp( — LE 5)--(25g™ 20>, (IV.8)

Thus, given € 0. choose N so large that the right-hand side
of (IV.8) differs from {£2 3g™e = “*og™e — “Ho..g™ 2 9> by
less than €/3 in absolute value. Then choose &, & so small
that for 0 < v < 8 the sum of the terms (IV.6) is less than €/3.
Finally, reduce 8 even more so that S’ differs from (IV.8) by
less than €/3 in absolute value. The theorem is proved.

Corollary 4: Let u,, be the Hermite functions, eigenvec-
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tors of 1(p* + ¢%). For neN, let and the proof is complete. This corollary is essentially con-
1 1 1 tained in Ref. 1.
U:”(x) = _:l:un(x - —) + un(-x + —)]»
Va2 WV 2Vy ACKNOWLEDGMENT
Ulo(x) = ——1—__—[u,,(x . ) — u,,(x + —1—_)] I wish to express may gratitude to Professor J. Glimm.
2

2 A\ Vi

Then

3 2n mey __ 14 2n+ 1 no(l
}“%H‘Q v — UL ” - }“2)“'0 v —Ur=0. 'D. Isaacson, “Singular Perturbation and Asymptotic Eigenvalue Degener-
acy,” Commun. Pure Appl. Math. 29, 531-51 (1976).
’J. Rosen, *“The Ising model limit of 4 ¢ lattice fields,” Rockefeller U. pre-
print New York (1976).

Proof: We claim that

lim|ly"¢ — U™ = lim||[¢"° — U™°|]? = 0. ‘J. Glimm, A. Jaffe, and T. Spencer, *‘A Convergent Expansion about Mean
Y N ¥V v , p
vos0 v 0 Field Theory, Parts I and I1,” Ann. Phys. (N.Y.) 101, 610-69 (1976).
See Lemma 3. *D. Isaacson and D. Marchesin, “The Eig.envalues and Eigenfunctions of a
( ) Spherically Symmetric Anharmonic Oscillator,” Commun. Pure Appl.
To verify this claim we expand the norm and compute Math. 31, 659-70 (1978).
each of the scalar products as in the proof of Lemma 3 for *W. Magnus, F. Oberhettinger, and R.P. Soni, Formulas and Theorems for

the Special Functions of Mathematical Physics (Springer—Verlag, New
York, 1966), p. 247.

‘D. Isaacson, “The Critical Behavior of ¢ {,”” Commun. Math. Phys. 53,
]in(1)||.0 | = lin;l)”ﬂ a1yl =0, 257-75 (1977).

1 . Vs

m = 0. Now we use the Theorem 4.1 of Ref. 1, namely

836 J. Math. Phys., Vol. 20, No. 5, May 1979 Dan Marchesin 836



Radiating Kerr-Newman metric?

C. Gonzélez, L. Herrera, and J. Jiménez

Departamento de Fisica, Facultad de Ciencias, U.C.V. Caracas, Venezuela
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A complete generalization of the Kerr—Newman solution to the nonstationary case is given. The
possibility of associating the energy-momentum tensor with the electromagnetic field is discussed.

I. INTRODUCTION

In the past, generalizations of differents static or sta-
tionary metrics to the nonstationary situation’ have been
considered, especially, in relation to certain astrophysical
problems, namely, when the energy density of the radiation
emitted by the source cannot be neglected (e.g., supernovae,
quasistellar radio sources.)**

The procedure for obtaining such generalizations is
very simple. The parameters of the metric are replaced by
arbitrary functions of the timelike coordinate, obtaining in
this way a time dependent metric which is a solution of the

nate. The resulting energy—-momentum tensor is then ana-
lyzed in different cases. In the most general situation (a,m,e
variables) the energy-momentum tensor has a nonzero
trace, which could suggest the possible existence of an scalar
field. It can be proved very easily that this is not the case.

In the third section we consider the case a = const, m
and e variables. It is shown that no term of the energy-mo-
mentum tensor can be identified with the electromagnetic
field, except when spacelike currents are accepted. In the
more restricted case a,e = const, m variable, there is the
electromagnetic contribution of the Kerr—-Newman source,

but the remaining terms are not of an electromagnetic na-
ture. For the case @ = 0, m and e variables, we recover the
Bonnor-Vaidya solution for null currents.’

Einstein equations with an energy-momentum tensor de-
scribing, in principle, the material content outside the star.

In this paper we present a nonstationary generalization
of the Kerr—Newman® metric, allowing the three parameters
a, m, and e to be arbitrary functions of the timelike coordi- |

A brief discussion of the results is given in the
conclusion.

li. THE SOLUTION

The Newman-Penrose formalism is used throughout the paper. For details we refer the reader to the original paper,?
hereafter referred to as NP.

In the null coordinate system x°=u, x'=r, x’=0, x*=¢, the metric we are considering is

2mr 2a sin@ .
ds’ = g, dx%dx® = 1————]du +2dudr+ ———————(2mr — &) du dp — 2a sin’6 dr d.
Bas P + a* cos®d P4+ a? cosZB( ) ¢ ¢

a* sin’@
— 7 _Qmr—ed)}dp?, l
r2+azcos’6( r—e)|de M

— (¥ + a* cos’@ )y df* — sin’f {rz 4+ a* +
where, a, e, and m are arbitrary functions of the timelike coordinate u.

The corresponding null tetrad Z “ can be chosen to be’
1

\/E(r + ia cos®)

ZE=In g Zh=ph — -;- (nag _ %5’1‘ + a&;), Zb=mb = (ia SinOSE + 8% + i cotf8%), (2

whereas the covariant components are given by

. (7Y . :
1= 8 —asin6s), n,= E( 80+ 36}, —asin'd %5;) Y (ia sin680 — 362 — if2 sind8L);
\/Z(r + ia cosf)
(3)
in the above
N=r+a, Z=r+adcos¥, Y=r+a*+e —2mr.
The spin coefficients are
K=0=0, p= —(r—iacosd)’, 7= — ia 8129,9,5 4 sm_0’5’ _p sind + ia smﬂp + cot6 —
V2 V2 4\/ V2 N7

“Partially supported by CONICIT.
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cot& d sinf _ - (r—m) _

Y
p=— = (— —a cos@p) Y= —pPp+ PP — p 02 2r cosb,
2T 2 2 2

4

€ — O, v ia siné 2/3( Y +a— az'rpp COSZQ) wpzp-’
V2 V2
= Iplﬁ + adpp, A= —adp*prsin’d, == “ sm_Hp a sm9
2 2V2 V2!
To calculate the tetrad components of the trace free Ricci tensor, the tetrad components of the Weyl tensor and the Ricci
scalar, we use Egs. (4.2a) to (4.2r) in NP.
A straightforward but lengthy calculation gives

¢oo = O (5)
o= a Sme(3ar cosd — ir)pp?, ()]
2V2
- aa ngp + — 5 smzﬁpz(4 — a* cos’0pp) + aa sinfp’| 1 ( —~ 2a’rpp* cos’0 + ppr’ + M(ﬁ — 2p)), @)
2,222 S3ein? 2 32 q1n? =y
by = ¢ pzp _ sm49 cos 9,92,72 + 2 Sl:zé’pp [1+4 p*0*(r + a* cos* — 14r°a* cos?d )]
Y33 12
G+ GPPASN 13,0 4 541 cosg), ®)
8
P N
b= — ia sin (2 ‘y )pﬁl o fdasin62 sinf(? o5(1 + 2a* cosop)
V2 P V2
,sinfcosd .. ., . .-
+d —\/_—app (— ia* cos’d + ir' cosf — ia’r* cos’6
2V2

— 2ar*sin’@) + dsindpp” [10a° cos*G — ir' — 2ia*m cos‘@ + a*r(3f cosf + 2i cos*d ) — 2a°mr — €*) cos’d

V2
+ a*r*(10 cosf — 2 sin’6 cos ) + 2ir'(e* — 2mr) + 3ia*r cos’d (2mr — e*) + a*r*(8i — 15i sin’0)

+ dar’ cosf 2mr — ¢?) |, 9

b= (é* + e¢ — mr)a* sin’d
2

2
Pp* + (eé — mr)rp’p* + dap*p [ 5 9( + %— azTcoszﬁpﬁ) -1 ] + dp’p?
— Y .
><( — ;az)” sin’@ cos*tpp — %az sin’6 cos*dpp + %az sin’@ 4 2a*Y sin*@ cos*Gp?p* — 12 + 2a*(2 cos’pp + a* + 5 sin’d

44 3
—ar sin“HpZ/?) +a i”?”—{rﬁ[; 2 cos6 — 4 smze(m — ﬁ) %(2mr — (1 + 5 cos?0 )}
7

+ a2r3[ — % sin?@ + 4 — 4 sin®@ cos*@ (m — fﬁ) — 10 cos?@ + % sin?@ cos?d ]
r

2
+ a—zr—z(Zmr — &)(5 cos’0 + 3 cos*d ) — 2a’r cos?6 ],

Y =0, (11)
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U = _lﬂ sinfp*p*(2ia* cos’6 — ar cosf),
2V 2

.. o,
, =p’(m + €p) — 2A — _041 sin*pg — a sin ep_

+ —%pﬁ(Zi cos6 — 8arpp — 3a sin?p + 2ia® sin*d cosp’ — dap + 2ar sin’Gpp + a sin*6p),

= — i(m — —) a\s;ne PP +2mp)+d sinfpp 'Q(z 2ar cosfp?) + @’ sing ———pp( — 212 cosfp® + Bi cos’002rp’p?
r

2 4V2 2

— dia cos’0Nrp’p® — 8a’r cosbp’p? — 2ar* sin*fp’p? — 4a’ sin’0 cosOrpp’ + 2iap — 202r cosbp’p)

+ —dpﬁ—< — 2ia sind —Zﬁl + 8if2 sinfp* + 16412 sin8 cosp’
§V2 2

2
— 4if2 3‘?5—0/)2 + 164’ sinf cosfp’p — 8a sinf cosf %pﬁl

sin@

+ 4a(r — m) sin6 cosfp® — 4ar(2 sinf cosBp*p* + 4irf2 sinfp’p — 8i sinfp*(Y /2 + a*> — a*Y cos’*6pp)
+ 4ar’ sind cosfp’p + 12a0r sinf cosbp’p — 2i02r cosf cotfp’p — i sinf(r — m)p + 4a cotbp

— 6i {— sinfp? — 3i sinf(r — m)p — 10a? sind cosfp’p — 6a(r — m) sind cosfpp,

pd 22 .
Y, = ra’sin*6p’p [p (m - 5‘-”-) 1 (m _ &g tee
r

5 )] + dar'f) sin*Gp*p> + a’r’(2 sin*Gp’p?
r

— 3ig*ar’f2 sin®6 costp’p® + id*arf) sinfp'p’ — adrY sin’Op'p® — %adrszinzé? - fzf—Tr2 sin*Gp*p’

2 in2 2,72 ein?, "7 Q1T
. 0512n9 asin' . s5e + iad sin’6 cosOp'E — iad sin 92cos0p352§_ a‘a ;m 0p3ﬁ—ar ma;m& e

+ a’d’ sin*0p’p + a‘d’ sin’8 cos’Gp’p? — a’rma sin*6 cos*Op‘p*

L aa

+ 2a°d’ );smze cos*fp’p® + ia*Yd® sin*6 cos’Gp’p* + iYa’a’ sin*6 cos’Gp'p’ + a_ﬂ_?E_S_ZMp_p

ira’dm sin’@ cosf ,_,
2

— ia*ram sin*@ cosp‘p + - i‘;ﬁ{g (cosbp’p + 2ia sinfp’p — ia sin*Bp’p?)

— @Y siné [( — 2pp sinf cosé — ia sinf cos’Gpp?) + ia sind cos*Gp’p]} — 2iad*2r’ sin*6 cosbp’s’

+ aar’Y sin*Gp'e*(3p + p) — adr(r — m) sin*6p'p? + 2a’d*r* sin*6p*p* + adr'?Y sin*Gp’p’

( ia sinf 4p — ) — 3ird sinf ﬁpﬁ) + cotfp? + ad sind cosd pp + id sme)

V2 2 V2 2V V2
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% ([a' sinfp’p £ i ra sm6 p)

V2o V2

&= + a* — @’Y cos’Gpp.

For the scalar A = — R /24, we get

= .
A= —a asin’ pp (1 + @* cos*bpp) + %-pﬁ sin’@ ( — %az cos’8pp —

12 32

ar "o, . - 5,
+ ?pzﬁza(4 — 1 sin’bpp — <a’ sin’6 cos*pp).

From the Einstein equations if follows that the energy-momentum tensor, when it is written in terms of the scalars

defined above, is given by the expression

T =260l I+ 20, n,, + 2¢0m, m,, + 26.0m,, m,, + 4y, [ 1, n,, + m, m,)

- 4¢211('“ m,y — 4¢_211(# ’;‘») - 4¢10n(# m,, — 4‘%0’1(}, ’;V) + 64 [21(ﬂ n,— 2m(ﬂ I;V)].

Using (5)-(10) and (16), Eq. (17) becomes

840

_ 2[ e’ + eé — mra’ stB

2
5 p* + (eé — mr)rp*p? +aapp[ 26< + g—a’)’cos@pﬁ)—ﬂ] + d’pp?

><( — ;aszinZG cos’Bpp + %az sin’6 — %az sin?d cos’dpp + 2a‘Y sin’f cos*p’p* — 12 + 2a’12 cos’pp + a*
. Y . (J(ip"ﬁ4 1 5 . , K r ) )
— a'r sin’@p’p* + 0 sin’f@ | + — r 373 cos?@ | — 4 sin’@r(mr — eé) + 7(2mr —e?)(1 + 5 cos?8)

2
+ a*r’(4 — ;sinze 10 cos?0) — 4 sin’f cos?@ (m — %) + % sin’@ cos?d + %(2mr — e*)(5 cos’0
r

12 12 2
+ 3 cos'6 — 2a‘r cos’9) 1}, 1, + 4 Re” %p + dz( sn; 6,92 a3 0 cos 6,93/3) + aa sin*6p*

2
X (1 + pprt — 2a’r cos*Gpp? + zacose(p 2p))] ]
2 2
* 4[ %Pﬁ a smzZ cos’d 5+ a 51131 Gpp[1 + p(r* + a* cos'0 — 14ra* cos0))

373 in?
+ ﬁf’%s“‘g(mwsw 00829)] (g 1,y + M )

‘ 4
_BRC{[_msma (2 N )ap 4 eﬂp_z(l+20200529p,5)+ » Sinf cosé

V2 V2 V2

a sin@
—=r

V2

+ ra*(3i cosf + 2i cos'8) — 2a°(2mr — €%) cos*0 + a*r*(10 cosd — 2 sin*d cosf)

X ap*p*( — ia* cos*d — ia*r* cos’d + ir* cosf — 2ar’ sin’f) + 3p*(10a° cos*@ — ir* — 2ia‘m cos*0)
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1 + %(r‘ + 13a* cos*6 — 2a’r* cos*d ))

(15)

(16)

a7

840



+ 6ia*r*m cos*6 + a*r’(8i —

-8 Re( 2 _ sin (3ar cost — ir)p’p® ny, mv)) + 64 (2L, n,— 2m, r—n—v)).
2V2

. EINSTEIN-MAXWELL FIELDS

In this sintion we shall assume that ¢ = const, in which
case we have, from (5)-(17):

7 = ia sinfo'/V 2
B= —cotdp/2V2,

Kk=€=0=A=0,

p= —(r—iacosb)’,
T= —ia sinepﬁ/\/z, a=m—4, (19)
v = i{e¢ — mra sianzﬁ/\/E, Y= L—mlpp + 4,
u="pp/2,
¢oo = ¢1o = ¢20 =0,
b = f—pzﬁz, L= ia smﬁ(zee + /B (20)
2 2V2
2
b= EF "‘2’ T) 3 sin2Gpin + (eé — mPro,
T,, = [(& + eé — riir)a® sin’6 + 2(e¢ — mryrlp’pl, |
+ 26051, i,y + Mg, )
— iV 2a5sin6 (2eé + m/Fp, m,,
+ 1\/2a sin6 (2e¢ + m/p)p’p*l, m, (03]

In order to identify any termin (21) with an electromag-
netic field it is necessary that it can be written as

MT;uf = F,u./iF A + l( ﬂFaB)g/.Lv’ (22)
where the Maxwell tensor F “# should satisfy the Maxwell
equations

F(Iﬁ;ﬁ = 4‘77:]11, F[IZB;U] = 0. (23)

In the tetrad notation, the equations (22) and (23) read
respectively:

ml,

uv

=2[|¢:|2L, 1, + |§o|’n, 1, + dotbrm, m,, + dodiimi,, i,

+4/é| 2[l(,u B, +mg, m,] — 4‘E¢2l@t m,) — 4:d,l,, m,,

+ 4$o¢1n(,¢ m,, — 4¢o¢71nw M, 24
D¢, — ¢y = (7 — 2a)po + 200, — ki, + 2mJ,,
6¢, — Ady = (. — 2V)do + 274, — 0, + 2mJ,,
(25)
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15 sin?@) + 4ar cosd 2mr — %) — 2irQ2mr — &)1 I, m,}

(18)
] D¢, — 8¢, = — Ado + 27d, + (p — 26)¢, + 27/,
8¢, — Ay = — vdo + 2ud, + (1 — 2B, + 27),,
where
¢=F, 1"n", ¢.=F, m"n",
(26)

¢SlElF (PnY + mtmY),
and J,,=/°Z ,,, [note that the 7 appearing in the last terms of
(25) is the usual constant and not the spin coefficient].

It is easy to see that only two terms in (21) can be writ-
ten down as (22), namely, the term

[(¢* + eé — ritr)a® sin’6 + (2eé — mr)rio’p’l I, 2N
and the term
25051, 1y + My, ). (28)
For (27) we have
=¢ =0

(152 = [(&’ + eé — rir)a’ sin*0 + (eé — mr)2r] " *pp exp(it)).
(29)

Yet, it is impossible to satisfy the Maxwell equations
with 29)ifé =m = 0.

Considering next the term given by (28) we put
bo=0.=0, ¢ ="V e/2pp exp(ivh)

(where ¢ is an arbitrary real function).

(30)

We shall see that Maxwell equations are satisfied only if
é = 0 or é7-0 and spacelike currents are admitted.

In fact, assuming ¢ = 0 in which case J,, = 0, the Max-
well equations become:

D¢1 = 2p¢1, 5¢1 = 27’¢1,
3D
- g¢l d 27T¢19 - A¢I = 2#¢1’
and a straightforward calculation shows that if we choose

¥ = — 2tan’'(r/a cosf) in (30), Eq. (31) are automatically
satisfied.

Now, the Maxwell scalars, with the ¥ chosen as above,
become

bo=0:=0, ¢, =Ve/2/(r—iacosh) (32)
and the Maxwell tensor is given by
2(2el)l/2 o .
= ————[(r — a® cos?0 )8} ,0
Y (P 4 @ cos?B ) I« Yoy
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— asin’65],8.,

— 2a sinf cosf (a8}, 87, + 267,67 (33

This is an expected result, since (33) describes the elec-
tromagnetic field outside a usual (stationary) Kerr—New-
man source.

Let us now consider the case é540. The Maxwell equa-
tions to be satisfied are:

D¢, = 27TP¢1 +27d,, 64 = 274, + 2mJ,,

(34)
—b¢, = 27d, + 27/,

where, as before

&, = ('/2)"pp exp(iY)),

- Aé] = 2,U'¢1 + 27TJ1’

but now e = e(u). Instead of (34) we shall consider the equiv-
alent system:

9 1) explivh)]
Ju

-~ V2 ( Y, — —ZTJ) _ dira sinf Re(J./p).
pp

a 23172 ”
5[(8 ) expliy)]
_ 277\/2

—J, — 2ia cosOpp[(€?)"? exp(ih)].
PP

(35)

J 2y1/2 ;
—g )" expliv)]

= 27 tm(1./p) — 2iar sinfpp1(e?)"* exp(iv) .
PP

d 23172 ;
%[(e )2 exp(if))

— 4702 sinf Re(Js/p) — 7V 2a sind (TJO _ __2:1)
PP
From the sinond equation of (35) we get

Jo=0 or ¢=(2n+1)—’27—.

The sinond possibility is excluded by the third equation in
(35), and thus

9 _

Jo=j1, =0, ——= — 2acosbpp. (36)
ar
Again, from the third equation in (34) and (36) it follows that
Im(J,/p) =0, (37
X = — 2are sinf. (38)
a6

Feeding back (37) and (38) in the last equation of (34) we get:

2\1/2
sing 3 _ _ 27T ey (39)
dg PP
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Y 4w(2sind Jy

_— 40
a(p (ez)l/z p ( )

It follows from (39) and (49) that if J, = 0, then J, = 0.
Since the current is not zero, we should have J,=£0 and thus
G =20 — 2|5 = — 2|J]? <0, (41

Let us now consider the special case @ = 0, m, e vari-
able. The system (34) is transformed into:

29[ explith)] = 7V 5( Y7, — —2—_1)
du PP

2@y explih)] =27V 20/p,
“2)

g—[(ezw exp(it) ] = 27 m(Ju/p),
pp

i[(ez)vz exp(ih) | = 4im(2 sinf Re(J,/p),
¢

where p= — 1/r, V=1 + ¢! — 2mr, and 2 =7~

From the second equation we get
Jy=0, or ¥=(2n+ 1)%

Taking ¥ = (2n + 1)7/2 one gets, from the last three
equations of (42),

J{) = J} = O,
and so
7. =0. 43)

the election J, = 0 gives the same result by virtue of the two
last equations of (42).

Thus, the physical system described by (30) consists of a
flux of charged particles traveling with the speed of light.

V. CONCLUSIONS

We have extended the Kerr-Newman metric assuming
that the three parameters of the solution are arbitrary func-
tions of the timelike coordinate (1).

In this case the energy~momentum has a nonzero trace
but cannot be associated with a scalar field. Since the trace of
the energy—-momentum tensor depends only on ¢ and 4, in
the case m, e constant, a variables, changes in the angular
momentum of the source occurs, not by emission of radi-
ation, but by the interaction with the “physical” entity, de-
scribed by (21), which we could not identify.

In the case ¢ = const, e, m variable, identification of
different terms in the energy—momentum tensor as Maxwell
fields yields negative results, except in the subcase e = const,
in which case the usual electromagnetic contribution of the
Kerr-Newman source is recovered.

In the case e variable, solutions of the Maxwell equa-
tions can be obtained only if the spacelike currents are ac-
cepted (charged tachyons). This result agrees with the point
of view that the charge in the Kerr-Newman metric'®!! is
hidden by the horizon, so for the charges to get out from the
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singularity to a region outside the horizon, the correspond-
ing current vector should be spacelike.

In the more restricted case, e, m variable, a = 0, the
situation already described in the literature’ is recovered.

It should be stressed that, since the propagation of elec-
tromagnetic radiation in a curved space-time is always ac-
companied by a backscattering radiation,'*"* metrics of radi-
ating sources should allow tail terms in the Maxwell scalars.
This is not the case in our metric nor in the Vaidya’s or in the
Carmeli-Kaye’s metric.

In fact, when Carmeli and Kaye state that in the case
a = const, m variable, e = 0, one of the terms of the energy-
momentum tensor asymptotically may be interpreted in
terms of the Maxwell field; this should be taken to mean that
this part is a Maxwell term up to tail terms.

In other words, our feeling is that to just take the pa-
rameter entering the metric as functions of the timelike co-
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ordinate, does not generalize the solutions enough as to de-
scribe radiation process.
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The semiclassical expansion of the anharmonic-oscillator

propagator®
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This paper shows how to calculate the terms of a semiclassical (WKB) expansion of the quantum-
mechanical propagator corresponding to the quartic anharmonic-oscillator potential, V = mw’g /2

+ Ag*/4. This nonperturbative treatment expresses each term in the series as a path integral, which is
then evaluated in the framework of a formalism, introduced by C. DeWitt-Morette, which does not entail
the usual time-slicing operation followed by a limiting procedure. The Gaussian measure used absorbs all
the quadratic terms in the expansion of the action functional about a classical path. The covariance of this
Gaussian measure is Feynman’s Green function for the smali-disturbance operator of the system. This
function can be obtained by varying the constants of integration in the classical solution, and therefore the
coefficients of the expansion depend only on this classical solution. If the latter is chosen to be the one
which tends to its harmonic counterpart when A—0, then it is seen that the propagator also tends to its

harmonic counterpart when A—0.

I. INTRODUCTION

The one-dimensional quartic anharmonic oscillator is a

particle of mass m in a potential given by
ma’q’ Agt

vig= “o 4 L (1)
It is an important model in physics as a prototype nonlinear
field theory and has generated a great deal of activity in re-
cent years for several reasons. First, it is a simple example of
a perturbation which causes the associated quantum-me-
chanical quantities to be nonanalytic in the coupling con-
stant A. Therefore, the usual perturbation series in powers of
the coupling constant are divergent, although it has been
shown' that the Padé approximants of the Rayleigh-Schro-
dinger series for the energy levels converge to the correct
eigenvalues of the Hamiltonian, which has a positive-defi-
nite spectrum for 4 > 0. The anharmonic oscillator is also the
simplest nonlinear interaction which still yields plane-wave
periodic solutions in the associated Ag* field theory, and
even admits of a restricted superposition principle.?

While the energy spectrum has been studied rather ex-
tensively,'* the propagator K =<(q,,¢, |9 ,t.>, or probability
amplitude that a particle at ¢, at time ¢, willbe at g, at time ¢,,
has not. The purpose of this paper is to show how to calculate
the terms of a semiclassical (WK B) expansion of this propa-
gator (in powers of #). This treatment, of necessity nonper-
turbative since it does not hinge on any expansion in powers
of A, expresses each term in the series as a path integral. The
latter is then evaluated in the framework of a formalism
where the usual approach of time-slicing followed by a limit-
ing procedure is replaced by a more tractable definition, in-
troduced by C. DeWitt-Morette,” which greatly simplifies
calculations. This approach enabled us to systematically
generate all the terms in the semiclassical expansion, which
represents some progress over previous studies of approxi-

“'This paper is based in part on the author’s Ph.D. dissertation, **An Investi-
gation of the Feynman Path {ntegral Formulation of Quantum Mechan-
ics”, The University of Texas at Austin, 1975.
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mating the anharmonic oscillator propagator by path-inte-
gral techniques (Lam,® Sarkar,” Mathews and Seshadri®).

First, the classical system is studied: The classical paths
joining two fixed end points are calculated and the limit of
zero coupling constant is discussed. Then, the classical ac-
tion and other elements of the WK B expansion (Jacobi com-
mutator, Van Vleck—Morette function, Feynman’s Green
function) are derived explicitly, and their connection with
the small-disturbance equation investigated. Finally, the
path integrals constituting the terms of the WK B expansion
are exhibited and reduced to definite integrals over known
functions, first for an arbitrary potential, then for the anhar-
monic oscillator.

Il. THE CLASSICAL SYSTEM
The potential

The potential, given in (1), is sketched below for 4 >0
and 4 <0 (see Fig. 1).

The potential well is always present for A <0, so there
will always be harmonic motion in some neighborhood of
the origin. As |A| decreases, the well gets deeper and deeper,
the maxima go higher and higher, and the points where the
potential crosses the horizontal axis are rejected farther and
farther, The drastic change in the shape of V" as A changes
sign is the cause for the nonanalyticity in A. For A > 0, there
will always be a stable ground state, whereas for 4 <0, the
ground state is unstable, as there is a finite probability for the
particle to “leak out” of the well. The failure of perturbation
theory is due to the fact that at large distances the ¢* term will
always dominate the ¢* term, regardless of how small 4 is.

Dynamical equation

The dynamical equation for the classical path g (¢) is
. ) i
4L) + @4 ) + —qi(t) =0. @)

It can be solved in terms of the (biperiodic) elliptic functions.
Our source for the latter is Byrd and Friedman’s handbook.’
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FIG. 1. The anharmonic oscillator potential V (g) = mwq’/2 + Aq'/4
v = x2/2 + x4 y=V (A /mPe?, x=g|4 |/ wm'”).

We choose the following form for the solution of (2):

g{t) =g, onl2( — 1)k ], 3)
where
Af 9 \?
=+ Ag>, kZE-—(—’"),
©° + Aq, T\

This corresponds to the case where the particle is released at
g, at time ¢ = ¢, with no initial velocity. (For simplicity, we
take the mass m equal to 1; it can always be restored by
replacing A by A/m.) The form (3) assumes A > 0. If 2 <0,
the form q.(t) = q,, sn[£2 (¢ — %,),k ], with

=@’ + A¢l/2 and k*= — 1¢%,/202* must be used. We
assume A > 0 here for definiteness. Note that the modulus k&
lies always between O and 1/\/2( = 0.707...). If we take the
modulus k and the phase 7, to be our constants of integration,
we get

q(1) = [ 2k '

A —2%Y ]vz C"[ (w(t~ 2

1 — 2k 2y~ k ] @

Classical paths

The classical paths of interest for the calculation of the
propagator are those for which the initial and final positions
are specified:

qc(ta) =4 q(:(tb) =qp

Substituting these conditions in (4) yields the relationship
between the set (k,z,) and the set (g,,¢,):

ola—f) _ [ B kel 4 ank 5
(1 — 2k~ = xcn m’ }+ nkK (k), (5a)
oty — ) L 9 ,
m——- + cn {—m—,k]+4nK(k), (5b)

where n and »' are integers,
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=12k /A (1 = 2k9)]"7, ®)

and K (k )is the quarter period of the cn function. Subtracting
(5a) from (5b) yields the final transcendental equations giv-
ing & in terms of g, and g,

T
+ et
(1 —2k 2)1/2
where any combination of signs is permitted, 7 =t, — t,, N
is an integer, and

@ (k) =cn¥g,/9,,) + cn'(g,/9,m).

Equation (7) must be solved graphically for & [¢, is then
determined, for example, by Eq. (5a)]. Since cn™'u is defined
only for ue[ — 1,1], we must have |q,|<g,, and |q, | <q,..
Thus, in addition to the upper bound 4 on & 2, we have a lower
bound:

=g, (k7) + 4NK (k), ™

k rz'ningk 2< %’
where

k=gt A=
2(/1 +a)2a2) max(]qa,"qh ')

Note that cn™ is always positive. It monotonically decreases
from cn™'( — 1) = 2K (k) to en”'(1) = 0, with an inflexion
point at (0K (£ )). When 0<k ?<4, K (k) monotonically in-

creases from K (0)~1.58 to K (1/V/ 2)~1.85.

A sample graphical solution of (7) is shown in Fig. 2, for
w=T=gq,=¢q,=1 Thecases A =0.001, 0.5, and 1 are
shown. The curve T /(1 — 2k ¥)""* intersects @.(k %) once,
twice, or not at all. Each intersection gives the modulus & for
a possible classical path such that g(¢,) = g, and ¢(¢,) = q,.
As N increases beyond a certain point N, each of the curves
@.(k?) + 4NK (k) (one for each N) intersects w7 /

(1 — 2k ?)Y? twice for each N > N,. Therefore, there is always
a countably infinite number of paths, with a cluster point at
k* = L. Another set, independent of 4, is obtained from the
intersection of the curve T /(1 — 2k *)'* with the curves
4NK (k). The higher the k, the higher the amplitude of the
corresponding path [as revealed by Eq. (4)].

Behavior as 1—0: We shall be particularly concerned
with the behavior of our expressions as A approaches 0.
What happens to the classical solution as A—0? For initial
boundary conditions, it appears, according to (3), that we
retrieve harmonic motion: indeed, as A—0, k—0, 2w, and
cn—cos. However, for other boundary conditions, it ap-

pears, according to (4), that we have a 1/V A singularity as
A—0: Indeed, for arbitrary values of the constants of integra-
tion (say £ * = 0.3 and ¢, = 2 s), (4) indicates that

g(t)~1/ vV A as A—0. Is harmonic motion irretrievable
then as a limiting case?

The answer is no. The reason is that only physical
boundary conditions (such as position and velocity at certain
times) are acceptable.' k 2 = 0.3 is not a physical boundary
condition. When the latter are inserted, k will depend on A in
such a manner as to make at least one classical path g ()
reduce to harmonic motion when A-—0.

In the case of endpoint boundary conditions, (4) shows
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FIG. 2. Classical paths for the anharmonic oscillator. Each intersection
(black dots}) gives a value of & which corresponds to a classical solution of
the dynamical equation for fixed-end-point boundary conditions.

that the only way that ¢ (¢ ) can retain its constant, preas-
signed valuesatr, and ¢, is if k 2 goes to O as fast as A. The ratio
k?/A is then an arbitrary constant 4, which may be depen-
dent on w, and (4) becomes ¢ (t ) = 4 cosw(t — t,), which is
harmonic motion. Figure 2 shows that as A approaches 0
there is always one solution & > which also approaches 0. This
solution, which we call g,(?), is the lowest-amplitude (or
lowest-energy) path, and coincides, when A = 0, with the
(generally) unique harmonic-oscillator path between the
two fixed endpoints. The other paths correspond to values of
k which do not go to 0 with 4, and hence their amplitudes
increase without bound as A—0. Their graph becomes, in the
limit, a set of parallel lines perpendicular to the ¢ axis, one of
which goes through ¢, and another through ¢,.

Our semiclassical expansion of the propagator will be
about this regular path g (¢ ). Since all the coefficients will
depend, directly or indirectly, on g, alone, the anharmonic
propagator will tend toward the harmonic propagator as the
coupling constant tends to 0.

Classical action

The classical action (or action functional evaluated at a
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classical path) for the anharmonic oscillator is needed for the
WKB approximation. It is given by

tl»
S= f L(g(t),q.t).t)dt

- f "[142() — J0'q() — Mgi()1d

Usingtheintegrals 312.02 (p. 193),361.02 (p. 212), 312.04 (p.
193) of Ref. 9 and the formula

E@W)—E@) =E@W —u)—k?snusnu’sn(u’ — u), (8)

[derived from formulas. 116.01 (p.13) and 123.01 (p.23) of
Ref. 9] we obtain the answer:

S, = — 2w’ E( T )
3&(1 __2k2)1/2 (1 — 2k

20k ?
* TGz [ )

oy
(1 — 2k 2)\/2

-+

1
1 _ 2k 3 [Sn(ua) cn(ua) dn(ua) - Sn(ub)

o' (1 — kD2 - 3kH)T

34 (1 — 2k 2y » O

Xen(u,) dn(u,)] ) +

where u,,, =w(t,,, — to)/(1 — 2k )2,

Behavior when A—0: Let us look at the behavior of S, as
A—0along the path g o, where k 20 as A0 such that k 2/4
isaconstant. Usingthefactthat £ (u) = u 4 O (k ?), weeasily
see that S, is regular at A = 0, and reduces to the classical
action for the harmonic oscillator.

It. THE QUANTUM SYSTEM

The small-disturbance equation

Just as the classical system is dominated by the dynami-
cal (or Euler-Lagrange) equation, the quantum system is
dominated by the small-disturbance (or Jacobi) equation.
The latter is the equation satisfied by a small variation in the
classical path, obtained, for example, by a small change in a
constant of integration, such as the total energy or an end
point. The small-disturbance equation is studied in more de-
tail in Appendix A and in Refs. 11 and 5(¢). For the anhar-
monic oscillator, it is

[- 2 -mz—uqi(t)}/(t)=0. (10)

Solutions of the small-disturbance equation

Solutions of the small-disturbance equation can always
be generated by differentiating the classical solution with
respect to a constant of integration. This simple procedure
was known to Jacobi,'? but it seems to be sometimes forgot-
ten today, as one still finds attempts at solving the equation
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directly; for example, Sarkar’ has undertaken this very diffi-
cult task for the anharmonic oscillator {Eq. (10)].

The functions we will need for the path-integral treat-
mentofthe propagator are the Jacobi commutatorJ (¢,¢ ), the
Van Vleck—Morette (VVM) function M (z,,¢,), and the
Feynman Green function G (¢,¢ "). Theirexpressionsare given
below, followed by their definition and derivation.

Jacobi commutator:
Q1 - 2k 22

J@t)= snu snu’ dnu dnu’
@
X[ —1 ( cnu __enu ) W —u
1 —2k2\ snu' dnu’ snu dnu 1—2k?
_EW—uw k* ( sny'‘cnu’  snu cnu
k" k' dnu’ dnu
+ snu snu’ sn(u’ — u))], (i
where
DES Gl VENVESE® Gl NG S
(1 — 2k )2 ( _2k2)1/2
VVM function:
M(t,t,) = [J(1,:8,)]75 (12)

Feynman’s Green function:

Gt =

J(t I’ta)J(tb’t)Y(t - l') + J(t’ta)‘,(tb’t I)Y(tl - t)

J(ta’tb)
13

Definitions and derivations

TheJacobi commutator: ThisfunctionJ (¢,¢ ') of two var-
iables can be defined as follows: The unique, retarded Green
function of the small-disturbance operator, satisfying

[_ 4 —ngn|ewn=se—1), (19

de?

isG(t)=J(t )Y —1t"),where Y (x)=1forx>0and0
otherwise. J (¢, ') is antisymmetric and satisfies the small-
disturbance equation in both zand ¢ . It is called the commu-
tator because, as shown in Appendix A, it can be written as a
Poisson bracket of position at different times with respect to
initial (or final) position and momentum; when the system is
quantized, this expression becomes the commutator. For ex-
ample, for initial boundary conditions, we have

9q.(t) dgft)  Ig[t’) Ig[t)

dq,  Ip. dq, Ip,

J(t) =

={g.1).94 Vhqpr— é [QE).QEH].  (15)

For any two convenient constants of integration «, and a, we
can write the commutator as (see proof in Appendix A):
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dgft) dgt’)  dq[t") Iq[1) ]

J(tt’ =[
e’y da, da,

da, Jda,

X[ aqc(tb) apc(tb) o aP(:(tb) aqc(tb) ]A‘
aa\ aaz aal aal

(16)

(or asimilar expression with ¢, replaced by ¢,), where p (¢ ) is
the classical momentum [equal to ¢ (¢ ) for the anharmonic
oscillator]. We will use this formula with ¢ (¢) given by (4)
and a, = k, a, = t,. The velocity is given by

— ka)z 2 aqc(t)
‘/ — snudny = — ———,
1—2k2 A at,

where « is defined in (11). The formulas for differentiating
the elliptic functions with respect to the modulus & are found
in Ref. 9(710.51-3, p. 283). Since the argument of the elliptic
functions also depends on &, the chain rule must be used to
evaluate dg (¢ )/3k and d4(t,)/dk. We obtain

4(t) =

Iq(t) _w(i)”z cnu _( 2k a? )vz
ok A (1 =2ky7 \A(1—~2k?)
2ko(t — 1) 1
snird | ~E
snu-dnu (0 — 260 + i [ (u)

4+ k"u + k?snu-cnu/dnu | }

The denominator in (16) is calculated to be:

39, 30ts)  33t,) dg,
dk  d¢, dk I,

_ 2wk
AQ =2k

These formulas, along with (8), lead us to the stated expres-
sion(11)forJ (¢,t'). Weseethatforg, = g ,1.¢., whenk 2goes
to O with A, we have E (u)—u, dnu—1, snu—sinu, cnu
—scosu, u—w(t — 1), and J (¢,t )—w™' sinw(t’ — t), whichis
the harmonic-oscillator commutator function.

The VVM function: The WKB approximation to the
propagator is given by the well-known formula

Kyxp = (M /2mif))'? exp(iS /), an
where
Y dg (¢t
=_ c - _ qc( b) (18)
aqaaqb 8qu

is the Van Vleck—Morette function. The second expression
for M, which will be used in the evaluation, uses the fact that
dS./3g, + pAt,) = §t,)." Therefore, to get M in terms of &
and t,, we must use the chain rule:

dqg (¢ aq (¢

dk dq, dt, dq,

In order to calculate M, we must express dk /dq,and 9t,/dq,
in terms of dq,/dk, dq,,/3t,, etc. Since we must have
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(k. kz)(u, uz)_(l 0)
ki kJ\u, u/ \0 1/

where
9, dq, ok
klE q ’ kZE ’ u1:_7 ZE%'9
dk at, dq, dg,
k — aqb . ‘9qb . ato _ 5t0
3= T 4= y Uy—=—, A=
ok at, 9q, 94,
we can easily solve for the «’s in terms of the & ’s, to get
k4 kz k] kl
u = ) U= — ——, U= — —, U= —,

where & =k k, — k,k,. Substituting this result in (19), and
comparing with (16), we see that we get the value of M stated
in (12), namely M = [J (2,,2,)]7".

Feynman’s Green function: Feynman’s Green function
G (1, "), satisfying (14), is the unique Green function of the
small-disturbance operator which vanishes at both end-
points. It is important for our treatment because it is the
covariance of the Gaussian measure used to express the
propagator as a path integral. As was stated before (and
provedin Appendix A), G (t,t Y=J (¢,t VY (t — t’), withJ as
in (16), satisfies (14). The function

J(tyta)'] (tl)’[ ')
J(ta’[b)
is also a Green function, since the addition to G(,¢ ) is a
homogeneous solution (of the small-disturbance equation)
intand ¢t'. Further, G{(¢,,t") = G (t,,t '} = 0. Therefore,
G (t,t ") is Feynman’s Green function. To put it in the form
given in (13) requires use of the identity
J([ "ta)‘] ([h![) - J(t’ta)'] (th’t ’)
J(lwtb) ’

easily proved by using (16).

GUtYy=J(tY (@ —t) +

J(t) =

1IV. WKB EXPANSION OF THE PROPAGATOR BY
PATH INTEGRALS
Arbitrary potential

The framework for a WKB expansion of the propagator
by phase-space path integrals without limiting procedure
was set in an earlier paper'* and will be only briefly summa-
rized here. For a simple Hamiltonian of the form
pt/2m + V(g,t) considered here, the phase-space path inte-
gral becomes a configuration-space path integral, since the
momentum-dependent terms are rolled into the measure and
only position-dependent terms remain to be path-integrated.
The first step is to expand the classical action functional
about the classical path ¢ (7 ):

SI=S [q. +x1 =S+ 3] 120~ V0@ 1ds

— i ZITJ, V ()Xt dt,
n o 3 fts

where
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Vay=1d"V(g.t)/q"]

T =[t,t,], and xe¥ ,, which is the space of paths such that
x(t,) = x(t,) = 0. The classical action S, becomes part of the
WKB approximation, Kywgp, and the quadratic terms are
rolled into the Gaussian measure, leaving the sum term for
path integration. The result is

9=4q2

K= KWKBJ dwy(x)

Xexp[ _TI i f/ V() %%’l dr ] 20)

where the measure w, is defined by its Fourier transform:

.7wo(u)Eexp[ — %J;J; G (t,t du(t )du(t ')],

G (1,1 )being Feynman’s Green function defined earlierand i
being a bounded measure on the time-interval 7. Ky 18
given by (17). The exponential in (20) can be expanded to
yield

KzKWKB[1+ ijil(_%i 3.3

j=1 n o= 3 n,=3

dt-dt;
XJ 1 J V(”')(l|)"~V(”’)(Zj)
roaylen)

X [ 5y oo, @n

To evaluate the path integral, we need the moments formula
(see, e.g., Ref. 15)

j X(E)x(E)x(t,)dw(x)

(H)"Z'G (1,06 (1,,1,) (22)

0 if n is odd,
{---G(tiw ofi, ) if n=2m is even,

where 2 denotes the sum over all different combinations of
different indices i, with {i0 i} =1{1,2,...,n}. There are
2m — M=2m — )(2m — 3)---5-3-1 terms in all for
n=72m

Thus, we see that # comes in the expansion with power
i+ ...+ n}) — J, which is always a positive integer, since
each n; is at least 3. This proves that (21) is indeed an expan-
sion in powers of #, and we can write

K = KWKB(l + ﬁKl + ﬁsz + )s (23)

where the K’s are ordinary finite-dimensional integrals over
the time interval 7. Polynomial potentials are best suited for
this scheme, since the expansion of the action terminates at
some finite n. However, it is important to note that regard-
less of the potential each term in the WKB expansion (coeffi-
cient of #*) is always a terminating series. For example, in-
spection of (21) shows that the first (post-WKB) term is, for
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arbitrary potential,

() o

1 —i\2 dt ds
L L2 o yVeo(s
+ 2 ( # ) T 3! 3! OV

X J , x*()x*(s)dw(x), 24)

and the moments formula gives

—1 4) 2 _l_ 3 (3)
K = —S—L V)Gt )de + 22 JTI V)V 2 (s)
X [3G (t,t)G (1,5)G (5,5) + 2G *(¢,5) 1dtds. 25)

Let us study the structure of the coefficients K ;. In gener-
al, thej = 1 term in (19) is

(;’) i dt V(e )L x"(t )dwo(x)

#i :3n!

R @ ! @m) m 26
= Z ———LV )G ™(t,t)dr. (26)

m=2 m2"

For arbitrary potentials, this is an infinite series in # with no
constant term. Similarly, we find that:

(a) In the series for j = 2, the n, = n, = 3 term is the
term proportional to #, and the three terms n, = n, = 4;
n, =3, n,= S;and n, = 5, n, = 3 are the ones proportional
to #2. All the subsequent j series start out with #* for k>2.

(b) In the series for j = 3, the three terms n, = n, = 3,
ny=4n =4,n=n;=3;and n, =n, = 3, n, = 4 are the
only ones proportional to #%, and the n, = n, = n, = 4 term
is the only one proportional to #.

(c) In the series for j = 4, the termn, =n, = n, = n,
= 3 is the only one proportional to 7.

(d) The series for j = 5 starts out with the # term.

Thus, we can write the term proportional to #” in the
expansion. It is:

#K, = __—ﬁf V(G (1t )dt — 1 _‘{ﬁ_ﬁ
48 Jr 22 I 41 4
X VOV [ rexedn - oo

d
adl oo f X)X (t)dw(x)
7. 31 5! o
el A ereree
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X J x3(2)x>(t,)x* (8:)dwo(x)

11 [ dyds,
4 # ) Q)

>< V(3)(tl)V(3)(t2)V(3)(t3)V(3)([4)
X [ wew e e, &)

and the moments formula (22) gives the value of the path
integralsintermsof Feynman’s Green functionand theclassi-
cal path.

Application to the anharmonic potential

The anharmonic oscillator potential, given by (1), is
V(g) = mw*q*/2 + Ag*/4. The first-order correction to the
WXKB approximation is then given by (25)

— 3 f G(t,t )dt
T

K =

344
2

-+

| arasa 0109
X [3G (6,0)G (1,5G (5,5) + 2G *(t,5) ], (28)

where G (¢, ') is given explicitly by (13) with J given by (11)
and g (¢ ) by (4). The resulting integrals over the elliptic func-
tions are all well-known and of the type tabulated in Ref. 9.
Higher-order corrections can be generated at will, although
they generally involve a large number of integrals. The WKB
approximation is given by (17), with the classical action S,
given by (9) and the VVM function M given by (12), with Jin
(11). Therefore, every function entering the semiclassical ex-
pansion of the anharmonic oscillator propagator has been
explicitly calculated, and the definite integrals giving the co-
efficients of the expansion have been explicitly exhibited. It
is pointed out, again, that this treatment is nonperturbative,
since the functions involved in the terms of the expansion
[for example, ¢, and G in (28)], depend implicitly on A. This
example illustrates the power of path integration without
limiting procedure.
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APPENDIX A: THE SMALL-DISTURBANCE
EQUATION

This appendix will derive and generalize some results
used in the text on the equation of small disturbances. The
latter, resulting from the second variation of the action func-
tional, is satisfied by the variation in a classical path resulting
from a small change in the boundary conditions. For exam-
ple, let S [g] = S[B (w)] be an action functional. Each path

¢=/3 (u) is characterized by a parameter u: g(t ) = B (u)(1)
=P (u,t). If the set {B (1)} is a set of classical paths {g (1))
labeled by a parameter u (say a constant of integration), then
S’[B (1)] = 0 by definition of B (). If we differentiate with
respect to u, we get

s 1Bw LY _o (A1)
This is the small-disturbance equation with its explicit solu-
tion in terms of the classical path: S ' [3 ()] (second function-
al derivative of the action evaluated at the classical path)
yields the small-disturbance operator; 98 (#)/du is its explic-
it solution, called a Jacobi field along the classical path 3 ().
Thus, the derivative of a classical solution with respect to a
constant of integration is a solution of the small-disturbance
equation. Note that if S is derived from a Lagrangian which
does not contain the time explicitly, and we take the time
derivative of the differential equations resulting from

S'[3 (1)] = 0, wefind that theclassical velocity 3 (u)(z )/Jtis
also a solution of (A1).

This method of “variation through geodesics” was
studied extensively by Milnor.”” The approach was general-
ized by DeWitt-Morette *® for arbitrary action functionals,
and independently by the author'' for Lagrangian actions.
This method of generating solutions of (A1) was known to
Jacobi.”?

Lagrangian action
Let us consider the Lagrangian action in n dimensions
as a specific example:

Slq= f "L (qt),6(0), ).

One can show by straightforward differentiation with re-
spect to « that the linear mapping S'[# (#)] maps x into

SRl = f"[—‘?ﬁ - —( j;‘ )] L oxw
u qiu (A2)

aq’
if x(z,) = x(z,) = 0 and there are no discontinuities in the
momentum 3L /J4'. (Sum over repeated indices is implied).
Differentiating once more with respect to u yields

s* 1B LW

= er ,,(t)+B,,(t) +C,,(t)-)

X IPBlwt) ]xf(t )dt, (A3)
du
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where
&L d{ &L
A )= — ,ﬂ—( : ) Ada)
/ Aq'dg’ 9¢'dq’ (
By=JL_ _ oL _d ( &L ) (Adb)
T 0¢90 ¢dgr  dr\ 3¢dq )
Clt)=~ 8L (Adc)
aq'aq’

Note that the above matrices satisfy the relations
c=¢ (B-C)y = —(B-C),
B+B=2C, A—Ad=B—C=yB—B).
We assume that C(¢), the Jacobian of the transformation

from the ¢’s to the p’s, never vanishes, so that a canonical
formalism exists.

If 3 (u) is a family of classical paths q., then both sides of
(A2) and (A3) are zero for all x(z):

a6 9

o +802 e ] ro=o @4

The first equation is the familiar Euler-Lagrange equa-
tion, yielding the classical solutions g (¢,u), where u is any of
the 2x constants of integration, or any other suitable param-
eter (e.g., 1, 0rt,).

The second equation is the small-disturbance equation,
and the bracketed second-order linear differential operator
is the (Hermitian) small-disturbance operator. The equation
is solved by dg (z,u)/du.

Attempts at solving (A6) by “frontal assault” are some-
times found in the literature (see, e.g., Ref. 7), and usually
yield only approximate solutions, if any at all.

A convenient set of solutions is obtained by using end-
point boundary conditions:

Q("(za) = qul9 qt-i(tb) == qb l.'
Thus, for any fixed {7,i'} = {1,2,...,n}, the two sets
; dq/(t) , dgl(t)
Far= 22l =22
aqu aqb

are sets of solutions of (A 6) satisfying the obvious boundary
conditions:

fj(l')([a) = 5,1" gj(l)(ta) - O,

fj(i)(tb) =0, gj(o(tb) =

We can use these solutions as building blocks for other

solutions, which can usually be written as linear combina-
tions of them.
Two other sets of solutions can be obtained by differen-
tiating ¢ (¢ ) with respect to ¢, or £,:
. dg (¢ dgl(t)
h(t)= —?——) , .
at at,

They satisfy the boundary conditions:

k()=
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hi(t) = —ql(), K1) =0,
h(,) =0, k) = —4/@,).
Proof: The second and third are obvious since the oper-

ations, say, “‘d/dt,” and “evaluate at ¢,”” commute. The first
and fourth are more subtle. The first is derived as follows:

. . . “ Ag (¢
) = — [hA(t) — hia)] = — f a:(¢)

L, a

dt,

-9 f " 40t — 4(1,)
5[0 t,

3 . L .
-7 (91‘ (qu - qal) - ch(ta) = - ch([a)' .

a

The fourth relation is derived in a similar manner.

Theorem: Let x(¢ ) and p(¢ ) be two solutions of the small
disturbance equation (A6) in one dimension. Their Wrons-
kian depends on ¢ only through C (¢):

W(e)=x@)y@) —x@)p) =aC@)C(), (A7)

where a is a constant, and it is assumed that C (¢ ) never van-
ishes. If @540, x and y are linearly independent.

Proof:
W=23xy—jx= — C'(dx + Bx)y + C'(4y + By)x
= —BC'(y —yx)= — BC'W

>W()=«a exp[ — J:[ B(s)C“(s)ds].

However, we can see from (A4) that B = C in one dimen-
sion, and the result follows.

Green functions
We now study the Green functions G/*(z,¢ ) of the
small-disturbance operator, which satisfy
Aft)+ Bt J C 7 G*(t,t’
i )+ i )’a_t"f‘ i,(t)? (t,t)

=8,%8(t—1"), (A8)

where 4, B, and C are given by (A4) for ¢ = q.. We restrict
ourselves to one dimension.

Theorem: The advanced and retarded Green functions
are unique and are given by

Gt )=G @' t)y=J@tYY(@—1t") (A9)
where J (¢,¢ ') is the Jacobi commutator:
e t,):[ dq(t) dqt)  dq(t") Ig(t) ]
Jda, da, da, da,
X[ aq.(t,) dpAt,) . pAt,) dqzy) ]*'
da, Jda, Jda, da, ’
(A10)

a, and a, being the two constants of integration. ¢, in the
denominator can be replaced by ¢,.
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Proof: We look for the most general Green function of
the form G (t,t ") = f(t,t )Y (t — ¢ '). Upon differentiation

and use of the fact that x5'(x) = — (x), we have
iaaﬁti = a6t VY (E— 1)+ F (0 ) — 1),
az - I I 1 r
asz =t VYt — 1) + 2 (1 )8 — 1)
NS —t
—faan =1
t—1t

_ 3 &1
DG :[A(t)+B(t)—a-; +C(t)5t—;]6
= Y@~ 1D, [0t + 8t — 1)
s cw ,
x[Boy+2c0) 2 - EO Jre,

where f,,(z,t ") denotes the derivative with respect to the first
argument, evaluated at (¢,¢ ).

Thus, G~ is a Green function if D, f(¢,t ) = 0, i.e., if
f(t,t")isahomogeneous solution in ¢, and if the coefficient of
the delta function at # = ¢ " is 1. If we expand about ¢ = ¢,

S@r) =f@n) + @ —0Wubr) + 50— Y u(tr) + -
the second condition gives the boundary conditions on f:
(a) f(1,t) =0, since C(t)#0,
(b) fu(tr) = C7'(2).
If £(¢,¢ ') is a solution in ¢, then we can write

S @ty =B x@) + y(t W),
where x and y are two linearly independent solutions. If we
insert the boundary conditions and remember (A7), which
indicates that xy — xy = aC(¢,)C'(¢t), we have

Flrhy = — 2N =W
C )yt )x(1,) — p(1)x(2,)]
Let us choose x(t) = dg (¢ )/da, and y(¢) = Jq (¢t )/da,. By
definitionofC (¢),C (¢,)=-3’L /0 (1) = — Ap(t,)/3q(t,),
so — C(t,)dq9t,)/da, = dp (1,)/3a,. Inserting thisin (A11)
we see that £(2,¢ ') is given by J (¢,¢ ') in (A10). Note that our
J(t,t') is what Bryce DeWitt"® calls G (he defines G by
G* — G, but since his Green functions are the negative of

ours, G =J).

(A11)

The greatest simplification in J (¢, ') as expressed in
(A 10) occurs when the constants of integration are initial (or
final) position and momentum, for example,
a, =q(t,)=gq,a, =plt,) =p, The denominator is then
equal to 1, and

9q.(r) 9¢.(¢7)  IqLt") Ig.(r)

J(@t) =
dq,  dp, dq, Ip,

E{q((t )!qc(t ’)}(q‘/vpk,)'
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This Poisson bracket becomes the commutator
[Q(#),Q(t )])/i#i when the system is quantized, whence the
name of the function.

Feynman'’s Green function, which vanishes at z, and ¢,,
can be built from G~ and G * as follows:

G(ttNY=G (") +J @t W (") ()

=G (,t") + ()W (2t Y/ T (t,t,). (A12)

Indeed, it is readily apparent that the additions to G"and G *
are homogeneous solutions, and that G vanishes when tor ¢’
is ¢, or z,. Another form for G is shown in the main text
(Equation 13).

Particle in a potential

Let us concentrate on the case of a particle in a potential
in one dimension, with Lagrangian L = mg*/2 — V (q). The
dynamical equation is

G(1) +mV'[g1)] = 0. (A13)
The small-disturbance equation is
d? ,
- L v o =o (Al4)

Consider two linearly independent solutions of (A 14),
D and D, satisfying

D(tb) =1, D_(tb) =0,
(A15)

Da,)=0, D(r,)= — 1.

Their Wronskian W = DD — DD is constant and equal to
— 1.Dand D depend on ¢, ¢, g, and g, through g (r ). The
antisymmetric Jacobi commutator along the classical path
g(t) can be shown to be

J@t)Y=D@)D@")y—~D@)D(@").
It is obviously a solution of (A14) in both rand ¢ .

Classical path in terms of Jacobi fields

q(t)=4 f D (s)ds + B f D (s)ds + g, (A16)

where

Qb —Gu— V’(qb)Lﬁ(u)du

L D (s)ds

Proof: ¢ (1), being a derivative of the classical path, is a
solution of the small-disturbance equation, and hence a lin-
ear combination of D and D: ¢ (t) = AD (¢t) + BD (¢). Inte-
grating from ¢, to ¢ yields

A

i

] BEV,(qb)'

g(t)=4 J' D(s)ds+ B -f D (s)ds + q.(t,).

However, g () is now the solution of a third-order differen-
tial equation. Therefore, we need a third boundary condi-
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tion, other than g (z,) = g, and ¢(t,) = g,. It is provided by
the dynamical equation (A 13) evaluated, say, at ¢,. This
gives 4 and B. Note that

4t) =AD(t,) + BD (1),
qc(’b) = A .

(A17)
(A18)

Criterion for nonexistence of a classical path

What must the relationship between ¢, 7,, ¢, and ¢, be
in order for a classical path ¢ (¢ ) such that ¢ (¢,) = ¢, and
q.(t,) = q,, not to exist? The answer is given in terms of Ja-
cobi fields. g, will not exist if

J D(s)ds=0, or D(t)y=M"=0, (A19a)
,

and

0 0.~ V@) | B0 (A19b)
This is easily proved by looking at (A 16) which gives g (¢ ) in
terms of the Jacobi fields. g (¢ ) is infinite if the denominator
of 4 is zero (first condition) and the numerator of 4 is nonze-
ro (second condition). That the two forms of the first condi-
tion are equivalent can be seen by differentiating (A17) with
respect to g,. On the right-hand side, we get

3q.(t,)/3q, = M = 1/D (z,), and on the left-hand side we get
a fraction with denominator [f ;D (s)ds]?. Thus, whenever
D (z,) vanishes, f ;D (s)ds must also vanish.

For a general discussion of these conditions in the con-
text of caustics and catastrophe theory, see Ref. 19.

Zero Jacobi field: The only Jacobi field vanishing at
both 7, and ¢, is f(t) = O, unless

Di)y=M"'=0 (A20a)

and

9, — 4.~ V'(g,) L_E (s)ds = 0, (A20b)

in which case /(¢ ) = aD (r ), wherea is an arbitrary constant.

Proof: Itis obtained by writing f (¢ ) = aD(t)+ bD(t)an
inserting the boundary conditions. However, if D(t)=0,
we may not have a classical path, in which case a Jacobi field
is meaningless. Therefore the second condition is necessary
to insure that one or more classical paths exist.

Example: the harmonic oscillator

We illustrate this with the harmonic oscillator
(¥ (g) = L10'¢). The classical path, for arbitrary endpoints, is
given by

q, sinw(t, — t) + g, sino(t — 1)

1) =
440 sinoT’
= A cos(wt + @), (A20c)
where T'=1t, — t,and
A = (sinwT)'[q} + g5 — 29,9, coswT |7,
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TABLE Al. Classical paths for the harmonic oscillator (n = ..., — 1,0,1,2,...)

Harmonic
Oscillator 979, 9. =95 = ¢#0 9. =¢,=0
Unique ¢.(¢)
exists [t N
L. cosw [t — (¢, + t,)/2]
wT=#nm and is given q(t)=¢q cos(a)T/2)b q(t)=0
by (A20c)
Noncountably
infinite number
coswft — (t,+1,)/2 .
wT =2nmr q.(t) never q(t)=¢q b ( »Y/2 of classical
cos(nm)
exists paths given by
wT=Qn+ D g.(t) never g.(t) never q{t) = A sinw(t, — t)
exists exists (A arbitrary)
q, sinwt, — q, sinwt dx; oF /ox;
@ = arccos( 5 < 3 - — ) F(x,...x,) = 0:}6—1 = — aF/a (i=5)).
(92 + 9, — 29,9, coswT] % Xi

It may fail to exist when sin(w7") = 0 (the amplitude
becomes infinite), except when ¢, = ¢, = 0, in which case
there is an infinite number of g’s.

The various cases are summarized in Table A1l.

The Jacobi fields in this case are
D(t) = coso(ty — 1), D(t)= - sina(, —t).
@
We can quickly verify all our criteria. We have

() LD@)@:E(:,,): —ijsian,

(b) Lﬁ(s)ds= é(l _ cosoT).

If oT = n, we have no classical path, unless
95— qa — V'(gy)07(1 — coswT) =0,
ie., ifg, = g, and @T = 2nm (yielding one path), or if

g, = g, = 0, which implies that V"'(¢g, ) = O (yielding an infi-
nite number of paths).

The commutator function

The dynamical equation (A13) can be solved by qua-
dratures: If we substitute g (¢) = u, we obtain the energy
E =imu®* + V(q,) = const. as afirst integral. A second inte-
gration gives

1
F(ttpg.9,E)=t —t, — (l_;l_) 2

% dx _

o. [E—Vx)]"”
which yields ¢ (¢.) rather than ¢ (¢ ). In order to differentiate
the classical path with respect to the constants of integration
(here, the energy E and the initial position ¢,), we will need

the implicit function theorem. The latter states essentially
that

853 J. Math. Phys., Vol. 20, No. 5, May 1979

This gives
aqc _ E— V(qc) 172

= =— % (A21a)
aqa E - V(qa)
o 4,
e —(E- V(qc)r"fq [E—V(]*dx,  (A21b)
dg . 2 172
¢ a2 E_ A21
%~ 40) [m (E V(qcn] : (A21¢)
dq. 2 1/2
= | Z1E— A2ld
. {m[E V(qcn] , (A210)
%) (3 . ' -
_ | — — E_ 1/2’
) (2% )= (2m] V(qc(r,,»n(A21 |
€
%) (o .
dq, (c?qa ot ),=,,, (4219

Substituting these in (A 10), we obtain the commutator (here
pc = ch’ a, = qa’ a, = E)

[E—-VQ@(NIE—-V(g(')] ]'/2
2m

J@t)= [

q.{t")
X J —dL—— (A22)
) [E=Vx)]”

If the constants of integration are initial position and
momentum g, and p,, then J (¢,¢ ') is still given by (A22) with

E replaced by p2/2m + V (g,). This is not a trivial statement
[compare with (A26)], as we show below.

Proof: In terms of ¢, and p,, the solution is

172
F(t,t40qup) =t —t, — ( % )
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q pz —172
X f [ 2’;’1 +V(g)— V() dx =0. (A23)
9.
Then
dq. dF /dq,
dq,  9IF/9.
2 172 o '
=[ P Vig) - V(qc)] [ Vam LA
2m Pa 2
q. pl —32
< ["ax| 2 4 vy -] ]
q. 2m
dq. JdF /dp,
ap, B JF /dq,
Pa [ 17 ]‘”
= vV -V
s l2m 92— V(g
q, p2 -3
X J [ 2’; +Vg) -V dx. (A24)
q.

Substituting the above in expression (15) for J, some
terms cancel out and we get the result. The nontriviality of
this result is illustrated by the fact that dg./dg, in (A24) is
not obtained from dg_/dq, in (A21a) by simply replacing E
by p2/2m + V(q,).

We can give the commutator in terms of the endpoints
g, and g,. For this we have

m\12 (4
F(t,ta,qc,qa,E)Et —t,— (?) f [E — V(x)]—n/z dx,
o
(A25)
G (tb’ta’q[vqa’E)
2 qn
=t,— 1, — (%)V f [E— ¥ (x)]" dx,
4.

that is, £ in the first equation is really a function of ¢, and g,
given implicitly by the second equation. It is no longer an
independent constant of integration, but ¢, is. Thus, we have

dq.  OF/d,

dq,  JF/dq,

= [ (m/2)"E — V(g)]™ + ¥(m/2)"(3E /3q,)

X f U E = Voldx {[m/2) E = V@)

where JE /dq, is obtained by using the implicit function
theorem on G:
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dE _  9G/dq,

dq,  9G/3E
= _;3__ {J‘q‘v [E— V(x)]*dx —f
[E—V(g)" U, '
Finally,

o Y SUIE — V()] dx
9, LE-V@)! (PE—v@]7dx
Similarly, we find

9, _[ E—¥(g) ]1/2

dq, E—V(g,)

X f [E — ¥ (x)]"" dx- U: [E — V(x)]™ dx} -

As for the Van Vleck—Morette function
M= — mdq4[t,)/dq, we use

q'c(tb)=( 2 [E(qu,9,) — V(qb)]]m-

m

This gives
aqc(tb)
= —m
9,
m{ 2\ JF
- _ Tf = E—-V v 22
2 (m ) { (9,)] dq.
ie.,

m

M= VE— V@)IIE — V(g,)] )
=(2)"1E-vanE-vae

X U: (E — V(x)]™" dx} o

Finally, the commutator in terms of the endpoints is
given by (A10) with ¢, =¢,and a, = g
J@t")

2 \i2
= (——) [E—V@N)'(E— VLN
m

X [ Lq (E — V(x)]-mdx]

q.(¢

4. )
><[ dx[E — V(x)]™ f dylE— V()]

q.(t) q,

" ax(E— v

q.(")

4.(1)
< [tz -von), (A26)
q.,
where ¢ (t,9,,9,) and E (g,,9, ) are given implicitly by (A25).
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The reduction of dynamical systems is discussed in terms of projecting vector fields with respect to
foliations of the manifold on which the dynamics take place. Examples of established reduction procedures
are presented and are shown to be special cases of the general procedure described in this paper. Instances

of other types of analysis of dynamical systems related to our projection procedure are briefly discussed.

1. Several papers' have recently been devoted to the
problem of reducing a dynamical system to two or more
systems of lower dimension. In these papers various proce-
dures are used, usually based on constants of the motion
(functions) or on vector fields which generate symmetries of
the dynamics. In addition, requirements of one kind or an-
other are placed on the objects (functions, vector fields) used
to achieve the reduction. These conditions may be that the
functions form a function group* or that the vector fields
commute, close to form a Lie algebra, are Hamiltonian, or
have some other property. When functions and vector fields
are used together to achieve the reduction, the requirements
may also be on the relations between them.

In this paper we present a general setting in which all of
the reduction procedures known to us appear as special
cases. It is based on the idea of a foliation of the manifold on
which the dynamics is taking place, and involves invariant
geometric objects other than functions and fields, namely
distributions and p forms. As will be seen, the dynamical
vector field is not required in general to be even locally Ha-
miltonian, although the usual kind of reduction of Hamil-
tonian dynamics?® can also be understood in the terms we
present here.

The plan of this paper is roughly the following. We first
discuss projectability of a vector field (the dynamics) with
respect to a foliation. The problem then is to find foliations
with respect to which the dynamics is projectable, and essen-
tially two methods for finding them are presented. Some ex-
amples of established procedures are discussed, including
the use of an invariant application (from the original mani-
fold to another) rather than invariant functions. Finally,
some remarks are made about other procedures used in dyn-
amics which may be viewed in terms of foliations and projec-
tions, followed by a brief discussion of the opposite proce-
dure. The terms in which these matters are discussed are

“Permanent address: Physics Department, Northeastern University, Bos-
ton, Mass. 02115.
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those of global differential geometry on manifolds.

2. A dynamical systems, a dynamics, is a vector field 4
on a manifold M of finite dimension »#. The problem of me-
chanics is to integrate the dynamics, i.e., to obtain the inte-
gral curves of 4. Such integral curves for a dynamical system
can sometimes be obtained by integrating related dynamical
systems on manifolds whose dimensions are lower than ».
The object of this paper is to discuss ways of finding such
dynamical systems of lower dimension, that is of reducing
the original dynamics.

In the simplest possible case of such reduction, the inte-
gral curves of 4 can be found from the integral curves of two
independent dynamical systems 4, on M, and 4, on M,, but
usually this is not possible. What is often possible is to obtain
the integral curves of 4 from one dynamical system 4, on M|
and from a second system which is neither independent of 4,
nor exactly a dynamical system. We call the first case, of two
independent systems, a direct reduction (or direct splitting),
and the second case a semidirect reduction. A common ex-
ample of a semidirect reduction is the usual one used in the
Kepler problem in the plane (in two degrees of freedom), for
which the “effective one-dimensional Hamiltonian™ yields
an independent dynamical system in 7, p, , and in which the
remaining equationd@ /dt = [ (mr?)'isafirst-order differen-
tial equation for the azimuth angle. This differential equa-
tion depends on the solution of the effective one-dimensional
problem and is therefore not independent; moreover, it does
not yield a vector field in the usual sense. In this paper we
discuss semidirect splittings, direct ones appearing as a spe-
cial case.

In all cases the reduction of the dynamical system will
be achieved through a foliation.® That is, a foliation £ of M
will be found such that 4 can be projected onto the quotient
space M, = M /F, and then the projected vector field is what
we have called A, above. What we have called 4, is then the
rest of the motion, which we shall say is on the leaves of F.
Since 4 is not projectable with respect to just every foliation
of M, the problem of reducing the dynamics is essentially one
of finding a suitable F.
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Remark: In most cases that are of interest to us, these
foliations turn out to be fibrations. That is, the leaves are all
diffeomorphic to each other and the foliation can be written
as a direct product of the leaf and U for a neighborhood U of
each point in the quotient space.

Let 7 : M—M /F = M, be the projection with respect to
the foliation F. We shall assume in all cases that we deal with
that this foliation is C =, though in some applications it turns
out not to be. A vector field XeX(M ) is said to be projectable
iff for each fe.# (M) there exists an f'e.% (M,) such that

L(fom) =f"om. (1)
What this means is that the Lie derivative with respect to X
of any function forr which is constant on leaves is itself a
function /o7 which is constant on leaves. Roughly speaking,
those components of X which point out of the leaves are the
same everywhere on each leaf. When X is projectable with
respect to the foliation F, one can define a new vector field
XeX(M)) by using the fact that the assignment of f—f" is a
derivation: it is linear, and for f,ge.” (M,) one obtains

Ly(fgom) = L (fomrgom) = L y(fomgom + forrL . (g°m)

=fromgom + fomg'om = (f'g + fg))or.
This means that there exists a 9nique vector field Xe.7 (M)
such that /' = L ¢f. We write X = 71X = Tm-X.

Suppose that 4 is projectable with respect to a foliation
F. Then the integral curves of 4 are projected onto the inte-
gral curves of 4 = 74. Formally this may be seen as follows.
Let ¢ : R — M be an integral curve of 4, and consider its
projection 7¢ : R — M, =#w(M). Then

4 = (re(t)) = (TrA Yae(t)) = T (Ac(t))
= T7 (Te(t,1)) = T (we)(t,1).

[Recall that cisanintegral curve of X iff X (¢(r ) = (T¢)(¢,1).]
Thus by integrating the reduced dynamics one obtains infor-
mation about the initial dynamics. What remains to be deter-
mined is the motion along the leaves, but we shall not discuss
that here in any detail.

The problem now is to find a foliation with respect to
which 4 is projectable. Foliations are usually obtained in one
of two ways: from functions and from involutive distribu-
tions. Consider first functions,

:M — R*beofclass C *

J.Letf={fi. . fi | ", and con-
sider the sets V,, = f(a)={meM | f(m) = a], where
a = |a,..,a, |etion R*.of M,and M = u V. This occurs, for
instance, if the values of fare all regular, which is not always
true (there are often even topological obstructions to such
regularity®). A theorem by Sard states that the set R, of regu-
lar values of fis dense in /(M ), and in most applications one
can proceed by removing isolated points or submanifolds
from M and considering them separately. At any rate, let us
assume that fyields a foliation as described above. The pro-
jection 7 : M+ M, : m— f(m) with respect to this foliation
maps each V, onto a.
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Letge.# (M)), and form the function gof =gome* (M );
we want to apply L, to this function in order to study the
projectability of a field XeX(M ) with respect to the foliation
given by . We have

Ly(gom) = Ly (gof) = d (§of YX) = dg(Tf-X).

What is important now is that 7f-X is linear in the L f,.
Indeed, in calculating 77-X one forms the vector field in
X(M,) whose components are the df(X) = L f; Infact in
local form, when we may write d (gof) = 2[d(g°f)/df;1df,
the calculation becomes

Ly@f) =d@f)X)= ¥ ?i‘iﬁdfm

Now assume that /'is a constant of the motion for 4, so that
L, f; = 0¥j. Then according to (2), L ; (go7) = 0, which sat-
isfies the condition of Eq. (1), and 4 is therefore projectable
with respect to the foliation. In fact A is projected onto the
null vector field in X(M,), for the function g’ that it assigns to
g isjust the null function. This is because fis a constant of the
motion, and 4 is therefore tangent to the leaves V, = f'(a)
and can be thought of as a collection of vector fields, each on
itsown V. This is a direct, rather than a semidirect splitting,
moreover one in which 4, or 4 is the nuli field. Only the
motion on the leaves remains.

A common example of such splitting through functions
is the use of the energy function. Consider, for instance, the
Kepler problem after it has already been reduced to the
equivalent problem in one degree of freedom. For simplicity,
take the angular momentum /> 0 fixed, and consider only
the radial part of the problem in phase space, which in this
case is T *R’. If the energy function /= 1(p2 + [/P)/m
— k /risused tofoliate the two-dimensional phase space, the
V, are compact closed curves for a <0, and are noncompact
(infinite) curves for a>>0.” The foliation is not a fibration. The
quotient manifold is the semiline from the minimum energy

= —imk?*/l*toa = w,and onf(M)the dynamics is sta-
tionary: A is the null vector field and its integral curves are
fixed points.

4. We now turn to foliations associated with distribu-
tions. A foliation on M defines a set of submanifolds, one of
which passes through each point meM and consequently de-
fines at each such point a subspace of 7,, M, namely the
tangent space of the submanifold. To go from a distribution
to a submanifold is to attempt the converse of this: given a set
of vectors at each meM, is it possible to integrate these to
obtain a foliation? More specifically, let a subspace E,,, of
T, M be given at every meM, each subspace of the same
dimension k < n. The set /' of these E,, is called a distribu-
tion if the transition from point to point in M is smooth:
about each meM there is a neighborhood U,,, in which there
existsaset of XgX¥(U,,), ie} 1,... .k |, such that the X,(m")span
E,, for m'eU,,. The necessary and sufficient condition that
/7" can be integrated to yield a foliation is that it be involutive,
thatisthat X,Ye/' — [X,Y ]e/ at each point meM. For the
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proof of this consequence of Frobenius’s theorem and for
further details about distributions, see Ref. 8. In our applica-
tions distribution will usually be given by a set of vector
fields in (M), and then X, Ye’r = (fX +gY)e’~,

f.ge7 (M), and involutivity becomes a global condition.
What we shall use is that an involutive distribution in this
sense defines a foliation.

Remark: A function f: M-—R* can yield a foliation F,
as we have seen, and this foliation defines a distribution &7,
necessarily involutive. But it is not always true that the folia-
tion F,, one then obtains from & is the same as F. For exam-
ple F'may have disconnected leaves, while ., only connect-
ed ones; each connected component of a leaf of Fcan itself be
aleafof F.,. Actually this cautionary remark depends on the
definition of a foliation. If leaves of a foliation must always
be connected by definition, ¥, = f'(a) will not always be a
single leaf.

For foliations defined in terms of distributions, the test
contained in Eq. (1) for projectability of a vector field is
simplified. If Y/, then Y is tangent to the leaves of the
foliation. If ge.# (M) is constant on leaves, then L, g =0
Vye and conversely. Moreover, every such function can
be written as a function over the quotient space M, = 7(M')
in the form g = fow, f&./ (M), and every function of this
form is constant on the leaves; that is L, (for) = 0V Ye’r.
Thus the test for projectability becomes: X is projectable
with respect to the foliation induced by % iff for fe.* (M)

Lyf=0VYe/ =L Ly f=0VYel . 3)

A distribution % will be called invariant under the dy-
namics 4 iff [4,V e # VYe, thatis, if L, Ye&’ V Ye&r If
 isinvariant under 4, then 4 is projectable with respect to
the foliation induced by 7. Indeed, let f&./# (M ) be such that
L, f =0VYeZ . Then (3) is satisfied, for

L)'L_\f: [LYLJ —L,Ly ]f: - L44.>'|f: 0.

since [Y.4 Je /. It is thus seen that an invariant distribution
will provide a splitting of 4.

e

Remark: 1f 4 itself is in an involutive distribution 7/,
then 7/ is automatically invariant. Moreover, L, f=0V
Ye s implies that L f= 0, and 4 is trivially projectable ac-
cording to (3) with 74 = 0. As in the case of foliations de-
fined by functions, 4 is projected onto the null vector field
and all the motion is on the leaves.

5. The next question, then, is how to find invariant dis-
tributions. Finding them is hardly ever as simple or intuitive
as finding constants of the motion, but it can be made some-
what easier by the use of differential forms. Let aef2 (M ) be
a p form; we will be interested now in p forms with nonnull
kernels. The kernel of a, kera=| XeX(M ) |-/ a =0}, isa
distribution /', and it can be shown that /' is involutive iff
a Nda = 0. In particular, if da = 0, i.e., if @ 1s closed, 7, is
involutive. If a is, moreover, conformally invariant under 4,
that is, if

L =ja. fe7 (M) (4)

(when f'= 0, a is said to be invariant under 4'), then /' is
invariant under 4. Indeed, Ye’/ , implies [4,Y ]e’/ . for
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laye=1Lay—iyLyla= —iy(fa)= —fiya=0.
Thus a conformally invariant closed p form provides an in-
volutive distribution and hence a foliation with respect to
which 4 is projectable, and thereby reduces the dynamics.

This procedure may seem very contrived, but it is a
general one and most, if not all, of the standard procedures
used to reduce dynamical systems are in fact special cases.
We discuss some of these.

Let A be a Hamiltonian vector field on a symplectic
manifold (M,w). Assume that it has already been reduced
with the aid of a constant of the motion f: M — R* as de-
scribed above. Then each V, = f'(a) can be said to contain a
part of the dynamics 4, as has been mentioned already. Let
us call each such part 4 ; this is a vector field on V,,. A closed
invariant 2-form can also be defined on each ¥V, as follows.
Since every X €X(FV,) can be obtained by restriction from at
least one XeX(M ) which is tangent to V, the equation

0 (X, Y )(m) = o(X,Y)(m),

»
defines the 2-form w, on ¥, which is closed because w is
closed and invariant under 4, because w is invariant under
A. It is generally not regular, however (¥, may even be of
odd dimension), so that kerw, need not be empty. Thus ¥,
can be foliated and the dynamics 4, reduced by the proce-
dure we have just described, but with M replaced by ¥, and
by w,. It can be shown that the quotient space inherits a
symplectic structure from w,, (from @) and that the projected
vector field 4 , is Hamiltonian with respect to this structure.’

meV,

This is the usual procedure used, for example, in reduc-
ing the three-dimensional Kepler problem (the phase space
has six dimensions) in a two-step process. First the angular
momentum vector is used to foliate the phase space with
submanifolds V', of dimension three, and then the 2-form w,
obtained from @ is used to foliate each V. In the resulting
semidirect splitting, 4, is the vector field of the equivalent
radial problem which was discussed above (and which we
split further by using the energy function). Note that it 1s, as
is well known, Hamiltonian. The rest of the motion, as was
also mentioned before, is on the leaves, the motion of the
azimuth angle.

As another example, consider the dynamical vector
field on R* given by

. d d d d
Ad=fi— +&— +fim— + ,
/ dq, & dp, fzﬁqz & dq,

where f; and g, are functions only of the variables ¢,, p,, while
/, and g, are functions of all four variables. This system is
presented already in a semidirect split form, and the proce-
dure for integrating it is apparent: solve first for the variables
g, p, and insert the solution into the equations one obtains
for the other variables g,, p,. A clear understanding of what is
happening is obtained in our terms when one notes that

a = dgq, Adp, is conformally invariant under A:

afl agl ) '
La=|“2 + 22 a. 4
a ((9(]l * o, “
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The kernel of « is the distribution

Y=g L 4 9 ;%;&e?(R‘)].
dq; ap,

All vector fields in & are parallel to the planes whose equa-
tions are ¢, = const, p, = const: these planes provide the foli-
ation. The quotient of R* with respect to this foliation is the
plane of all values of ¢, and p,, and on this quotient manifold
(isomorphic to what one might call the g,, p, plane, namely
g, =0, p, = 0) the dynamics 4 is independent. Note that the
foliation in this case is associated with no constants of the
motion. The functions g, and p,, for example, are not con-
stants of the motion.

Remark: According to Eq. (4) 4 is Hamiltonian with
respect to the symplectic form dg, Adp, = a iff @ is invar-
iant, for then L @ = di,a = 0, and a function #e.” (R?) ex-
ists such that i ya = dh, or such that f, = 3h /dp,,

g = —3dh/dq.

A recent paper? uses a technique which mixes these gen-
eral procedures. Let f: M — IR *be a constant of the motion,
and let S be a set of globally linearly independent vector
fields {S,,...,S, } which are symmetries for 4, that is such
that[S;,4 | = 0. With certain assumptions, among which are
that S define an involutive distribution 2/ ; and that the
Ly fi = Ty;€.7 (M) can be written as functions of the f} , it
is shown that a reduction of the dynamics is obtained. In our
terms this can be seen as follows. Let & ,be the distribution
given by the foliation induced by the constant of the motion
S Thatis, & = {X e X(M) |- L f= 0}. Then it can be
shown that & ¢ n% ;= isaninvariant distribution, neces-
sarily involutive, and it can be used to reduce the dynamics.

6. Having generalized from foliations associated with
functions (constants of the motion) to more general folia-
tions associated with distributions and through them with p
forms, one may try proceeding also in another way to folia-
tions associated with C = applications of the form ¢ : M—N,
where N is a differential manifold of dimension k < #. In
almost exact analogy with the case of functions, we say that a
vector field XeX(M ) is projectable with respect to the folia-
tion associated with ¢ iff for every fe.# (¥) there exists an
f'e¥ (N) such that

Lyobf=d.f" (5)

If, moreover, ¢ is onto (or, one could say, if ¢ (M ) is a differ-
ential manifold, which could then be defined as N ). there
exists a unique vector field XeX(V ) such that L ; f= f".
Now, L, é.f can be calculated as in the case of constants of
the motion, and again in exact analogy one obtains

Lyd.f=df (T$-X). (6)

As in the case of functions, a foliation with respect to
which 4 is projectable can be found if ¢ is a constant of the
motion, thatis, if @ (c(¢ )) is a fixed point in N, where ¢(¢ ) is an
integral curve of A. In that case

T4-A (e(t ) = Td (Te(t,1) = T ($e)(t,1) = 0,

since & (c(¢))is fixed in N and hence has zero derivative. Since
(we assume) an integral curve passes through each point
meM, it follows that T¢-4 (m) = 0. Then according to (6)
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L,é.f=0Vfe7 (N), and 4 is trivially projectable by Eq.
(5); 4 is the null vector field, as in the analogous case in
which N is replaced by R*, and the motion is entirely on the
leaves.

A very simple example of this situation is the case of the
vector field

On M = R’ — [0}, with the application ¢ : M--S". To de-
scribe ¢ we use the angle § around the circle S

& : (x,p)—~0 = arctan(y/x).

(Of course, this requires more than one chart.) Then if
XeX(M ) has components &, 7, it is easily shown that

— &y +xy >
x4

The components of 4 are & = x, 7 = p, so that at each point
(x,p) this vector field is mapped into the null vector field by
7@, and thus @ is a constant of the motion. The leaves of the
foliation, in this case orbits of the dynamics, are obtained by
fixing €, or from y/x = const. They are the straight lines
passing through the origin.

Té : (xy:57) ,<f),

7. In conclusion we mention several procedures used in
analyzing dynamical systems, procedures which, from the
geometrical point of view, are closely related to projecting
vector fields with respect to foliations.

In action-angle variables, the Hamiltonian is written as
a function only of the action variables J, constants of the
motion. The functionJ = {J,,....J, ] : M—R* defines a folia-
tion with respect to which the dynamics is projected onto the
null vector field, as is always the case with constants of the
motion. The leaves of this foliation, at least locally, are tori,
and on them the motion is extremely simple w, = v(J ). As
this procedure is generally applied, moreover, k = n/2, so
that the leaves and the quotient manifold have the same di-
mension. For the simple harmonic oscillator the v, are inde-
pendent of the J;: the splitting is then direct.

Certain types of perturbation methods can also be un-
derstood in the light of this reduction procedure. Suppose,
for instance, that our manifold M is foliated by a certain
distribution & which is invariant with respect to the vector
field 4. Suppose, moreover, that 4 can be written in the form
4 = A, + pd’, where A7, so that A, projects down to the
null vector field on the quotient manifold, and that & is
therefore invariant under 4'. It then follows that 74 = 74 °,
and the global dynamics can be thought of as a motion that
takes place on the leaves, while the leaves are carried into
each other by 4’. If u is a very small parameter, this motion
of the leaves may be very slow as compared to the motion on
them, and thus in a sense one can study each motion sepa-
rately, almost as though they were decoupled. In fact this is
true also if 1 is very large, so that the motion takes place
mostly on the quotient manifold, remaining relatively sta-
tionary on the leaves.

Somewhat more specifically, let % be invariant under
4, and let us suppose that 4 can be decomposed into a field
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A and Z = 4 — A4, where Z is “small” with respect to
A,. We can then consider the average of Z on a leaf *

(Z>= f Zdu.
T '(m,)

We shall call (Z ) the mean field induced by 4 on the quo-
tient manifold, for in a sense what we have done is to replace
Z by a constant field which reproduces its action in an aver-
ageway. Whenwereplacedbyd — Z + (Z> = A, +<(Z>,
we obtain a field whose components pointing out of the
leaves are constant, in agreement with the remark after Eq.
(1). Of course the projection of this field along the leaves is
not the same as the projection of A along the leaves but it is
possible to obtain estimates of the error made.!* When Misa
symplectic manifold, this is in fact the procedure used in
studying adiabatic invariance.'!

Something like the reverse of this reduction procedure
can sometimes be used to investigate difficult dynamical sys-
tems. Suppose that a reasonably complicated dynamical sys-
tem A is given on a manifold M, and suppose that a larger
manifold M ' can be constructed so that M appears as a quo-
tient with respect to some foliation in M ', To simplify the
considerations, let us assume that foliation to be a fibration,
sothat (M ',77,M )isafiber bundle in which 7 is the projection
7 : M '—M. It may be possible to choose motion on the fibers
in such a way that it becomes easy to integrate the total
dynamics on M ', consisting of the motion on the fibers plus
the dynamics on the base. Then the initial dynamics on the
base can be integrated by projecting with 7. A simple exam-
ple of this procedure, cooked up for this demonstration, is
the following. Let M be the contangent bundle of the semi-
axis, T *R*, with the natural symplectic structure
® = dg Ndp, geR’. Consider the dynamical field whose Ha-
miltonian is

H =4+ q°) + 31/, )

where / is a constant. Now extend M in two steps. First at
each point of T *R* we define the fiber S'! (the circle), and on
the fiber consider the motion whose equation is

do /

dt g’

where @ is the usual (local) angle coordinate on the circle. We
have now extended M to S' X T*R*' = S'XR" XR

= (R* — {0}) XR, in which (g,0) give the local polar chart
on R? — {0}, and the remaining variable p gives a chart on R.
What we have so far is related in an obvious way to
M' = T*R? — {0}): weextend our manifold to M ' by form-
ing the contangent bundle over S'!, and then the natural sym-
plectic form o’ = w + wg, where wgis the natural symplectic
form of T*S'', can be written in our local chart as

= dq N\dp + df \dp,.

Now consider the isotropic harmonic oscillator on
R? — {0}, whose Hamiltonian can be written in a Cartesian
chart in the form

H' =1+ x) + 3p; + »). (8)
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The dynamical system 4’ obtained from H ' can be reduced
by the procedure which uses the angular momentum in the
way we have described for the Kepler problem. The resulting
Hamiltonian dynamics projected onto 7 *R* is obtained from
the Hamiltonian of Eq. (7). But 4’ is an extremely easy prob-
lem to deal with. In fact, as in the example of Eq. (4) it is
already split, in this case directly.

What we are describing here is a sort of unfolding of the
initial dynamics by imbedding it in a larger one which is
easier to integrate, and then projecting the solution back to
the initial manifold. In the example we have given, the larger
dynamical system is easier to integrate because after being
constructed it can be projected in a different way, onto differ-
ent submanifolds than the original one. It is conceivable that
the larger system is easy to integrate for other reasons. We go
no further into this procedure. A systematic description and
a more detailed treatment will be found in Ref, 12.

ACKNOWLEDGMENT

We thank Professor Bruno Vitale for many helpful dis-
cussions during the course of this work.

'S. Smale, “Topology and Mechanics 1, I1,” Inv. Math. 10, 305 (1970); and
11, 45 (1970); J.M. Sourieau, Structure des Systémes Dynamiques (Dunod,
Paris, 1970); J. Marsden and A. Weinstein, *“Reduction of Symplectic
Manifolds with Symmetry,” Rep. Math. Phys. 5, 122 (1974); G.M. Marle,
“Sympilectic Manifolds, Dynamical Groups and Hamiltonian Mechan-
ics,” edited by M. Cahen and M. Flato (Reidel, Boston, 1976); N.N. Ne-
horosov, Trans. Moscow Math. Soc. 26, 121 (1972); K.R. Meyer, Symme-
tries and Integrals in Mechanics Dynamical Systems, edited by M. Peixoto
(Academic, New York, 1973), p. 259.

*F. Gonzales-Gascon and F. Moreno-Insertis, *‘Symmetries, First Inte-
grals and Splittability of Dynamical Systems,” Lett. Nuovo Cimento 21,
253 (1978).

‘G. Marmo, E.J. Saletan, and A. Simoni, *"Reduction of Symplectic Mani-
folds through Constants of the Motion,” to appear in Nuovo Cimento.
*L.P. Eisenhardt, ““Continuous Groups of Transformations,” Dover re-
print, 1963; L.P. Forsyth, Theory of Differential Equations (Dover, New
York, 1959), Vol. 5.

*C. Chevalley, Theory of Lie Groups (Princeton U.P., Princeton, 1957); F.
Brickell, and R.S. Clark, Differentiable Manifolds (Van Nostrand, Rein-
hold, London, 1970); R. Palais, 4 Global Formulation of Lie Theory of
Transformation Groups Mem. 22 (Amer. Math. Soc., Providence, R.I.,
1975).

*R. Thom, “Quelques Proprietés Globals des Variétés Differentiables,”
Comm. Math. Helv. 28, 17-85 (1954).

"The minimum energy a = — imk*/!*is not a regular value, for df = 0 at
this value of a. The corresponding V, is the point r = //(mk ), p, = Oand
is of dimension zero, rather than one, which is the dimension of the ¥, for
all the other values of a. Thus this point has to be treated separately; it
corresponds to the circular orbit in configuration space.

‘F.W. Warner Foundations of Differentiable Manifolds and Lie Groups
(Scott, Foresman, Glenview, I1i., 1971); see also Brickell and Clark, Ref. 5.
*The integral in this equation is to be understood symbolically. Its accurate
definition requires some notion of transport of vectors on the leaf, so that
vectors at two different points can be added. Such a notion may be ob-
tained from a group action on the leaf or something like that, such as a
connection.

V. Arnol’d, Les Méthodes Mathematiques de la Mechanique Classique
(Mir, Moscow, 1976).

"T. Levi-Civita, Opere Complete (Zanichelli, Bologna), Vol. IV. pp. 466—
545; Vol. V, pp. 417-52.

D. Kazhdan, B. Kostant, and S. Sternberg, ‘*‘Hamiltonian Group Actions
and Dynamical Systems of Calogero Type,” Commun. Pure Appl. Math.
(to appear, 1978).

Marmo, Saletan, and Simoni 860



On an inhomogeneous Schrodinger equation and its

solutions in scattering theory

H. van Haeringen

Natuurkundig Laboratorium der Vrije Universiteit, Amsterdam, The Netherlands
and Institute for Theoretical Physics. P.O. Box 800, University of Groningen, The Netherlands

(Received 19 July 1978)

We prove that i, the partial-wave projection of the irregular Coulomb wavefunction {s,, is a solution of
an inhomogeneous Schrodinger equation. New expressions for i, and s, are obtained in terms of the
Coulomb Green functions G¢, and G, respectively. We discuss irregular solutions, the analogs of Y, for
Coulomb-like and short-range potentials. We find that in general these functions do not approach

asymptotically the scattering amplitude times an outgoing spherical wave, in contrast to the pure Coulomb

function .

1. INTRODUCTION

The physical three-dimensional Coulomb scattering
wavefunction #*’ is customarily split up into an “‘incoming
part” ¢, and a “‘scattered part” ¥,. Each one of these three
functions is a solution of the Schrodinger equation, ¢+’ is
regular, ¥, and i, are irregular. In Ref. 1 we have derived
closed expressions for ¥/ *,¢, , and #,, the partial wave
(p-w.) projections of ¢ *’, ¥, and ¢,, respectively. We proved
that ¢, ,and ¢, , are no solutions of the p.w. projected Schro-
dinger equation.

The function ¥, asymptotically approaches the Cou-
lomb scattering amplitude times a Coulomb-modified out-
going spherical wave [cf. Eq. (5.1)]. The question arises
whether there also exists for other potentials a function
which

(1) is an irregular solution of the three-dimensional
Schrodinger equation, and

(ii) asymptotically approaches the scattering amplitude
times an outgoing spherical wave (possibly modified).

In this paper we shall discuss a large class of irregular
solutions of the three-dimensional Schrodinger equation
with a local potential. Their asymptotic behavior is easily
obtained when the potential is spherically symmetric. In this
case we are able to show that the condition (ii) is not satisfied
in general. It seems that the pure Coulomb potential is a
remarkable exception in this respect.

In Sec. 2 we shall prove that ¢, is a solution of an
“inhomogeneous Schrodinger equation,” see Eq. (2.3). With
the help of this result we deduce in Sec. 3 a new expression
for 1, ,, in terms of the Coulomb Green function G, ;, Eq.
(3.1). In the second part of Sec. 3 we investigate the behavior
of i, ,(r) for r—0, starting from different equivalent expres-
sions. When / = O this function diverges like Inr, but for /> 0
it has a finite limit for »—0 [Eq. (3.17)].

Summation of the p.w. series with ¢, , leads in a natural
way to an expression for ¢ (k,r) in terms of the three-dimen-
sional Coulomb-Green function G, Eq. (4.1). We define in
Eq. (4.2) a class of irregular solutions ¢ (k,r) of the three-
dimensional Schrddinger equation for a not necessarily
spherically symmetric potential in analogy to ¥, and study
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these functions in Sec. 4. We also discuss here the connection
with a line charge distribution on the positive z axis.

The most interesting feature of the Coulomb irregular
solution ¥, is, as we said before, that it asymptotically ap-
proaches a Coulomb-modified outgoing spherical wave
times the Coulomb scattering amplitude. In Sec. 5 we discuss
the question whether such an irregular solution with a simi-
lar asymptotic behavior can be found for other potentials.
We successively consider the Coulomb, Coulomb-like, and
short-range potentials, first with the *“Coulomb-choice” for
w, i.e., w(r) proportional to e*", and afterwards for other
functions w. We have not been able to find an irregular solu-
tion ¢, with the desired property of giving the scattering
amplitude, so it seems to be fortuitous that ¥, yields asymp-
totically the scattering amplitude. Therefore, although the
regular physical wavefunction ¢'*’(k,r) for any local poten-
tial can be expressed as the sum of two irregular solutions,
Y = o, + ¢, this splitting seems to be useful only in the
pure Coulomb case.

We shall work throughout in the coordinate representa-
tion and restrict ourselves to local potentials. As usual we
take #i = 2m = 1, E = (k + i€)* with €10, and we suppress
the energy dependence of G, G,, and T. We will often use the
subscript C to denote Coulomb quantities.

The p.w. “‘outgoing” physical scattering state is denot-
ed by |kl + >, cf. Eq. (11.13) of Taylor.2 Its connection with
Newton’s ¢} *’ and @, follows from

rlkl 4 > = Q/m)V ke i Y (k,r) (1.D
and [Eq. (12.145) of Ref. 3]
POk =k (ko R/ + DY, (1.2)

where f(k ) is the Jost function. Furthermore we will use the
symbols |k/ 1) and |kll> to denote the Jost solutions of the
p.w. Schrédinger equation, see Ref. 1. We have

riklry = Q/m)Vkry S, k), 1.3)

2kl 4> = |kl 1> — |kIL, (1.4
and

kI 4> = (= Yrkl = Y% = (= )Y<kl = >, (1.5)
The Coulomb Jost solution is denoted by <{r|k/ 1>, and for
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V=0 we have'

rlkl vy = /7)Y (k). (1.6)
We shall suppress / when / = 0. In particular,

rtk 01 = (rlk 150 = (2/m)2e™ / (k).

The subscript 0 to a bra or ket signifies ¥ = O, whereas for a

function, e.g., in f ¢, it means / = 0. The behavior of
ikl + > and <r|kl 1) at r = 0 follows from

lim(r/2)2ikr) - <kl + YL+ DI
r-+0

=f (k) 1.7

and
lim(7/2)2( — 2ikr)[kr<r]kl HI/QRI

respectively. These equations are valid for Coulomb-like as
well as for (nonsingular) short-range potentials.

For a local central potential ¥(r) is independent of /.

Therefore, we shall occasionally suppress the subscript /
here.

2. COULOMB FUNCTIONS"SATISFYING AN
INHOMOGENEOUS SCHRODINGER EQUATION
In this section we shall prove that y, (see Ref. 1) is a

solution of the following inhomogeneous differential equa-
tion of the Schrodinger type,

(k* — Heyitkry = —<rlVelk Do con 2.12)
that is, written in a more explicit form,
1 d? I+ 1) 2ky)
ki ——r— L - T y(k
( + r drzr r r (k)
ikr Ty/2
= — 2k7’(£>l/2 e ¢ (2.1b)
r \mw kr I'(1—1iy)

Here V is the Coulomb potential and /¢, is the complex
conjugate of the Coulomb Jost function for / = 0 (e.g., Ref.

3,

fer=Fe k) =20+ 1)/ (41 +iy).
The function y, has been defined in Ref. 1 by

xitkr) = 7KL e — 2 (0), 22)
where {r|kl 1> is the Jost solution for the p.w. Schrodinger

equation with the Coulomb potential. It follows that if Eq.
(2.1) is valid, we also have

(k* = He Y, (r) = <r{Velk 1o ¢.o/(20). (2.3)
As we said in the Introduction, ¢, ,is the p.w. projection of ¢/,
[see Eq. (4) of Ref. 1],

Y k) = — Qmy e (1 + i)/ (—iy)
xe* U (1 + iy,1,ikr — ikr). 2.4)
In order to prove Eq. (2.1), we substitute the following
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closed expression for y, [see Eq. (A.17) of Ref. 1],

exp(my/2) exp(ikr)

v, Ckry = 2/m)?

(1 —iyy  kr
1
><1F1(—l,1+1,1;1~1' : ), 2.5
¥ 2ikr (2:3)
and introduce the new variables z = (2ikr) ' and u = — iy.

After some manipulations the equation to be proved reduces
to

—2ZF"@) 4+ 2(1 = 22)F'(2) + [ + 1 ({ + D)z]F (2) = p.
(2.6)
Here

F@=F(— LI+ LLu+ Liz)
!

= 2 Z"( -— 1),,(1 + l)n/(l‘ + l)n

"

is a polynomial, so the proof of Eq. (2.6) is obtained in a
straightforward way.

3. ANEW EXPRESSION FOR v,

In this section we shall prove the equation

GC,IVC.1|k T>0f2,0 = 2i¢s,1’ 3.1
where
2ith, ="kl D — x (3.2)

The left-hand side of (3.1) gives a new expression for ¢, ,.
Further we shall investigate the behavior of ¥, ,(k,r) for
r—0, see Eq. (3.17).

Note, however, that

GeVelkido
is even not defined. This can be easily deduced from our
discussion below [the integral [~ in Eq. (3.8) would be diver-
gent in this case], but it also follows from the equality

G Ve, = Gy T, and the well-known fact that the half-
shell Coulomb 7" matrix, that is T, |k/ >, is not defined.

For the proof of Eq. (3.1) we use
G elry = (=) Sk Cr |kl + > Cr (KL, (3.3)

where r _ is the smaller one and 7 _ the larger one of the pair
r,”. Such a representation of the Green function holds for
any local central potential, as is well known.

A natural and direct way to prove Eq. (3.1) would con-
sist of inserting (3.3) and using the known explicit expres-
sions for the regular and irregular Coulomb wavefunctions,
ie.,

Pkl 4 >e=QR/m2e =™+ 1+ iy)/T Q1+ 2)]
X (2ikr)e = F(l 4 1 — iy;2] + 2;2ikr),

(3.4a)

and
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Krlkl 1o = @/m)Ve™ 2+ Rkr) ' (— 2ikr)! +!

XU+ 1+ iy,2] + 2, — 2ikp). (3.4b)

However, it turns out that this approach is somewhat com-
plicated. We have been able to prove Eq. (3.1) in this way
only for I = 0 and for / = 1. In order to show the complica-
tions arising here, we now briefly discuss the / = 0 case. By
using

4 F(—inlz) = —iy F(l — iy22),
dz

Do U +inl2)= —e U +iy.2.2),

dz

and
Fi(— iy 12)
= —iy K —iy;22) + (1 +iy) F(—i12;2),
Ul +iy,1,2)
=Ul+iy22)— (1 +inUQR +iy2z2),
we obtain
GV etk 10
=e T+ i)k 1+ @/m)2ie* T (1 4+ iy)

X [Fi(— iy 1,20 U (1 + iy,2, — 2ikr)

+ iy F(l — iy;22k0U (1 + ip,1, — 2ikP)). (3.5)

The expression between the square brackets can be reduced
by noting that the Wronskian W for the functions

Sf@O=F(—iy1;2)
and
g2)=eU(1 + iy,1, —2)

is equal to

W (fhe)=/' — fk = z'exp[z + imsgn(Imz2))/T" (1 + iy).

In this way we get from Eq. (3.5),
G Velk 1) co=7rlk ¢

— /M Ak e T (1 — i),

which is just Eq. (3.1) for / = 0.
For /> 1 the above procedure is rather complicated.
Therefore, we resort to a different approach.

In the preceding section we have proved

(k* — Hc)Qiy,)) = Velk i co (3.6)
This equation follows from Eq. (3.1), but not vice versa. We
shall nevertheless prove Eq. (3.1) with the help of Eq. (3.6).
To this end we first observe that the quantity
GeVelk 1)of ¢o is a solution of the same inhomogeneous
differential equation,

(k* — He )G Ve lk 1) co= Velk 1D co

Therefore, this quantity equals the sum of a particular solu-
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tion of this equation and some solution of the corresponding
homogeneous differential equation. According to Eq. (2.1),
— x. is a particular solution. Further, we know that any
solution of the homogeneous differential equation is a linear
combination of |k/ 1>~ and |ki|>. Therefore,

GeVelk Dfco= —x,+ Clk 1)+ Clkll ). 3.7

We shall prove that C, = 0and C, = ¢°'“' by establishing the
behavior of the left-hand side for »— o and for »—0,
respectively.

Substitution of (3.3) in the left-hand side of Eq. (3.7)
yields
NG Velk DS co

=(=)" '%Trkf'c,o[< rlkl1>¢ f(:(flkl + D¢ Ve(r)

<k 1o dr + <Pkl + e f "Ik e

X V(" )r'ik T>or’2dr’]. (3.8)
We further use Eq. (1.4) for the Coulomb case,
2kl + Yo =7 |kl 1D — [kl1D¢
and
(ki 1> e~ /T kr) explikr — ivIn(2kr)], r— .
(3.9)

It follows that for »— o the second term on the right-hand
side of Eq. (3.8) is negligible. For the first term we find, for

r— o0,
— /) f ¢ okr) e + const r ! T,
Clearly this implies that we have C, = 0in Eq. (3.7).

In order to prove C, = e*'”', we consider the expressions
in Eq. (3.8) for —0. With the help of Egs. (1.7) and (1.8) one
easily verifies that

{r|GeVelk 1. =0 (nr), r—0,when/ =0,

=0(1), (3.10)
Finally we use Eq. (3.4b), where (Ref. 4, p. 288, corrected)
U@ez)=z'~T'(c— /(@) +0(z|*~Ré,
z—0, Rec>2, c5£2,
and deduce from Eq. (26) of Ref. 1 that
11k =2/ 1) 2™ *(kr)?

r—0,when/ = 1,2,3,--.

(3.11)

X (=2kn)~ T Q@+ 1D)/C{+1—iy), r—0.

(3.12)

With the help of these expressions we obtain C, = ¢*”". This
completes the proof of Eq. (3.1).

The behavior of {r|G ¥V |k 1D.at —0, as given by Eq.
(3.10) is somewhat peculiar. The function ¢, has the same
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behavior, according to Eq. (3.1), that has just been proved. It
may be interesting to deduce this behavior of ¢, ,at 7 = 0 in
an independent manner. We shall do this in two ways: (i) by
starting from ¢,(k,r), and (ii) by using an integral representa-
tion for ¢, which we have obtained previously.' These con-
siderations give at the same time a more precise expression
for ¢, ;at r =0.

First we note that Eqs. (3.2) and (3.4b) may be used for
our purpose, but this approach is not simple for /> 0. So let
us start with ¢, (k,r), a closed form for which has already
been given in Eq. (2.4). By using
U(l + iy, 1,2)~ — QC+ ¢¥(1 + iy) + Inz)/T" (1 + iy),
(3.13)
where Cis Euler’s constant and ¥ the digamma function, we
get

¥, (k,ry~Q27) *Vexp(ikr + wy/2)

2—»0,

xintkr — ker)/T"(—iy), kr—kr—0. (3.14)
The p.w. projection of ¢, is given by
i
b= [ v s,
—1
with x = k-f. We now use the equalities
1
J P,()In(l —x)dx =2In2 -2, /=0
1
= — 2/[1(1 + 1)], l: 1,2y3y"')
(3.15)

that follow easily with the help of (e.g., Ref. 4, p. 239)

S+ (n 4+ 1P, ()

n=1

= —1+4+In2 —In(l —x), —1<x<l. (3.16)
In this way we obtain, for »—0,
(m/2)e =TI ( — Y, (N=lnr, =0
~— /I + 1),
1=1,2,3-. 317

This expression not only agrees with Eq. (3.10) but also gives
more information.

Finally we will deduce the expression (3.17) from the
following integral representation for 1, , [Eq. (18) of Ref. 1],

Yo ()= — /M)~ e M (=)

X f Jilkrt)e* O (L4 1) T T (3.18)
V]

We use the new variable z = krf and see that we have to
investigate the following integral for small 7,

10= [ @+ k(4 kD~ @19)

When /> 0 we may put 7 = 0 in the integrand because of
J1(@) = 0(z"), z—0. In this case we obtain
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timd, ()= [ @ez e = /UG D], =123,
roe ¢}
(3.20)

which follows by using formula 6.621.1 of Ref. 5. For [ =0
we have

I(r) + Inkr

= f sinzez = Wz + kry (1 + kr/z) ~ "dz
(4]

1 -- Ar
— f (z + kr)'dz,
0

which clearly has a finite limit for »—0, so
I(n= —Inkr+0Q), 3.21)

By substituting the above results in Eq. (3.18) we obtain the
second proof of Eq. (3.17).

r—0.

4. IRREGULAR SOLUTIONS IN THE GENERAL
CASE
In the preceding section we have expressed ¢, ,in terms

of the Coulomb Green function G, see Eq. (3.1). By sum-
ming the p.w. series for both sides of this equation we obtain

Ykr) = Lm NG K YV (P ) [k 1o dr f ¢o/(20). (4.1)

In this section we shall discuss irregular solutions ¢, for
a géneral potential ¥, not necessarily spherically symmetric.
To this end we define, in close analogy to Eq. (4.1),

k)= Jow |G |k w(r)dr, (4.2)

where G = (k? + 4 — V')'and the function w is arbitrary to
the extent that the above integral is well defined. For conve-
nience we assume w to be continuously differentiable. By a
formal application of G ™! it is easily seen that ¢, satisfies

k4 A — VY k1) = raw(nd@,k). 4.3)
The Dirac delta function is defined by
Jreew oar s
where the domain of integration is the surface of the unit

sphere.

We will show that ¢/,,in general has a logarithmic singu-
larity in the forward direction (k = f). By inserting
G = G, + G,VGin (4.2) one can show that this singularity in
general comes from G,. So we replace Gby G,in Eq. (4.2) and
use

r|Gojt'y = — (4a)|r — v'|exp(ik |r — r')).
It follows that the singular part of ¢, is given by
bu= — Goy [ w)expis)/vdr +O(1), x—1,
0

withy = (¥ + 7' — 2rrk)*and x = k- as before. The sin-
gularity comes from the integrand at the point ' = r. In or-
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der to investigate its behavior in this region we introduce the
new variable z = #'/r. Then one can show that for any posi-
tive a,

f(l — 2xz 4+ 2V f(2)dz = FL f(DIn(1 — x)

+0(), xt1, asl, (449

for a continuously differentiable function £ (z). With the help
of Eq. (4.4) we obtain

¥, = @m)'wAHn(l —x)+ O0(1), x1l. 4.5)

This expression gives the logarithmic singularity of the irreg-
ular solution 3, for a general local potential V.

Now we will briefly discuss the singular behavior of ¢,
at r = 0. In this case we assume x>=1. Since
(22 — 2xz + 1)"2 ~z for z— o0 we have

v, = — (4m)" f e’""’zw(rz)—aE +0(), r—0. (4.6)
1 z
When w is constant we use

I, — ikr) = f e* — _Inkr+ 0(1), r—0,
1 z

where I' is the incomplete gamma function, and obtain from
Eq. (4.6),

¥, = @m)'wO)lnkr + O(1), r—0. 4.7
When w is proportional to e”" [cf. Eq. (4.13)] we get exactly
the same expression, (4.7).

We note that Egs. (4.5) and (4.7) can be combined,

Y (k) = (47) 'w()n(kr — k-r) + 0 (1), (4.8)
for k-1 as well as for 7—0. This expression may be com-
pared with Eq. (3.14).

If we now restrict ourselves to spherically symmetric
potentials, ¥, (k,r) is a function of k,» and k-f only. In this
case it is possible to consider the p.w. projection of (4.2),

Yus (k) = j:<r|G,|r'>w(r')dr'. 4.9)

In order to deduce the behavior of ¢,,, at » = 0, we use Eq.
(3.3) which is valid for any local central potential. Then Eq.
(4.9) may be rewritten as

Yo ilkry=(=)""irk [<r|k1 1 J:(r'|kl+ Yw(r)dr'

+ <rlkl + >f 'kl T>w(r’)a’r’]. (4.10)
By using Eqgs. (1.7) and (1.8) we obtain
Yo (k)= — (2 + 1)“w(0)[r‘ - f r'dr
(¢]
+’an"71*'d"}, r—0, @.11)

where 7, is an unimportant constant. Therefore,
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lpuv,l(k!r) = w(O)lnr + 0(1)9 r—’o’ I= 09

= —w(0)/[/{ + D] + o(1), /=123,

(4.12)

One easily verifies that the p.w. projection of both sides of
Eq. (4.8) yields expressions for i, that are in agreement
with Eq. (4.12).

We note that for the Coulomb case, G = G, ¥, is just
equal to the irregular Coulomb wave ¥, given by Eq. (2.4) if
we choose the function w as

w(r) = ~ iy(2/m)"f o™ (4.13)
We conclude this section with a remark on the logarith-
mic singularity of ¢, given by Eq. (4.8). We see from Eq.

(4.3) that the delta function singularity must be generated by
the Laplace operator acting on In(kr — k-r), so

Aln(kr — k-r)~47r5( k). (4.14)

It is interesting to note that one can verify that Eq. (4.14)
holds with an equality sign.

r—>0,

In order to show this, let us take k along the positive z-
axis as before. Then the right-hand side of (4.14) describes a
uniform line charge density along the positive z-axis. In view
of the symmetry in the problem it is natural to use cylindrical
coordinates R,z,¢, where R ? = r* — 22, Then we have
27ri8(f,2) = r25(1 — cost) = R ~'6(R )6 (2),
where @ is the unit step function. Further,
kr—kr=k(r—2)=k({(R?*+2})"7 —2).
The electrostatic potential for a uniform charge distribution

on the positive z axis is just proportional to the logarithmic
term discussed above. Poisson’s equation reads in this case

Aln((R? + 22)"* — z) = 2R "'5(R )0 (2). (4.15)

This equation shows that (4.14) holds with an equality sign.
So we see that the inhomogeneous term in Eq. (4.3) may be
compared with a line charge distribution along the positive z
axis with density w(r) or w(z).
5. ON THE CONNECTION WITH THE
SCATTERING AMPLITUDE

The function ¥, (k,r) [see Eq. (2.4)] is called the scat-
tered part of the complete physical scattering wavefunction

¥ '(k,r) for the Coulomb potential because of its asymptotic
behavior, which is given by [cf. Eq. (40) of Ref. 1]

Y (k,r) ~fc(ﬂ-f)(27)" YOplexp(ikr — iyIn2kr), r—oo.

(5.1)
Here € is the Coulomb scattering amplitude,
fC@= -G

One may compare (5.1) with the well-known short-range
potential formula,

Y k)~ Qm)He" + f(0)e /),
From Eq. (4.1).

r—co.

P (kr) = Jox |G [k DV (¥ ) [k 1o dr f o/ (20),
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we see that this “scattered part” equals an integral involving
the Green operator G-

It is interesting to investigate whether Eq. (4.1) can be
generalized to other potentials. The problem is, how to find
an irregular solution, such that its asymptotic behavior
equals the scattering amplitude times a (possibly modified)
outgoing spherical wave, just as in Eq. (5.1).

Let us first consider again the p.w. function ¢, for the
pure Coulomb potential. Below we shall consider the gener-
alization to Coulomb-like and other potentials. From Egs.
(3.1) and (3.8) we have, for r—oo,

b (k)= STk e P j k= 17

XV (F )Pk 1 dr. (5.2)

We split the integral in two parts, f£ + [k, where R is so
large that the asymptotic behavior of .(k/ — {r"> can be
used. With the help of Egs. (1.4) and (3.9) we obtain a term
with the asymptotic behavior — (2/7)f - e/ (2ikr). Ac-
cording to Eq. (3.2),

o (kor) = (= x, + eIk TE)/(20),

this term1s — y, /(2). The rest of ¢, , 1s proportional to
{rlkl t>.. By using Eq. (3.1) we deduce

R
" = lim [(sz )" — k L <klL—= |V e(n)
x(rlk T>(,r2dr]. (5-3)

Tt is interesting to replace {r|k 1, by {r|q1 . here, where as
before
Krlgide = 2/my e /(gr),

with Img > 0 and consider the limit for g—k. When g~k the
integral f5--is convergent for R— o and may be denoted in
this case by <kl — | V,;1g1>. We have been able to obtain
the following closed expressions,

<kl — | Ve g1

_ 4y ?ﬁm(q + k_)WQ 7(g/k)
7q qg—k
2, LA+ A-inpld+ 1)
g rd+1—iy
< [P}i,/. ~M(g/k ) — (q + i)wPﬁ’ wing/k)).
q —_—

(5.4)

Here Q 7 is Legendre’s function of the second kind, and P {*”
is Jacobi’s polynomial. In the particular case / = O this ex-
pression agrees with Eq. (7) of Ref. 6 that we used for the
derivation of the Coulomb off-shell Jost function in closed
form.

When g~ k, Eq. (5.4) can be simplified. By inserting
Pir=—mMy=r+1+ipy/[CA+inld+ 1], 5.5
we obtain
<kl = Vel
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2 io, .
k= Verlgtyo ~ = o™ 77| (1 ~ i)
gk Tk

—ra+ iy)(m)””]. (5.6)

q—k

The second term on the right-hand side contains the factor
(g — k)~ " and is therefore singular for g—k. It may be
compared with the *“‘correction factor” w of Ref. 6, Eq. (2).
Note also the similarity with the so-called Coulombian as-
ymptotic state of Ref. 7, Eq. (16), where the typical factor
feoe + k)" — k)~ 7 occurs.

This singular term corresponds to that part of the inte-
gral on the right-hand side of Eq. (5.3) which contains the
(for R— o0 ) divergent factor (2kR )"?. The other term is con-
tinuous for g—k and this one corresponds just to the “con-
vergent part” of the integral in (5.3).

A natural generalization of the expression
|G Veilk 1D, to other central potentials is

U (k=G K 1D (5.7
where G, is the Green function for V. So ¢, corresponds to
the Coulomb function ¢, of Eq. (3.1) [we have omitted the
constant factor f¢.,/(2) which is irrelevant here]. We first
assume that ¥, is a Coulomb plus short-range potential,
Ve + Vi Inorder toinvestigate the asymptotic behavior of
¥, we use the expression [cf. Eq. (3.3)]

r\Gi|ry = — Smk kD — fr _<r_ |kl 1.
It may be noted that (r|k/ t > has exactly the same asymptotic

behavior as {r|kl 1), which is given by Eq. (3.9). Further-
more we have [cf. Eq. (1.4)]

2iCkl — | = exp[2i(o, + 8Kl — <kl 1], (5.8)

where 5{ is the Coulomb-modified phase shift. We proceed
in the same way as in the pure Coulomb case, and find that ,
can again be split up in two parts, ¢, = ¥V + ¢{?, which
have different asymptotic behavior. For the first term we get

YO~ — Q/m)2e*r/ (kr), 1=0,1.2,...

(5.9)

Obviously this is the analog of the function y,. Since the
right-hand side of (5.9) is independent of /, it follows that the
sum of the p.w. series,

S @m@i+ HPEYOE),
=0

r—o0,

is proportional to &(1 — x) for r— 0.

For the second term we obtain
WD) ~rlkl 5 lim [(2kR )7
R—

R
—%ﬂkJ' L — PV ()P ke e |, rco.
(4]

(5.10)
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The integral fX is divergent for R— co. In this limit it has
exactly the same singular behavior as for the pure Coulomb
case, which can be verified with the help of Eq. (5.8). It is
therefore natural to split off the pure Coulomb part. We do
this by using the two-potential formalism; in the notation of
Ref. 8 we have

VKL + > =V lkl + D¢

+ (0 + T, Go e |kl + De (5.11a)
or
<k[ - 1VI = c<kl - |Vc,1
+ o<kl — |t , (1 + Gy Te,). (5.11b)

Here ¢, satisfies the equation
tesi=Vo+ ViGedcsn

so it is a “‘short-range operator.” Substitution of (5.11) in
(5.10) yields

YO ~ |k 1D f e e — Yk ol — |

Xt (1 + Gy Te)lk 120], (5.12)

where we have used Eq. (5.3). The phase shift for V-, + ¥V,
is related to 7, in the following well-known way,
<kl = lteo [kl + D = ik )™ [exp(2i6f) — 1].
(5.13)
Comparison with Eq. (5.12) shows that the p.w. series
3,(4m) (21 + D)P,(x)¥{P(r) is not proportional to the scat-
tering amplitude in general. Therefore, also

Pk = S @ry'@+ DP kDY)

does not in general have the desired asymptotic behavior
[recall that the p.w. series with ¢{" is proportional to
8(1 — x) = 6(1 — k-f), for -}
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For a short-range potential we obtain for 7— o, follow-
ing the same procedure,

VAP ~ — Sk {rlkI Ykl — Vi k1,
= — Yok {rlkd 1Kk Tk 1.
In this case the phase shift §, is given by
kI T)|kl> = i(rk Y™™ — 1).

Apparently the p.w. series with the 1, 0f (5.14) will in general
not be proportional to the scattering amplitude, for r—cc.

(5.14)

The procedure described above can be repeated for the
function ¢, ;of Sec. 4. That is, we replace {7k 1), by a rather
arbitrary function w(r) and consider the asymptotic behav-
ior of ¢, (r), see Eq. (4.9). Again we are not able to find a
function w for any potential (except for V), such that
¥, (k,r) for — oo approaches the scattering amplitude times
an outgoing spherical wave.

So it seems that the pure Coulomb function ¢, in
unique in having the property (5.1). This would mean that
the useful property (5.1) of the irregular solution ¢, is mere-
ly a coincidence. Therefore, although the regular physical
wavefuntion ¢ ’(k,r) for any potential can be expressed as
the sum of two irregular solutions ¢’ = ¢, + ¢, this split-
ting seems to be useful only in the pure Coulomb case.
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We obtain a simple expression for the electromagnetic quadripotential corresponding to the pure-radiation
field generated by a classical charged point-particle. The solution does not satisfy the Lorentz condition,
and has interesting properties. It propagates inside the light cone of the particle and has a discontinuity
across the sheet of the light cone itself. This discontinuity is responsible for the correct propagation of the
electromagnetic effects with the velocity of light. A similar result is also obtained for the velocity-

dependent field.

I. INTRODUCTION

The electromagnetic quadripotential generated by a
classical charged point particle is given, up to guage trans-
formations, by the well known Liénard—Wiechert solution,
which in covariant form reads!?

A (R),(x) = 2eﬁ s 9 (£ ROSR,R Mus)

A

T s =0 (11)

where the subscripts R,A4 refer to retarded, advanced solu-

tions. In Eq. (1.1) we have indicated with e the charge, with

u' the quadrivelocity, and with R’ the quadrivector,
R'=x"-z(s", (1.2)

x' = Z'(s") being the equation of the world line of the particle.
We have introduced also the scalar R given by

R=Ru' (1.3)
and we have indicated with s . the value of the proper time
s’ which is solution to the following set of equations:

RR'=0, R°s0. 1.4

The corresponding electromagnetic field tensor F,, can be
split, in a covariant way, into a velocity-dependent field

FOD — + $ (R —uR )|, _, 1.5
(R) + R3(ul\ Rl “ (1.5)

A

and a pure-radiation field

e
R

d

F(ra ’)k — i
&)

[R{(ak — agly)
— R (a,— aRui)] Iy s(ﬁ)- (1.6)

In Eq. (1.6) ay is given by
ap = (1/R)a'R, .n

@’ being the quadriacceleration of the particle.
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It is commonly believed that it is impossible to split the
quadripotential in a similar way. In this paper we obtain, on
the contrary, separate expressions for the quadripotential
A " which corresponds to the pure-radiation field of Eq.

(1.6), and for 4 Y, which corresponds to the velocity-depen-
dent field of Eq. (1.5).

Il. QUADRIPOTENTIAL FOR THE PURE-
RADIATION FIELD

The starting point is the following identity:

d g
—(a;,—azu) = - Qg = —dp, 2.1
R( R ) aRl R 8x' R

which allows us to write Eq. (1.6) in the following way:

+
F(('f‘)’,{(x) = 2e£ ds' & (+ RO)S(R,R™

><<R,. az - Ry afe ,,)aR. 2.2)

Equation (2.2) suggests immediately for A4 " the following
expression:

a
- dp.
I

+ o
A ) =J ds' 9 (+ RS (R, R™
R =) df 2L ROIRRT) D

2.3)

By asimple calculation one can verify that the field tensor F,,,
generated by the quadripotential (2.3), is indeed the pure-
radiation field given in Eq. (2.2). One can verify that 4 ¥,
given in Eq. (2.3), does not satisfy the Lorentz condition.

The mathematical and physical properties of the solu-
tion given in Eq. (2.3) are quite interesting and peculiar. For
simplicity we refer to the retarded solution only. From the
mathematical point of view we observe that the extremely
singular & function, which enters the Liénard-Wiechert qua-
dripotential of Eq. (1.1), is absent in Eq. (2.3). From the
physical point of view we observe that the quadripotential,
given in Eq. (2.3), propagates inside the future light cone of
the particle. The discontinuous behavior of the ¢ function
across the sheet of the future light cone is responsible for the
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physically correct propagation of the electromagnetic effects
with the velocity of light.

i1ll. QUADRIPOTENTIAL FOR THE VELOCITY-
DEPENDENT FIELD

The velocity-dependent field can be treated in a similar
way. Instead of Eq. (2.1) we have

_ W _ 91 _91 3.1
R? JR'" R ox' R
In perfect analogy with Eq. (2.3) we obtain, in this case,
Ja 1
A S (x :efds’ﬂ + R R, R™)——. 3.2)
G)( ) (£ R ) R R (

The physical and mathematical properties of the solution
given in Eq. (3.2) are similar to those discussed in the pre-
vious section.

IV. TWO EXAMPLES

Asa first example we calculate the retarded potential of
Eq. (3.2) for a particle at rest. We assume

2’ = S’, =0 (a - 11---’3)’ (4'1)

which implicates u = (1,0,0,0). Equation (3.2) gives, for the
retarded solution,

+ oo
AL = — ej d2’ 9 (x° — 22 — P)(x* — 2°)°
+ o
= —ef d2 9 (R° — PR )
+ oo
= _ ef dR(R%)> = — e/r, (4.2)
AGR =AGh =4GR =0, 3

which is just the Coulomb potential.

As a second example we calculate, using Eq. (2.3), the
retarded potential for the pure-radiation field generated by a
harmonically oscillating particle. We assume

2= ~5§', z!'=sinwz’, z*=2z'=0,

and, for simplicity, we assume also
| b | <1 4.4

(nonrelativistic velocity). Equation (4.3) together with the
condition (4.4) gives

=1, u'=bwcoswz’® uw=u'=0, 4.5)
and

a’°=0, a'= — bwsinwz®’, a®=a =0. 4.6)
Assuming also

r>b 4.7
we obtain

R°=x"—-2° R°=x%a =1,..,3). 4.8)
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A simple calculation gives

R=x"-2° 4.9)
and

ap = bw*[x/(x° — 2°)]sinwz’. (4.10)
With these assumptions, Eq. (2.3) gives
AR) =43 =0, “4.11)

+ oo
AR = — ebwsz- dx® ¢ (x° — 2° — r)(x° — 2 %sinwz’

= — ebw*(x/r)sinw(x’ — r)
(4.12)

—eborx| dR® %cosw(x" _ R,

+ o0
and

+ oo
A =ewr[ a9 02— i — 2y sino

— —ebo?| dR°—sino* — RY). (4.13)
“+ oo R
Explicit calculations for 4, and 4, give®
AGQY= — ebo? 2 sino(x® — )
r
— ebw3x[cos(wx°)Ci(wr)
+ sin(cox“)[Si(a)r) - %] ] (4.14)
AN = — ebwz{sin(a)x")Ci(wr)
- cos(a)x")[Si(a)r) - %” 4.15)

The electromagnetic field tensor corresponding to this solu-
tion, can be calculated easily from Egs. (4.11) to (4.13). One
obtains

Fy =E, =ebo’r'(1 — x*/r)sino(x* — r),
Fop=E,= — ebw*(xy/r)sino(x° — r),
Fo=FE,= — ebo*(xz/r)sinw(x® — r),
F, = — B, = ebo*(y/r)sinw(x’ — r),

Fy, = B, = ebw’(z/r)sinw(x° — r),

F,= —B =0,

(4.16)

which is the correct answer, as one can verify directly using
Eq. (1.6).
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V. CONCLUSION

We have obtained very simple expressions for the qua-
dripotentials corresponding both to the pure-radiation field
and to the velocity-dependent field generated by a classical
point particle. Both of the potentials vanish outside the light
cone of the particle, but curiously they do not vanish inside
1t.

Collecting Eq. (3.2) and Eq. (2.3) together, we obtain
the following expression for the complete quadripotential
generated by a classical point particle:

+ o

= & 0
AG)l(x) efiw ds #(+ R

a (1
X (R, R "’)—,(— +a ) 5.1
R \R "

Equation (5.1) gives the same field strengths as the Liénard-
Wiechert potential of Eq. (1.1).*

A solution which is physically equivalent to Eq. (5.1),
and then to Eq. (1.1), is given by the following curious
expression:

+ oo

A(Ij)l(x)z —eJ_ ) as'[1 —J3(+ ROF(R,R™)]

79% ('113 + aR). (5.2)

870 J. Math. Phys., Vol. 20, No. 5, May 1979

which apparently violates causality, since it gives propaga-
tion, for the quadripotential, in spacelike directions and

backwards in time also. It can be immediately verified that 4
and 4 are connected by the following gauge transformation:

a (*=,./1
AG),(x) -AG)I(x)Jr 5;4, } ds (E +aR). (5.3)
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On the complete integrability of the stationary, axially

symmetric Einstein equations
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A linear eigenvalue problem in the spirit of Lax is constructed for the nonlinear differential equations
describing stationary, axially symmetric Einstein spaces. In suitable variables these equations yield a
generalization of the well-known sine-Gordon equation. The similarity of the system to the nonlinear o

Most of the striking results in black hole physics' are
based on our knowledge of certain exact solutions of Ein-
stein’s equations. Therefore, it is desirable to enlarge the
known families of exact solutions. On the other hand, a sys-
ternatic, nonperturbative solution method for the highly
nonlinear Einstein equations is badly missing. That even
stays true for certain restricted classes of solutions, like the
stationary, axtally symmetric ones. Recent investigations of
the latter class by Geroch? and Kinnersley® revealed an
amazing algebraic structure, which raised the hope that a
more complete treatment of this important family of solu-
tions might be possible. These authors find an infinite-di-
mensional Lie algebra of infinitesimal symmetry transfor-
mations, the origin of which remains, however, rather
mysterious. It is my intention to “explain” their results in
relating them to similar properties of so-called ”completely
integrable Hamiltonian systems.”

In fact I conjecture that the Einstein spaces admitting a
two-parameter Abelian group of isometries constitute them-
selves such a completely integrable system. This conjecture
is based on the Lax type linear system (cf. Ref. 4) constructed
in Sec. 4 of this paper. This also raises the hope that linear
methods like the inverse scattering method* may be em-
ployed to solve the nonlinear equations.

Although from a physical point of view the stationary,
axially symmetric Einstein spaces are the more interesting
ones, I shall keep the discussion general and treat arbitrary
two-parameter Abelian isometry groups. The case of two
spacelike Killing vector fields is mathematically interesting,
as it leads—in a special case—to the equations of the nonlin-
ear o-model, known from elementary particle physics. Ex-
pressed in suitable variables, the latter is equivalent to the
well-known sine-Gordon theory.’

The aim of the present paper is to construct a system of
linear equations in the spirit of Lax (cf. Ref. 4). This is
achieved in several steps. For the convenience of the reader 1
repeat in Sec. 1 the standard reduction of the problem to a
two-dimensional one.?

In Sec. 2 the infinite set of conservation laws found by
Geroch? and developed in a more systematic way by Kin-
nersley’ is used to derive an equation similar to one obtained
by Luscher and Pohlmeyer® for the nonlinear o-model. In
Sec. 3 a one-parameter family of solutions is generated from
any given one, to be used in Sec. 4 for the construction of the
linear eigenvalue problem along the ideas of Lund.’
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1. REDUCTION TO A TWO-DIMENSIONAL
PROBLEM

Geroch? has shown how an Einstein space E admitting
a two-parameter Abelian group G, of isometries fay be de-
scribed covariantly on a two-dimensional manifold S. The
space S is obtained from E as the space of orbits of the group
G, in E. At least locally the projection /7 from E onto S
induces the structure of a smooth manifold on S. Let */7
denote the corresponding linear projection of the tangent

spaces. Introducing two independent Killing vector fields § 4

(i = 1,2) that generate the group G, the linear map *I7 can be
represented by the matrix

*”'uv:&tv_/liké‘f"é‘kw (11)
where 4 ** is the inverse of the 2 X 2 matrix
/‘Lik Eg t‘g Zgyv' (12)

The projection of the metric g,,, of E defines a metric tensor
h,,(a,b = 1,2) on S. There are two cases to be distinguished:

(A) Both Killing vector fields £ 4 are spacelike; hence
Sgn(iik) = ( +,+ ) and Sgn(hab) = ( T + ):

(B) one of the Killing vector fileds is timelike (stationar-
ity) and hence sgn(1,,) = (—, + ) and sgn(4_,)
=(+,+)

Whenever necessary I shall discuss the two cases sepa-
rately referring to them as (A) and (B).

As a consequence of R,,, = 0 the vector fields

2y, =€,E VEL (k=12) (1.3)
are curl-free,

4wy =0. (1.4
Therefore, they can be derived from potentials £2,,:

2y, =03.02;. (1.5)

In order to be well defined on § the (2, have to be constant
along the orbits of G, i.e.,

fg;gik = é'f‘ﬂik# =0,

which will be assumed from now on.

(1.6)

As discussed in Ref. 2, the equations R,,, = 0 on E are
equivalent to the following equations on S:

R =1Tr(A"'D,DA) — L Tr(A "D AL 'DA),
(1.7a)
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DA DA) =0, (1.7b)

where R ), resp. D,, are the Ricci tensor, resp. covariant
derivative, corresponding to the metric 4_,. A is the matrix
(A,) of Eq. (1.2) and

7=/ detd |. (1.8)
In two-dimensional spaces it is always (at least locally) possi-
ble to choose coordinates in which A,, = A7,

with
—1 0
(nab):( 0 +1> case (A),
(1.9)
1 0
an=("y 0 s ®.

In these special coordinates Eq. (1.7b) decouples from Eq.
(1.7a). Therefore, one can first solve Eq. (1.7b) and then use
the solution for 4 in Eq. (1.7a), which can easily be integrat-
ed.® From now on the choice Eq. (1.9) for 4,, will be made,
and I will restrict myself to the study of Eq. (1.7b).
The relation
— (detDHA ! = ele, (1.10)

where € is the matrix (°_, ), allows us to write Eq. (1.7b) in
the form (u=eA):

d(r'ud, 1) =0, (1.11)
4 has the properties
— 71 case(A),
T =0 1= { 12
=0 and p 71 case(B). (1.12)
Taking the trace of Eq. (1.11) yields
d°d,r=0. (1.13)

Because of Tru = O the matrix u is an element of the Lie
algebra sl(2,R ). Using the basis

O =io,. =0, Q,=0, (1.14)
for s1(2,R ), 1 can be expanded as
E
©= 2 q'Q. (1.15)

i=1
The Killing form of sl(2,R ) yields a pseudonorm for the 3-
vector ¢ = (g,):

a2, — 7 case(A),
g= — = 1.16
q-q 9+ 9+ 9q; 7 case(B). (1.16)
In terms of ¢ Eq. (1.11) can be written as
F(rigxd,g) =0, (1.17)

where the cross product is the usual one in a three-dimen-
sional space with the metric given in Eq. (1.16).

2. THE INFINITELY MANY CONSERVATION
LAWS OF GEROCH

Since there occur some relevant differences in signs I
prefer to treat the cases (A) and (B) separately.

Case (A)
Equation (1.11) can be read as the integrability condi-
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tion for (4,=¢,,8")
B0 =Tud, p @n
with some 2 X 2 matrix o [which incidentally turns out to

be closely related to the matrix of potentials £2 of Eq. (1.5),
namely v = — &£2].

Taking the trace of Eq. (1) yields (6= — iTr,))
do=3a,r (2.2)

and hence #°d o = 0, 1i.e., 7 = (detd )*and 0 (0= — 1 Trw)
are a pair of conjugate solutions of the wave equation in two
dimensions.

Geroch?® has demonstrated that the “potentials™  and
w give rise to the recursive construction of an infinite se-
quence of new potentials i, and @, via an infinite sequence of
conservation laws involving these potentials. I prefer to fol-
low the somewhat more appropriate presentation of Kin-
nerstey’ and define

o, .= —duw,) — dou, — udw, + 2a0du,, (2.3a)
Jw, , | =, — dww, + pdu, + 200w,
n=0,12., (2.3b)

with the initial data

Ho=0, u =y, (2.3¢)
The integrability conditions for the existence of the poten-
tials 12, and w,, are easily proved by induction, starting from
Eq. 2.1).

A more concise form of Egs. (2.3) is obtained using
generating functions, defined by

ve= S su, Vo= S so, (2.4)

n=0 n=0
In terms of ¥ (s) and U (s) Eqs. (2.3) read
sV ()= — HuU(s)) — dwV-
(5) — paU(s) + 209V (s), (2.5a)
573U (5) = AV (5)) — FwU(s) + pdV (s) + 209U (s),
(2.5b)
Inturns out that ¥ (s) can be eliminated from these equations
by the following ansatz:
V(s) =f(s,m,0)ulU(s), (2.6)

where f'is a real function to be determined. Putting the an-
satz for ¥ (s) into Eq. (2.5a) yields the compatible system of
equations

wo=—1, w =ow.

Pfr—20f +5f+1=0, (2.7a)
Y ¥ X 0 o 7
TZfBT "o " a0 s ar ’ @79

Y %) o I
e il LS AL

The solution with £(0,7,0) = 0 is given by

fGm0) = ——2: 250 — 1+ V (@250 — 1) — 457 ].
T
(2.8)
Using this function in the ansatz equation (2.6) for ¥ (s), Eq.
(2.5a) is identically fulfilled, irrespective what U (s) may be.
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Equation (2.5b) becomes now

UGy = —L (u«?# — Tfudu + 27 —agf ) r

1 — 72f?
+ 27 g—{; 80)U(s). 2.9)

The last two terms in Eq. (2.9) can be eliminated putting

U')=(1 — 7fHU(s), (2.10)
for which
U = —L iy — fuamu @.11)

1 — 7f?
is obtained.

This equation takes a particularly simple form in light-
cone coordinates on S defined by

x4+ x? x' — x?

£= o 7= > (2.12)
and with the function
1—1 1+ 2s(r — o) /2
re=175 -(Therg) e
instead of /. The result of these changes is
AU =51 - 1/y)rud pU’, (2.14a)
3,U" =41 —y)yriud,uU’. (2.14b)

These equations show a striking similarity with Egs. (9) of

Liischer and Pohlmeyer® in their work on the O(3) nonlinear
o-model and in fact goes over into their equation in the spe-
cial case 7 = 1, o = 0, if one identifies g with their ¢. A more
detailed discussion of this similarity will follow in Sec. 4.

Case (B)

Due to u? = 77 and the different signature of 4, there
are some changes in sign compared to case (A).

7 and o are now a pair of conjugate harmonic functions
Egs. (2.7) become

PfP 4 20f —sf—1=0, (2.152)

Tzf% 20X U Y o (21sb)
.

or do ar
2 Y 2__‘50 _‘5 s Y
f i + ; +7 3 s 0, (2.15¢)

with the solution

flsmo) = '2%_? [1 _230_\/(1 — 250y + 4572 1 }.

(2.16)
The resulting equation for U reads
Fl/ i ( du + mifudp + 22 X 5
1+7_2f2,u,u Sudu Rl
+ 27 A 80)U. 2.17)
do
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respectively [U'=(1 + 72U
) Tf

U'= — e udu + Tfudu)U'. (2.18)
Convenient coordinates for this case are
E=x"+ix} f:x' — ix?,
in which Eq. (2.18) becomes
.U = — 31 = I/y)riud pU’, (2.19a)
IU"' = — (1 — )7udzuU’, (2.19b)

where the function

(), 0) = 1 +itf _ ( 1 — 2s(o + iT) )1/2

1 —irf 1 —2s(o —i7)
has been introduced instead of f.

3. THE GENERATION OF ONE-PARAMETER
FAMILIES OF SOLUTIONS
In view of the special role played by 7 (which together

with o could be introduced as coordinate in S') it is conve-
nient to normalize the matrix u, putting

(2.20)

A=T"1
with

- — 1 in case (A),

p= 1 in case ((B; S
Equation (1.11) yields

3, (720, f1) + 9.(12d, 1) =0 in case (A), (3.2a)

3, (Tldg 1) + dg(72d, ) =0 in case (B). (3.2b)
Equations (2.14), resp. (2.19), become

(U=(~s/f)"U"]

3, U= 1301 — 1/y)ad, g0, (3.3a)

8,0 =101 — )i au (3.3b)
to be supplemented by

30,7 =0, (3.3¢)
resp.,

3.0= — 300 — 1/y)d, g, (3.4a)

8e0 = — §(1 — y)izdg iU, (3.4b)
to be supplemented by

ddgr = 0. (3.4¢0)

_ Supposing one is able to solve Egs. (3.3), resp. (3.4), for
U given some solution u of Eq. (3.2a), resp. (3.2b), then a
lengthy but elementary computation shows that

a9 = U@G)'al(s), seR, (3.5a)
o _ [ Y& =y \?
£ = ( 4—s¢—> 7 (3.5b)

yields a one-parameter family of solutions of Eq. (3.2a), resp.
(3.2b). 7 has the further property

I = (/U3 g0 (3.62)

and
9,49 =yU"9, u0 (3.6b)
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in case (A) and similarly for (B), which also entails

. 1. . _
3. 4%y = ?(6;-#)2 and (3, 2Y) = y¥3, @)

3.7
Similarly 7 obeys
719,70 = 1 79,1 (3.8a)
£ }/2 R
and
701G, 7 = Yra, T (3.8b)

in case (A), and analogous relations in case (B)

The family g is to be compared to the family ¢ of
Ref. 6. The unitarity of U ¥ in Ref. 6 is replaced here by the
condition detU/ = 1, which plays an analogous role for the
group SL(2,R ) as does the unitarity for the group SU(2). In
order to see this, one defines for an arbitrary, nonsingular
2 X 2 matrix g

a*= — ea’e = (deta)a™". (3.9)
The conjugation X has the following properties:

a¥=a, A1)*=A41, AeC,

@)Y =b"a*, (@+b)y =a"+b"%

a= —a'=Tra =90, (.10)

a*a = l<—ydeta = 1.
In particular @™ = — ji, which together with Eqs. (3.3),
resp. (3.4), leads to

AU*U) = 30U~ =0 (3.11)
showing that Egs. (3.3), resp. (3.4), are compatible with the
normalization U*U = UU* = 1, i.e.,, UeSL(2,R).

The transformation u—u® is very similar, but not
equal, to the one found by Geroch.? The infinitesimal form of
Eq. (3.5)is

ou = o], Or=4or, (3.12)
whereas Geroch’s transformation is
o = [lw,k )@l + 20la,k]), 67=0 (3.13)

with some constant matrix kesl(2,R ).

Clearly one can also supplement the transformation
pu—u'” by a constant SL(2,R ) “rotation” Uy(k ) in the form
29 = [UE)Uy(k)]2U (5)Usk ).

The use of the transformation u—u is twofold. On the
one hand, it provides for a method to generate new solutions
of Eq. (1.11) and hence of Egs. (1.7) from old ones, if it is
possible to compute U (s). This has already been undertaken
successfully® with Geroch’s transformation Eq. (3.13). On
the other hand, the family z will be essential for the con-
struction of the linear eigenvalue problem in the next
section.

4. CONSTRUCTION OF THE LINEAR
EIGENVALUE PROBLEM

This section is devoted to the derivation of a linear ei-
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genvalue problem in the spirit of Lax (cf. Ref. 4), using the
family 1 originating from each solution 12 of Eq. (1.11). For
that purpose the representation of 2 as a 3-vector [cf. Eq.

(1.15)]

f= 340 “.1)

with the normalization
— 1 in case (A)
+ 1 in case (B)
[recall ¢ = — (¢') + (¢")’ + (¢°)’] is used.

q'=

Case (A)

From ¢* = — 1 itis clear that

(0:9)*>0 and (J,9)>0.
Therefore, the functions

A=V @qr. B=V @y
are real. Let o be defined through

(4.2)

(4.3)

As a consequence of Eq. (3.2a) ¢ obeys
3:0,4 + 577079, + 3,70:9) — (3:4-9,9)g = 0,

which in turn implies for the invariants 4, B and « the
equations

(4.4)

d, A + 3779,7B cosa + 379,74 =0, (4.52)
B + 373, 7B + 478,74 cosa = 0, (4.5b)
dd,a + AB sina — %8,7(7‘18777' % sina)
la -la B 1 —
— 5.\~ g;sma =0. (4.5¢)

Equation (4.5¢) is a generalization of the well-known sine—
Gordon equation to which it reduces for4 =B =7 = 1.

According to Eq. (3.7) the vectors g corresponding to
% have the invariants

a0 =1 4

B® =y(s)B, a¥ =c.
()

4.6)

The vectors ¢, 9.4 and 9,4 can be orthonormalized
with respect to the metric

()

yielding the basis
@) 1 ()
Z© — q(S) Z — VBagq i d Aa'lq
1 ’ 2
2A4B cos(a/2)
(5) __ af1 43 (s)
zp - YO —VA0GT @.7)
2AB sin(a/2)
Let Z® be the matrix built from the rows Z {
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z¢
zZ9 = (z gﬂ). 48)
z¢

By a somewhat tiring computation one derives the following
equations for Z ¢

d,Z ©=CZ, (4.9a)
a . a
0, vB —, — ¥YBsin —
¥B cos 5 ¥ 5
B .
C, =] vBcos %, 0, —4d,a+ %r"agrj sina |,
Bsin %, 19.a — 190 S sina, 0
— ¥Bsin ik & — 370eT p sine,
3.2 =C,CY, (4.9b)
0, —LA cos ﬁ, LA sin z
y 2 vy 2

1 a A .
= — A cos —,0,4d.a — {73, 1 — sina ,

Cz v b 2 éa 2 n B

1 .a 3 4 .

—;A sin > d.a+ 479, TE sina, 0

The matrices C, are elements of the vector representation of

the Lie algebra so(2,1). The compatibility condition of Eqs.

(4.9a), (4.9b)
aUCz —_— agcl = [CUCZ]
is equivalent to Egs. (4.5).

(4.10)

Introducing a basis for the vector representation of

so(2,1),
0 1 0
I = (1 0 o),
0 0 O

0 0 0 0 0 1
I, = (O 0 1), I, = (0 0 O),
o —1 0 1 0 0

4.11)
one can expand the C; as
3
C= Y ol (4.12)
k=1
with
(wlk)
= ( — 49,0 + 470, £ siné, — ¥Bsin ﬁ,yB cos = ),
! A 2 2
(4.13a)
(a’zk) .
= (%aga — 47, 4 sina, iA sin 3, iA cos & )
B v 2y 2

The final step (cf. Ref. 10) is now to go over to the spinor
representation of the matrices C,.

The matrices

Q~1: - éah Q~2=%Uu Q~3=%0'2 (414)

may be taken as the representatives of the basis (/; ) in the
spinor representation of so(2,1). Hence the spinor represen-

tatives of the matrices C; are

875 J. Math. Phys., Vol. 20, No. 5, May 1979

3 A
€= z 1" Ok
KT
1((1/2)8,761 — (f/2)r‘1a§7-(B /A ) sina, — iyBe ia/Z)
=2\ jyBea?, — (i/2)d,@ + (i/2)r9r(B /A) sina
(4.152)

3 KA
C, = Z " O

k=1
( — (i/Dd,a — (/D73 (A /B) sina, — ([/,},)Aeia/Z)
(i/y)de = (i/2)da — (i/2)7"d,7(4 /B) sina /'
(4.15b)
Introducing the normalized two-component spinor ¥

(Yo = 1) yields finally the desired linear eigenvalue
problem

andj = c1¢5
551// = Cﬂ/’
with ¢, from Eq. (4.15)

The matrices ¢, depend parametrically on the real pa-
rameter s which plays the role of an “eigenvalue” in Egs.
(4.16). Unfortunately, the dependence on the “eigenvalue” s
is rather more complicated than in the known examples of
the Lax equations (cf. Ref. 4 for a survey of examples). The
comparison with the nonlinear o-model becomes simpler if
one changes from the variable s to a variable u defined by

=1
2

(4.16a)
(4.16b)

12
uE( 1+2S) , “.17)
1 —2s
which gives for the function
— 1/ — o — 2
;/(s(u))zu(1+(l V/w)r—o I))l/, @.18)
I+ (1 —-u)r+0o-1)

reducingtoy =uforr=1,0=0.
Case (B)

In contrast to case (A) the vector ¢ has now positive
square g* = 1, because of u* = 7 > 0. Furthermore, the vec-
tors d.q and dzg are now complex. This does however not
prevent one from making a similar construction as in case

(A).

Choosing the square root appropriately, the functions
A=V (@gy and B=V(dzy *.19)

are complex conjugate to each other. The angle a, defined
through

3.4-9;
cosa = 10 (4.20)
AB
turns out to be real. The analog of Eq. (4.4) is
3.0 + 577079 + dgrdq) + (34-9x4)g =0 (4.21)
leading to the equations
dA + 379, 7B cosa + §7'd77A = 0, (4.22a)
d:B + 47'd.7B + §17'3z7A cosa = 0, (4.22b)
d. 0 + AB sina — 8;;(%7-“857' % sina)
1.1 B .
— 9| 479, i sina | = 0. (4.22¢)
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A suitable real basis in the space of ¢’s is now

(s) (s) _ (O] (s)
Z(]s) — q(s), Z(Zs) — yBa§q + VlAaé—'q , ng) — 7B8§q — y_lAaéﬂ . (423)
2A4B cos(a/2) 2iAB sin(a/2)
The equations for Z  become
,¥B cos(a/2), iyB sin{a/2)
9Z9 =\~ VB cos(a/2),0,(i/2)dza — (i/2)7'd, (B /4) sina)z ©O=CZ9, (4.242)
iyB sin(a/2),(i/2)dza — (i/2)7'd (B /4) sina,0
0, (1/9)4 cos(a/2), — (i/y)4 sin(a/2)
3,Z® = ( ~ (A4 /y) cos(a/2),0, — (i/2)dex + (i/2)77'3sr(4 /B) sina)z W=C,z®, (4.24b)
— (/A sin(a/2), — (i/2)3ga + (i/2)77'3gr(A /B ) sina,0
Taking
0 0 0 0 0 1 0 1 0O
I = (0 0 1), I, =(O 0 0), 1, =(~— 1 0 0) (4.25)
0O 1 © 1 0 O 0 0 O
as a basis for the vector representation of the Lie algebra so(2,1) the C, can be expanded as
3
C.= z o,
€=1
with
(0,%) = ( é de — é 73, g sina,iyB sin %—,B}/ cos %) (4.26a)
(@,%) = ( - %aga + %T" g—f%sina, - —;/—A sin &, %Acos% ) (4.26b)
The spinor representation of the basis (/,) is given by
Q1 = %0'3, Qz = %0'1, Qs = - é ag; (4-27)
yielding the spinor representation of the matrices C;
(1 ((i/2)§51 — (i/2)7'9y7(B /4 ) sina, — yBe ~ 2) (4.282)
>\ yBe™’?, — (i/2)da + (i/)r'd.7(B /4) sina '
1( — (i/2)8sx + (i/2)7'3g7(4 /B) sina, — (I/V)Ae(i"/z)) 4285
=13 ‘ . .
T (I/pde 2 (i/2)3a — (i/2)7' (4 /B ) sina ( )

The linear “eigenvalue problem” (with “eigenvalue” s
hidden in y) having egs. (4.22) as compatibility conditions is
given by

gy =,
At =,

(4.292)
(4.29b)

where 1 is a complex two-component spinor, normalized to
Yo =1

Equations (4.16), resp. (4.29), differ in two respects
from the Lax equations of the examples of completely inte-
grable systems like the sine—~Gordon equation or the
Korteweg—de Vries equation.

First the dependence on the “eigenvalue” s is rather
involved [cf. Egs. (2.13), resp. (2.20)]. In particular the ex-
pansion of the “wavefunction” ¢ around y =0ory = «
used in the sine-Gordon theory in order to derive an infinite
sequence of local conservation laws and to prove the com-
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plete integrability is in general not possible here. Second, the
interesting solutions are the asymptotically Minkowskian
ones, for which the linear problem has a different asymptotic
behavior than the one assumed usually, leading to asymptot-
ic free wave solutions for #. Nevertheless, the asymptotic
behavior in the present case is simple enough that one may
hope a method similar to the “inverse scattering method’™
may be invented to reduce the nonlinear problem to a se-
quence of linear ones.

At any rate it is clear that the linear Eqgs. (4.16), resp.
(4.29), are a very special feature of the system and contain a
lot of information, which may be sufficient to prove the com-
plete integrability of the system, a point to be clarified by
further investigations.
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An attempt to separate the long and short range forces

by Gaussian method

Otieno Malo?

Department of Physics, University of Nairobi. Nairobi, Kenya
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In the study of phase transition problems, short range forces (SRF) play a dominant role. A constructive
and rigorous study of the effects of short range forces has yet to be given. It is suggested in the present
paper that by separating long range forces (LRF) from the short range forces, it would be possible to
estimate contributions to the virial expansion of the collective oscillations due to short range forces. The
method of Stratonovich or the functional integration technique is employed in the treatment of the

interaction term of the partition function.

I. INTRODUCTION

In the present paper an explicit form of ¥ (r) isirrelevant
since no particular physical system is under investigation.
Our problem is concerned with the mathematics of this tech-
nique leading to an explicit expression of the SR and LR
terms of the ¥ (7). From there on, it is hoped we shallbe in a
position to study specific physical problems with definite
forms of ¥ (r) for solids, liquids, and gases leading to a new
study of first and second order phase transition or order—
disorder transitions.'

The problem of obtaining thermodynamic properties of
a system with long range interaction (LRF) is confronted in
many branches of physics, e.g., in plasma or in electrolyte
theory.>** Such forces cannot be treated in the same way as
short range forces (SRF), since a straightforward calculation
of the virial coefficients leads to a divergent answer so that
either the divergent virial series has to be manipulated into a
finite answer or a different approach has to be applied as in
the Debye—~Huckel electrolyte theory.** These methods have
a number of setbacks especially when we need accuracy
greater than 1st approximation and it is therefore necessary
to produce or invent a method which gives the higher order
corrections in a simple way and also present the possibility of
investigating these systems at high densities, solids. A sys-
tem with purely LRF has both mathematical and physical
drawbacks since mathematically, the grand partition func-
tion will have an essential singularity when treated as a func-
tion of interaction terms or of temperature and will only exist
in the absence of attractive forces. But physically, for exam-
plein an electrolyte, forces change their nature drastically at
short distances.

The Gaussian method or the functional integration
technique has application to a fairly wide class of statistical
mechanics problems’; the great sucess of statistical mechan-
ics is invariably associated with systems in which interaction
between the particles is either neglected or can be trans-
formed away.® Systems under conditions in which interac-
tion plays an essential role are vastly more difficult to ana-
lyze rigorously and meaningful approximations are hard to

“'Present address: Quantum Chemistry Group, Box 518, S-75120, Uppsala
1, Sweden.
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obtain. Unfortunately almost all phase transition prob-
lems—melting, condensation, ferromagnetic transition, or-
der—disorder transition, and the like fall into this category.
At present we do not have a complete understanding of any
of these phase transitions as they occur in nature and it is
interesting to note that we understand even less about boil-
ing water than about liquid helium.

The immediate effect of interparticle interaction is that
it will hinder the drift motion of the individual particles but
contrary to this enhances their collective motion. The most
direct method of studying the effects of intermolecular po-
tentials between molecular systems that do not form stable
compounds under ordinary conditions to date is the molecu-
lar beam scattering experiment (MBS).” However for study-
ing effects of intermolecular potentials of stable systems, the
MBS method cannot compete with optical spectroscopy
(OS) which gives to a large extent only information on the
attractive portion of the potential. It should however, be not-
ed that the MBS is more universal and covers the entire ener-
gy range. Intermolecular potentials are of basic importance
for the understanding of many macroscopic properties of
matter. It is at the basis of all theories on the equation of state
of gases, liquids and solids. In fact the two-body potential is
the starting point of the theoretical description of gas kinetic
processes. Thus once the potential curves (hypersurfaces)
are available, nonequilibrium statistical mechanics-Boltz-
mann equation—or the simple equilibrium statistical me-
chanics can be used to compute all the transport properties
or, when molecules are involved, relaxation times for rota-
tional and vibrational degrees of freedom.'*! It is important
to point out that previously information on the intermolecu-
lar potential has been obtained from measurements of these
and other macroscopic properties. These experimental
methods have the main disadvantage that since the observed
values are averaged over the behavior of many molecular
interactions, the data are frequently not sensitive to impor-
tant details of the potential.

We believe that the method we are developing in this
paper can prove to be very powerful in theoretical investiga-
tions of the problem of order—disorder transitions in alloys
and lattice gas of Yang and Lee. The Ising model'? which was
initially developed as a model of ferromagnetism can be ap-
plied. It assumes that the energy of a lattice of spins is given,
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in the absence of an external magnetic field, by
H=} z' Vij,ui#j»
i

where u, is the spin variable which the model assumes to be
the only significant variable of the spin at the lattice site
indexed i. ui assumes the values + 1 (spin up and spin
down); ¥; denotes the interaction energy between the parti-
cles i and j when their spins are parallel. The prime on the
double sum indicates the constraint i54f. The partition func-
tion for an Ising model of NV sites is therefore

Zy= z exp( —-B3 Zl Vij#i#j);
{ul i
where 2, | denotes summation over all spin configurations

and 8 = 1/kT. The free energy per spin is given by

1
F= — kT lim —logZ,.
o N BN
From the knowledge of this function we could compute all
thermodynamic properties of the system.

The shape of a typical intermolecular potential in the
radial region most effective at thermal energies is well
known in literature. Scattering experiments indicate that
this potential shape is typical for collision partners of which
at least one has a closed shell. And for such systems, the
potential minima are located between 3.0 and 6.0 A while the
depths lie between 1.107 and 60X 107 eV. Thus the attrac-
tion at long distances can be attributed to the long range
Coulomb coupling between the electrons in the two sys-
tems—London dispersion forces. Therefore, the electron
motion are correlated in such a way as to reduce the poten-
tial energy. Theoretical calculations predict for ground state
atom-atom interactions an R “¢ behavior. The strong repul-
sion at short distances can be largely attributed to a repul-
sion of the electron clouds, due to the Pauli principle mutual
exclusion of electrons, and to the electrostatic repulsion of
the nuclei. In view of the difficulties encountered in calcula-
tion of potential surfaces and especially of the well location
and depth, theoretical understanding is still based on aproxi-
mate methods. At long ranges, beyond the minimum
R>2Rm reliable semiempirical methods'*'* are available for
obtainingconstantCintheexpression ¥ (R) = — C/R . Un-
fortunately, there are no reliable methods available for esti-
mating well location Rm and depth €. However, at very short
ranges (~2 A) the Thomas—Fermi-Dirac method has been
shown to give reliable results.!

il. CLASSICAL PARTITION FUNCTION
A. Thermodynamic properties

Let us consider a system of interacting particles with
the following Hamiltonian,

H-y

where P;and m;, are the momentum and mass of the ith parti-
cle respectively. ¥ (r, — ) is the interaction energy between
particles at positions #; and 7;.

p?
- Vir,.—r), 1I.1
Y +; (ri—r) Ly

i
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The classical partition function for such a system is giv-
en by the following configuration integral,'®

Z= HfdP,-dr,e“’”

m IN/2 _ovi(r)
= d . ‘
(27TKT) Hf T

after carrying out integration on the kinetic energy term.

(I1.2)

It is evident from Eq. (I11.2) above that our problem re-
duces to the evaluation of the following integral,

Q= H J drie V",

The above integral involves both short and long range
terms of the interaction potential. Qur primary aim is to try
and separate these two terms. In this way, we believe that we
shall have introduced a new method for concrete and accu-
rate investigation of the points of phase transitions.

(IL3)

Let us define a Fourier transform in a box (2 (periodic
boundary condition),

@)= =3 e ®fK), (IL4)
N X

with the inverse
&) = | e ds
n

such that £(K') is of order unity.
We note that

% ; et =§x

and

1 o«
— | e dx=6
=

the number density is p(x). Its Fourier transform is

(IL5)

— 1 —iKx
pr= 7 gpxe (11.6)

with the inverse
Px = L epxydix =Y .

Let us now consider the following potential,
SVEn—x)=3 3 expliK (x, = x,)] V(K),

" (I1.8)

and from the definition of the number density Eq. (I1.6), we
come to

(IL7)

S Vx, - x,) = % S V(KK p( — K)
m,n K

| 3 -
_ (;) f d'KVeprp & (1L.9)
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Putting the constraint m=~n we obtain

3 -
Z Vix, —x,)= (‘1_) fd3KVKpK,0 —k TNV,
m#n 2
(11.10)
Here N is the number of particles in the system.
In this formalism, the expression for Q takes the form
Pl -
Q=Q0Hfd’xexp(— 7 > VKPKP7K>,

K#0

where (IL11)

N N? -
) = 00—V, 6——V)
) eXp( 5 o+ 55

which corresponds to the self energy part of the system.

We shall now introduce new variables by representing
the number density in the form

Px=Cx+iSx, p_x=Cx—iSg (I1.12)
where
1 .
Sk = % [Pk —p_x] = ) sinKx,
(I1.13)

Ce=4lpx+p_x] = 3 cosKx,

and Eq. (II.11) takes the form
N P! -
=Q d’xnex(——— v C2+SZ>
=0 nl;ll p > Kéo k(Ck k)
(IL.14)
as evidenced by Eq. (I1.12).
If we now call
i
2
then Eq. (I1.14) becomes
N
0-0. ] [dx,exe -4 3 2k(Ci+sh]
n=1

k<0

Ve=A4%

(I.15)

Equation (I1.15) is a standard form of integral and we shall
now apply the following identity,

exp(—3CiA %)
= exp(log\/?) J‘ exp( — a%) exp(ia A Cx \/E)da P

(11.16)
and come directly to

0= 0. [ ] daxdByexp| — 3 (ek + 5% +lom)|
K K
11 J d’x, exp[i N (Crag + SK[J’K)AK\/E].
n K

(IL.17)
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Using Eq. (I1.13) above, we can transform the last inte-
gral in Eq. (IL.17) to be of the form

ﬁ f exp[i Y (Crak + SK/J"K)AK\/E] d’x,
n K

= [Jd3x exp[iF(x)]]N,

where

(IL.18)

F(x)= Z AK\/E(aK cosKx + By sinkKx).

K70

Now assuming that F (x) is large only for a finite region
about the origin and write

[J dxe'* ""] = NN exp(ﬁf dix{et ™ — 1}) (11.19)
{2 n s .{2 0

Thus we have

0= 0" | [Jdasdbyexp( - 3 (@i +B} +log)
K

k0

N )
X ex (——f efFx d’x).
P 2 n{ }

The factor £2 ¥ occurs already for the free particles. It
may be advantageous to remove the peculiar {2 dependence
of A, assuming that

(11.20)

&)=V v k) V2

and introducing new variables
ax=ax/NVa, pg =gV,
Eq. (I1.20) will thus be transformed to

0 -0, [ [] dax dbi
K

><exp<— % S (ai%—ﬂi%—(llogw’))

K70

N iF
X ex (—f dixfeT™ 1 ),
P 2 Jo | !

where we have dropped the primes and now

(11.21)

F(x)= 1 Y (ag cosKx + By SinKx)d .
2 o
Toillustrate results obtainable in this formalism, wefirst
expand,

F(x)

iF(x) __ . _
e =14 iF(x) )

o (11.22)

Then
J d’xF(x) =0.
2
In order to compute §d *xF*(x) it is imperative to note that
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Fo) = — 3 F(K)e '*
K+#£0

1
2
with

FK)=(ax+iBx+a_x—if_g)PK),

we have

fdeFz(x) = (L S F(K)F(—K)).
2 o
Thus the part of the partition function that is integrated
over is the exponential of minus

= 3 @+BV+ o 3 FEOF(-K)

K#0 207 ¢,

1 N
Y 2 ((‘ﬁ(‘*’ﬁi)*‘ z{—)—¢%(a,<+a7,<)2
KZo

N
== — P |. 1I.
+ 80(/3K B_x) ) (IL.23)

This is a Bogolyibov quadratic form. However we only
need the Gaussian integral. Thus considering @ pair K and
— K for ay and B variables and performing all the neces-
sary rearrangement and certain basic manipulations, we ob-
tain the following result:

o0=0 exp( ; log.(l)

Xexp[ -4 ; log(l + %(D(K))], (11.24)

or finally

J— N % 2)]
(& ; __6 1%
Q=1 exp[ ( oV, + oV

Xexp[ -1y log(l + %\/ZGVK
K

)] (I1.25)

From Eq. (I1.25), we can now compute Helmholtz free
energy for the system,

A(2,0)= — KT logQ + free kinetic energy term.
(I1.26)

We can now write down expressions for certain thermo-
dynamic properties of such a system. For example, pressure
P will be given by

r= (%),
r (11.27)
N - N
P: V R
YRR
LN V267,

200° oy (N/2)20 /N V)
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and entropy S of the system will be of the form
S= — (5_A)
a6 /n

_ 1 [z [log(1+ %\/2017,(

202 K=£0

20 (N /2)Vy ] N}
ey — = —log2 ™.
V207, (1 + (N /2)V 2607,)

(11.28)

From the knowledge of the free energy of the system as
given by Eq. (I1.26), one is, in principle, able to calculate all
the thermodynamic properties of the system and compare
the values with experimental results.

B. Change of variables

Here we shall use the relevant Gaussian quadrature for-
mulas."” Let us introduce new variables:

oo BrtB_x
) V2 V2

The Jacobian of transformation will evidently take the form

At a_g nt =

i _ 1 %i 1

day V2 da V2 .
%c _ 1 %g _ 1|
Oay V57 da_y

(11.29)

In terms of the new variables, the Gaussian averaging
becomes

-1 daKdﬂKexp[— s (a;<+/3§(+1og7r)]<--->

K+0 K0
= | [I 96 &dsxdngdng >

K#0

Xexv[— S (§3e+§?e+nie+ni+2logfr)],
K-#£0
(11.30)
where

S =expl X gixere _
< exp(n Jnd x(e 1)) (I1.31)

and
Fx)=2 Y Ag(€{ cosKx + 75 sinKx).
K+#0

Wecan thus get rid of £ and 9 by simply integrating
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Eq. (I1.30) and obtaining the following,

ey = f S de & dng (>

K50

Xexp[ -y (§,2g‘+77§<‘+210g17)].

K0

(I1.32)

In an external field U (x), the partition function Eq.
(I1.21) will take the form below,

0= 0.2 exp( X ov.)

X€<exp[—g— f d'x(eF W =0V _ 1)]>. (IL33)

C. Formal relations for external field response

By retracing the steps outlined earlier, we could write
an expression for the partition function in the presence of an
external potential U (x) in the form

L=l - 50)

X 6<exp[% f dx(ef @e VX _ 1)]> :

(I1.34)
On the other hand,

Q= J- f dx,dx, exp( — % ;} V,.j)

Xexp[ —9J U (x) i 5(x,.—x)a’3x]. (11.35)

=1

Now considering Qas afunctional of U (x) and noting that the
local density is

n(x) = i 5(x; — x), (11.36)
i=1
then the variation Q with respect to U (x) is
L. 90 _ 4% 11.37
0306 8 n(s), (11.37)
L%  _ pgufme) 11.38
0 BUEsUGE) b ronE). (I1.38)
But since
n(s)n(s"y = (a(s) + n)a(s") + én)
= n(s) n(s") + dn(s)én(s’), (I1.39)

it follows then from Eq. (I1.37), Eq. (I1.38), and Eq. (I1.39)
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that
2 N o— 5”(&")
&6n(s)on(s)y = — 6 _——5U(s) .

We recognize in Eq. (I1.40) that r(s") is a functional of
U ().

(11.40)

Next we consider Q as a functional of n(s) expecting
this to be more correlated with it. Thus

6m(s) SU) 4o _ (s — 5

5U(s) ots) (IL.41)
and
180 _ o ey 8YU6D 4o
0 o) ﬁfn(S) 37 ds”. (11.42)

Expressions for higher order and mixed derivatives can
be found if desired.

D. Separation of short and long range
interactions

This paper sets out on an attempt to separate long and
short range parts of interaction potential V' (xi — xj). In do-
ing so we believe that it is necessary to define the regime and
limits of the short range part of the potential. The region of
long range forces includes certain aspects of short range in-
teractions. So by determining the short range region, we aim
at renormalizing the long range part of the interaction poten-
tial. Our Gaussian average denoted by ¢ was performed in
reciprocal K space corresponding to the Fourier transform
of function F(x), see Eq. (I1.23).

Now assuming that short range forces act in K space for
values of K>K,, then we could draw a sharp distiction be-
tween K > K, and K < K|, the latter corresponding to purely
long range interactions.

With the above in mind, let us denote by €, the average
carried out over a g and B, for K < K corresponding to long
range forces. Then we write

e = e<exp(% J d x(et ™ — 1))>

= e<exp(% f d’x(e™® — 1))

Xexp(s % f P U D7 x)> (11.43)

We have inserted € which is later set equal to 1. Here
F(x) = F (%) + Fs(x),

representing long F,(x) and short F{(x) range forces,
respectively.

Let us now concentrate on the short range part of the
potential by taking the average over a, and B denoted by €
for K > K,. Equation (I1.43) can be written in the form

e¥=e, <exp(% J. dx[e"™ — l]eA)>
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with the short range average

et = es<exp<s % f TP _ 1y 4 3x)>. (11.45)

Further we consider e* and treat it by a virial develop-
ment in £ in order to determine the contributions from differ-
ent terms, linear etc. The F, (x) will remain and e” is a func-
tion of ax and By for K < K,

Develop

dA e d4
A=A+ ¢ — + =
° dele—o 2 de
Here the constant term 4, = O corresponds to a system with
purely long range forces.

Foe. (IL46)

e=0

Considering the linear term in the expansion given by
Eq. (IL.46),

4| _ Ny, f P gy, (I1.47)
de |, 2
HK) =eg (™ — 1)
1 |®(K)|? )>
= exp(——— 128N _q)). avss
(o - 5 2,1 )

Equation (I1.48) describes a system with purely short range
forces. Since we will develop exp[iF, (x)] up to FZ (x) we see
that the short range forces induce a renormalization of the
quadratic form of the long range part.

In the quadratic approximation to the short range
force, we need the following term,

dA
de? e,
N2
= —O—ZJ-d’xd‘y exp{i[F,(x)+ F,W11Z(y — x),
(I1.49)
where
Z@y—x)
_ 1 i‘pxlz]
_exp[ 7 2
1 1P|’
X[exp(— EKZ cosK(y—x))_l]
(I11.50)
Thus to this order
A=¢—= }V/(KO)J FiOgsy 4
Xexp{i[F () + FLO)]}Z( — x). (IL51)

Let us now go back and reexamine Eq. (I1.44) by ex-
panding it in powers of F,(x) up to quadratic term. Thus

W=W,+ W + W,

883 J. Math. Phys., Vol. 20, No. 5, May 1979

W, is the constant part of the exponential and corresponds to
a system with purely short range interactions,

L[ ze

The linear term W, = O, slmply because

jFL(x)a“x =0,

the absence of long range forces in the region K > K, i.e.,
g N?

| = —

21 N2

W,=¢ —%(Ko) + = (11.52)

XJFL(x)Z(Iy—xI)dbcd’y:O (I1.53)

W, is the quadratic part and has the form

N [ ozen s
W,= — 0 FI(x)dx{l + e#(K,)}
2‘ S fdzxds (F,(x) + F,G)PZ (y — %).

(I1.54)

The obvious physical intepretation of the quadratic term
Eq.(I1.54)isthatasystem with long range forces hasacertain
amount of short range interactions.

We could go on with this scheme and obtain higher
order terms in W. However from what we have done above,
the trend looks pretty obvious and in fact we already know
what terms to choose from our expansions in order to deal
with a system with purely short range or long range forces.
Our next task would be to reexpress the partition function Q
in terms of the short range and long range Gaussian
averages.

Thus thermodynamic properties of a system with pure-
ly short range forces can be computed from the following
partition function,

Q = Qoﬁ’ W“’
where W, is given by Eq. (I1.52). And similarly from
Q = Q™ (I1.56)

for systems exhibiting long range interactions. W, is given by
Eq. (I1.54).

(IL.55)

IH. THE GRAND PARTITION FUNCTION
A. General remarks
It seems easier to make contact with the standard treat-

ment (e.g., virial series) via the grand partition function. The
grand partition function =(6,42,2) is defined by

N
20022 =3 0y20) % (I1L1)
N>0 :
Here
0n(2,0) = f}}' f dx,--dx e~ (I11.2)
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and

o (o)
Al 2mm

We go back to the beginning and express Q, in terms of
Gaussian quadratures. However, to include the ¥ (0) and
¥ (0) terms, we use variables a, and f,. Extend F (x) to in-
clude K = 0 terms and let €(---> involve Gaussian averages
over a, and 3, as well. Then

QN — €<[ J.d Jxeil-(x):|N> {eBV(O)/ZeBV(())/Z!Z }N (1113)
such that

E(6,42,2) = ¢s<exp(zI Ja’ J)c«fz””("))>

with

z =z exp(g V. _ 0) exp(;ﬁ 17,( _ O)

and we expect the term (6/242)V . = O to vanish since it
comes from N (N — 1)/2.

In what follows, we drop that term and Eq. (I11.3) will
take the form

Oy = 6<exp(§ V._ 0) f d’xe't (’">.

The ordinary virial development gives pressure in the form

(I1L.4)

p0 = —!13 l0g= = byz + bz’ + b2 + -, (IIL5)

where b,,b,, - are the virial coefficients. It follows from Eq.

(IT1.1) above and Eq. (I11.43) that

LR .
0 0

z? s
=z+ Eff(x)dx+-~-. (IT1.6)

Here
fx)=fe V1
and z is determined from N /£2.
It is well known from statistical thermodynamics that

N=6 (ﬂ’_g:“_)
du Jen

(11L7)

B. Separation of long range forces in the grand
partition function

In this subsection we shall try to compare results ob-
tainable in Sec. II by separating long and short range interac-
tions in the grand partition function. From Sec. IIT A we
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have

o s

) (I11.8)
and putting

F=Fs+F,,
R = exp[6V(0)/2],
R, = exp[6V,(0)/2],

we can show that

E=e <exp<z f "R, d 3x)>

X € <exp[z f R, (eTRe— 1)d x]> (111.9)

Next we perform the cumulant expansion which is simple
since

es(e R~ 1) =0,
for all x. Thus

65<exp[2 f 'R, (¢"Rg— 1)d ‘x]>

_z

=2 x4+ Zx
2 3

22 P
= exp(z X, + EX‘) (IT1.10)
with
Xo= [ [ dray RE explilFu 00+ OIS )
dIL11)
X. = Jffdx dydz R expli[F,(x)+ F, () + F, (2]}
X[fx =y —2f 2 —x)+ 3f (x =y (y — 2]

Here
fr=e

refers to the short range part of the interaction potential.

4G 1

Our next task is to carry the development of the long
range part

ell:l (,\')RL’
and briefly mention the physics they represent.

As in Sec. II, the constant part corresponds to a system
with purely short range forces

W,=z0R, + %ff(x)Rid’x
X%Rifjfdxdydz(ﬁzfnﬁl+3ﬁzﬁ3).

(111.12)

For the time being we have kept R; unexpanded.
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We therefore have

ZZ
DR

- IR, [0/ + 2z'f(0>j FL() dx

- f f FL(LFO)8(x —») +F(x — 9)1F, ) dx dy}
(I11.13)

for the short range forces, as can be seen in Eq. (II1.10), and
we could also write an expression for the next term (z*/3DX;,
which is rather long.

The linear part W, all refers to the o, and 3, modes and
can be treated separately.

The quadratic part of the expansion admittedly con-
tains a lot of algebraic manipulations and we are not going to
reproduce that here. We just mention that with

FL)= =3 F (K)e &
24

we would split off the K = 0 term and the result would be
essentially the same result we obtained in Sec. II. Namely,
the long range forces involve some amount of short range
interactions. So the contribution to the grand partition func-
tion from terms K540 are

exp( — 4 log[1 + 6V, {4 +2B(K)}]\. (I1L.14)

)y

K#0
K <K,

Here
B(K) :j B(x)e™ ™ dx
0

and

zZ

2 -
A= 7RZL+ %RZLf(O)

3 ~2 1 - - -
+ %Ri[3f O+ 5 3 Femf(~ m)f(m)}-

(I1L.15)

Now turning to the zero mode, the quadratic partis pro-
portional to 1/42 and does not contribute. The linear part re-
quires completing the square and gives

exp( —-n g V(0){1 +zR, f(0)

n ‘;R 2L fi+ 3f2(0)]]222R ;4). (I11.16)

Lastly, putting all these approximations together, we come to
the following virial formula,

1

2 loe=
0 g=
ZR,
=zR, {1+ 5 jf(x)d’x—szif})
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L LS gl + 207 &) + BE&)I}
2 0 &
K<K,

0 - x 2, z 2
o V(O)(l +aR O+ SRS+ 3f(0)])

XZ’R %, (I11.17)

which in effect gives the pressure of the system.

We have thus shown that for both the classical partition
and the grand partition function, the constant term of expan-
sion W, of Gaussian averages describes a system with purely
short range forces while the quadratic term W, corresponds
to a system with a mixture of short and long range interac-
tions which is to be expected.
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APPENDIX: THE USE OF THE GRAND
PARTITION FUNCTION

Let us consider a system with the following coordinate
independent Hamiltonian,

N P} ONWN-—1p N

L+ 22y — 2 v O

Py Y © 5 O
(A1)

The coefficient € and 5 will be set equal to unity later. The
classical partition function for such a system will take the

form
INS2
ZN:( m ) jdx.---dxA\e”"V
27KT
:( m )3N/20N
27KT
ONN—-1) 5 ON )
xXexp| — ————=V(0)e? + — V(0)n?).
o~ =D v e+ v

(A2)

Thus the free energy for the canonical ensemble is given by

N N 1 Zy
A= —|lo —A’—l)—~l (——)
e(gn g 8\ v ) (A3)
and therefore its variation is given by
NN-1) 5 N
A= —=V( — V(0). A4
;) 0 + 5 ©) (A4)
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Pressure for such a system will be

N1 1174 Zy
- ()
29 " olaa B agv/l,, (AS)
and its variation is
NN-1)
Sp= —————2 V(0). A
r= g VO (A6)

The chemical potential for the system is

o ) )]

6 n f1loN ny
with a variation of
N—1L .
T —0—2 V(0) — 1V (0). (A8)

The grand partition function for such a system is of the form
20202)= 3 Zy(2,0)z"/N! (A9)
N=0
and it is clear from the above that
7,2 = exp< _ 5% V(O)szNZ) (221" (A10)
with
z,=z exp(i 17(0)s) exp(ﬁ V(0) 2) (Al11)
‘ 20 2 )
Using Gaussian quadratures we can write the following,

6 -
exp[ — — V(0)e*N?
p( 20 © )

1

Vo

| (-

Xexp[ia“\/ 5(9 %20) sz) N ] da, (A12)

such that
v 1 - (l!
Z,\' Z‘\ = 7_— J e N
7 7

% {.Ozl exp[z’ao(20 f{()i) 82)”2] }N dae. (A1)

Thus the grand partition function will be of the form

- 1 F o P
= — e “da,exp [.(lz1 exp(:ao —:)],
\/ T \/ T

(Al14)

where
b (0) = [20V (0)e2]".
It follows readily from Eq. (A 14) that the grand partition
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function satisfies the following functional equation,

d:(z\) ( —¢~2)_[ ( (132
= 0 = _
1 expl = |z, expl )] (A15)

with
Z0)=1.

Now to show how the grand partition works, we use the
maximum term,

V4 ﬁzﬁ
Nt
On applying Stirling’s approximation, we find that
(.(221) N &
Iog —_— = —
N 2 2
and this yields

(A16)

Zl(‘}\_’):

(57)
exp| —

D=

0 - \N N &°
—ex -——VO)——ex (—-—)
p( > OG5
Thus the value of = is

N b2\ -
== exp(.jv_z g)eN.

o s (A17)

The equation
N= z( dlogxz )
dz
is an identity and
logZ N? &2
0 04

N
+ —. Al8
; (A18)
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S-wave off-shell T and K matrices for the Yukawa
potential by Ecker-Weizel approximations®
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Expressions for s-state off-shell wavefunctions associated with outgoing and standing wave boundary
conditions are derived for the Yukawa potential by using Ecker-Weizel approximations. The results are
used to relate the T and K matrix elements to tabulated transcendental functions.

I. INTRODUCTION

In a recent paper' (hereafter cited as paper I) two of us
have obtained s-state eigenfunctions of the Yukawa Hamil-
tonian associated with Jost and regular boundary condi-
tions. We have accomplished this by solving the relevant
Schrodinger equation using Ecker—Weizel approximations.>
The purpose of the present paper is to show how, using the
approximations of paper I, it is possible to derive the off-
energy-shell results for scattering by a Yukawa potential.
We formulated the problem in terms of van Leeuwan—
Reiner approach’ to off-shell scattering as used by Fuda and
Whiting* and by our group.® In this approach expressions for
off-shell 7 and K matrices are derived by using off-shell
wavefunctions associated with outgoing wave and standing
wave boundary conditions. Both wavefunctions are ex-
pressed in terms of Jost solutions and Jost functions. In addi-
tion to the ordinary Jost function there also appears an off-
shell Jost function. In close analogy with the ordinary Jost
functions the off-shell Jost function is determined by the be-
havior of the off-shell wavefunction irregular at the origin.
We consider the s-wave scattering of a particle by a central
potential V' (#). Let k denote the on-shell momentum related
to the energy by £ = k* + /e, €<1, and q, an off-shell mo-
mentum. The radial van Leeuwen-Reiner equation for the
Jost solution is given by*

(L4 k= v Jrkan =k — resstian. (1)

In writing Eq. (1) we omit, for brevity, the subscript / =0
and use units in which #2/2m is unity. For this case the off-
shell Jost functions can be obtained as

Sk +q)= f(k, +4,0). @)

The ordinary Jost solutions and Jost functions are related to
off-shell ones by

f( + kvr) = llnzf(k’ + q9r)’ (3&)
and
f(tk)= lirf}(f(k, +q) (3b)

“'Partially supported by the Department of Atomic Energy, Government of
India.

"One of the authors (SC) acknowledges the receipt of a Junior Research
Fellowship of the University Grants Commission, Goverment of India.
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The off-shell wavefunctions ¥(k,q,7) and ¥ (k,q,r) satisfy-
ing outgoing and standing wave boundary conditions are
given by the following expressions:

W‘(k,q,r) = - %Tqu(k’q’k Z)f(kJ')
+ %[f(k,q,r) —ftk—qn], (4a)

and
U (kg = — YrgK (kgk DG + £ ki)
4 %[f(k,q,r) S —gP]. (@)

In Eqs. (4a) and (4b), T (k,q,k ?) and K (k,q,k *) represent the
half-off-shell T"and K matrices. We have

T(k,gk?) = Skq) —fk,—q)

imgf (k) ’ (5a)
and
K(k’q’k 2) == ——2— . f(k’q) _f(k, — q)
irg ) +f(—k)
2. _Imftkg) o

mq  |f(k)|coss(k)

Here 8(k ) stands for the negative of the phase of the Jost
function. Obviously, it is the phase shift induced by the
potential.

The Yukawa potential behaves like 1/# near the origin.
Off-shell T"and K matrices for such a potential can be calcu-
lated by using the relations®”’

T(p,g.k?)

2 2w
= T'(k,q,k?) + 2K=p J dr sinpr
P4 ¢

T )

X W (k,q,r) — singr + SmqT (k,q,k Dexp(ikr)], (6)
and

K(p.g.k?)
2 k*—p

2 oo
=K (k,g.k?) +— ——f dr sinpr
T pg Jo

X[¥ 7 (k.q,r) — singr + mqK (k,g,k ?) coskr]. (6b)
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Equations (6a) and (6b) represent the basic formulas for
computing off-shell 7"and K matrices for potentials singular
at the origin. These equations do not involve the potential
explicitly.

In Sec. IT we solve Eq. (1) for the Yukawa potential
using Ecker—Weizel approximations and write down the ex-
pression for f(k,q). In Sec. III we relate the Yukawa Tand K
matrices to tabulated transcendental functions. We con-
clude by noting that the approximate results presented in
this paper satisfy the usual relations between T and X matri-
ces as derived by Kouri and Levin.*

Il. OFF-SHELL JOST FUNCTIONS

For the attractive Yukawa potential
— Vo exp( — ur)/r, Eq. (1) reads

[-d— + k74 l/ﬂ(—:irl]f(k,q,r) = (k? — ¢*) exp(igr).
dar? ¥

)
The standard substitutions
f(k.q,r) = exp(ekr)v(r) (8a)
and
ur= —In(l —x) (8b)
transform Eq. (7) in the form
x(1 _x)i_ _ x(l _ %)L __Vx v(x)
: pu/dx  puln(l —x)
2 g2 )
— (k q )x(l - x)l(k - Q) — 1. (9)

In the Ecker—Weizel approximation one proceeds by assum-
ing that Vox/u In(1 — x)is a slowly varying function of x and
to a first approximation it is a constant — 7. Recently Lam
and Varshni® has discussed the rationale of this approxima-
tion for a considered quantum state of a fermion. Working
within the framework of Ecker—Weizel model, we transform
the independent variable in Eq. (9) by substituting

x = 1 — p. We thus obtain

pa—ne+ |1 _2_;’2_ (1 ~27k)y]%+ o)

— (kz *2(12) [yi(k*q)/;tf 1 _yi(k—q)/u]' (10)
A particular solution of Eq. (10) is given by"
k2 — g2
vp) = (——W—"lm(a,b;c;y) ~fy @by, aD
where
o= ’_(EZQ, (12)
7
a= — [k~ (k*— "], (132)
7
b= — ko (k2 =y, (13b)
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and
c=1— %
u
The function £, (a,b;c;p) is related to a generalized hypergeo-
metric function by

(13¢)

flabeyy = —L
olc+c—1)
XF(1,0 + a,0 + byo + Lo + cp). (14)
This series converges when |y| < 1; it converges when |y| = 1
provided that Re(c — @ — b) > 0 which is true in our case.
From Eqgs. (8a) and (11), the off-shell Jost solution is
k?—

2

fkgr) = 9_ exp(ikr) [f,(a,bic;exp( — pur)

— [ labicexp( — pr))]. (15)
Making use of the recurrence relation'®
(o +a)o+b)f,, (abcZ)
=a(o+c~ )Y (a,b;Z)Yy—Z°, (16)

Eq. (15) can be rewritten in a convenient form
[ (k,q,r) = expligr) + ab exp(ikr)f,, . \(a,b;c; exp( — ur)).
(17)
From Egs. (14) and (17) it is easy to see that asymptotically
S (k,q,r) ~exp(igr). In the on-energy-shell limit, Eq. (17)
yields
fk,r) = exp(ikr)[1 + ab fi(a,b;c; exp( — ur)].  (18)

This result agrees with our previous result in Paper I ob-
tained by solving the relevant Schrédinger equation. The off-
shell Jost function obtained from Eq. (17) is given by

r'(l+ o) (c+0)

k.q) = . 19a
/o Ir'd+a+o)(1+5b+0) (%)
For the on-shell case one has o = 0. Thus

flk) = Q) (19)

Tr+alr(+6)

ill. 7 AND K MATRICES

The off-shell Jost functions in Egs. (19a) and (19b) can
be used to write the half off-shell 7 and K matrices given by
Eq. (5) in closed form in terms of 7~ functions. In order to
obtain the fully off-shell 7"and K matrices it is necessary to
combine Egs. (4a), (4b), (17) and (18). It is easy to show that

@ (k,g,r) — singr + 3mqT (k,q,k *) exp(ikr)
= az—? exp(tkn) [ f, , ((a,b;c; exp(— ur)
— Sy 1 1@bic; exp( — ur))] — sabmqT (k.g.k?)
X exp(ikr)fila,b;c; exp( — ur)), (20)
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and that
v’ (k,q,r) — singr + LmgK (k,q,k ) coskr

= az_l? exp(ikr)[f,, . (a,b;c; exp( — ur))
{

— S 1@ bic; exp( — ur)]

— Lmqabk (k,q.k Y (a,b;c; exp( — ur)) coskr. (21)

Making use of Egs. (20) and (21) in (6a) and (6b), we change
the variable by substituting y = exp( — ur). We thus obtain
off-shell 7" and K matrices as

T(p,q.k")

k2 _ p? 1
= T(hgk®) — i—”—)i’ﬁ{f dyy? I, . (@bicw)
2appq 0

~fo o (@bsey) — imqT (k,g.k 2)fi(a,bicy)]

1
_ f dyy? U, (abiew) —f s (@bicy)

- ”TqT(k’qsk z)ﬁ(aab;(";y)] }’ (22)

and
K@pqk?)

2 g2
=K (k,g,k>) + (k2 —pAab {ﬂK (k,g.k?)
2mmippg 2

1 1
X U ¥ T Yiabicy) dy + f yF 7 iabicy) dy
0 0
1 ” 1
- foy 7 abiey) dy — fy ? = fi(a,bicry) dy]
0
1 1
- :U VO, (@) dy — f YOV (abiey) dy
0

1 1
- f Ye s (abiew) dy + Lyf"* L (@bicy) dy]],

(23)
with
p= —ip+k)u p=ip-—k)u,

p = —p (24)

All the integrations in Eqs. (22) and (23) can be carried out
by using the result

and pm — _pl.

1
f) dy y* = 'fa(a,b,ciy)
(§

=[BB +c— )a+ B F(1,8+apB +ba+p;
B+ LB +ca+ B+ 1) (25)
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The final results for the Yukawa 7 and K matrices are given
by

T(p.g.k?

_ YK =P b T (g kDX (= pik) — X (0]
2mppq

+ 1 Y@.q.k)— Y@, — ¢.k) — Y(—p.g.k)

+Y(—p, —qk)1} (26)

and

2 a4
K (pgk?) = M{'ﬂK (kg kDX (= p, — k)
2mupg | 2

+X(—pk)— X, —k)—X(pk)]

+ [Y(P,q,k) - Y(pv "q’k) - Y(—P,q’k)

+ Y(—P,—q,k)]}, @7
where
X (pk) = X Fiabpiec;l +piD), (28a)
abp

and
Y(p.gk)=[(c+ D)o +c)o+p+ D]"

XF(lo+a+lo+b+ lLo+p+1;

o4+ 2,0+c+ lp+o+ 2. (28b)
In writing Egs. (26) and (27), we have also used
F(1+al+b1+c;2,1+el +£2Z)
- ( of )[_;Fz(a,b,c;ef;Z) —1, 29)

abeZ

which follows directly from the infinite series representation
of the generalized hypergeometric function.

In conclusion we note that the results presented in Egs.
(26) and (27) for the Yukawa 7T and K matrices are formally
similar to those for the Hulthén potential treated in Refs. 6
and 7. In an interesting work Kouri and Levin® have ob-
tained a relation connecting the K operator and the real part
of T. This can be used as a check on complicated expressions
one usually obtains for the off-shell T and K matrices for
local potentials. Our approximate expressions in Egs. (26)
and (27) are seen to satisfy this relation. Thus there is no
physical uncertainity in pursuing Ecker—Weizel approxima-
tions to the off-energy-shell region. The results presented in
this paper will be useful as starting points of any perturba-
tion-theoretic calculation.
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The classical limit of quantum nonspin systems
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The classical limit of operators X belonging to any compact Lie algebra g is computed.
If Xe g,the classical limit in the representation I'*, whose highest weight is A, is
imI'"(X/N) = 35,g(f,X,Q), where the limit is taken as N— oo, the sum runs from
i=11 r=rank g, A = Zuf f are the highest weights of the r fundamental
representations of g,s, = limp,/N, and g(f,X Q) is the expectation value of X with
respect to the coherent states [f,,}> in the representation I'". Examples and

applications are given.

1. INTRODUCTION

The classical limit of quantum spin [SU(2)] systems has
recently become a powerful tool for rigorously studying the
ground state and thermodynamic critical properties of some
physical systems. A rigorous justification for the use of the
classical limit involves the use of atomic coherent states for
SU(2) to put lower and upper? bounds on the quantum par-
tition function. These bounds are obtained by replacing the
spin Hamiltonian by its Q and P representatives' (functions
defined over the sphere surface) and the trace over operator-
valued functions by an integral over the sphere. The Q and P
representatives of all irreducible spherical tensor operators
are also known.’ In the limit of large & (“‘thermodynamic
limit”) the Q and P representatives per particle become
equal, so all spin operators can be replaced by their classical
limits

1 1

1 1\ 1k
: J K1 __ 2 2 —
lim 'Y [(X /N) ]_[s<%|)(19¢>] , 0<s=2J/N<1,

N >

(1)
where K is finite, |4;04> are the coherent states of SU(2) in
the representationj = 4, and X = J,, J,, J.. The classical lim-
it has reduced to a simple algorithm the problem of studying
the critical properties of systems depending on A identical
particles whose internal dynamical group is SU(2):

(1) Write down the Hamiltonian per particle in terms of
intensive** angular momentum operators,

H/N=hyJ/N).

(2) Replace the angular momentum operators by their
classical limits (1). This converts the operator /4, into a c-
number “‘potential” /.. The appropriate finite temperature
potential is @(B) = h. — (BN )" InY (N,J ), where Y (¥,J ) is
an SU(2) multiplicity factor.

(3) The minima of A and @ (B) (B = 1/kT)
rigorously give the ground state energy per particle and the
free energy per particle in the thermodynamic limit, respec-
tively. The critical properties of the system are determined
by studying how the minima of 4. and @ (3) change as a
function of changing interaction parameters and tempera-
ture, respectively.
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Step 2 involves Lie group theory, and in particular the
use of coherent states. Step 3 involves catastrophe theory,
and in particular local and nonlocal bifurcation theory. This
algorithm? has been successfully applied to study the ground
state and thermodynamic critical properties of a large class
of quantum optics Hamiltonians of Dicke type® and nuclear
Hamiltonians of pseudospin type.’*

2. CLASSICAL LIMITS FOR COMPACT
ALGEBRAS

Powerful though this algorithm is, its use is restricted to
model systems constructed from operators belonging to the
Lie algebra su(2). The Bogoliubov and Lieb inequalities, on
which Step 2 of this algorithm is based, are independent of
specific group-theoretic details, except that the Lieb inequal-
tiy requires a compact domain. Therefore, the only obstruc-
tion to extending this algorithm to other groups is the lack of
a classical limit for operators belonging to Lie algebras more
complicated than su(2) (“nonspin™).

Coherent states for general Lie groups have been intro-
duced®' and extensively studied." If G is a compact semi-
simple Lie group with Lie algebra g, I"* is an irreducible
representation characterized by highest weight (or any ex-
tremal weight) A, |A,A) is the state of highest weight, and &
is the stability group of |A,A), then the coherent states
| A2 > are defined by

o) =23

A>, NG /H. Q)

Here (2 is a group element and also a coset representative.
The coset generally depends on the representation, or equiv-
alently on A. The Q-representative of an operator Xeg can be
determined from the generating function,

e -foend o

The product of group elements can be written in a more
convenient form using Baker-Campbell-Hausdorff
formulas,!" !

0217 = 5 etHeS, Y]

Here S, is a sum over the “shiftup” operators in g, corre-
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sponding to positive roots in the algebra,"’ so that
S.|A,A> = 0. S_is a “‘shiftdown” operator, and d-H is diag-
onal. Using (4) in (3), we find

3= <2| eSS |2> =t (5)

The coefficients d depend on 2eG/H, Xeg, and the param-
eter y.

The highest weight can be written'

A z‘u’l ” (6)

=1
where r is the rank of g, f; are the highest weights of the r
fundamental irreducible representations, and u; are nonne-
gative integers. The right-hand side of (5) factors
accordingly,

(5) — d(E;tf) H (edf)ﬁl (7)
i=1
The functions exp (d.f,) are easily computed, for
f. f,
<!;| ¥ |0> =e" (®)

By combining (8) with (3) we have a concise form for the
generating function,

Greral =l o

In order to compute the classical limit of X, it is useful
first to write the matrix elements in (9) as follows:

f’. fl.
(e
{2 £

=1 +y<f"| X|f"> +ﬁ<f"|xz lf">+
¢ K¢ 20\2 n
=1 + yg(f,X.02,7). (10)
Then (9), considered as a generating function, can be written

5,171

H (1 + re€.X.2,n)"

i=1

_ r Iu'
= 11 3 Gy e’ (an

The expectation value of the Kth power of X/N is

(81 amrid)

H Z( ,_k)'N )1 Kl"”'
x(%) REX20]], o (12)

This simplifies considerably in the limit of large N, for
3k <K and

lim

=4
K3k
Novoo N K2k
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1 \k,
lim —EC — — tim (f‘—) =5k, (13)
S G KINE

so that (12) becomes simply

N o A, ] .
-1 3 (%) %{g(f,-,x,n,r — 01",
i= 13k = K i
(14)

m (e ig)=($ G f

Inshort, the classical limit of (X /N )X is determined from the
Q representative of X in each of the fundamental representa-
tions of g.

Theclassical limitof (X /N )*(¥Y /N )*canbedetermined
by constructing the appropriate generating function and fol-
lowing the procedure described in Egs. (3)-(14). The result is
simply that the classical limit of the operator product is the
product of the classical limits of the operators. Nor does it
matter in what order the operators occur, for the commuta-
tor [X/N, Y/N]= N"'({X,Y]/N) vanishes in this limit.

The result (14) is valid for all compact semisimple Lie
groups. The proof can be extended to noncompact semisim-
ple Lie groups, provided we deal with their square-integrable
representations.'!

3. EXAMPLES AND APPLICATIONS

Toillustrate how the classical limit (14) is used and why
it is useful, we consider two examples and an application.
These all deal with the groups SU(7), so we consider the
coherent states for this group first. The stability group H
depends on the class of representations used. For the fully
symmetric representations, H = U (r — 1) and the coherent
states have already been explicitly constructed.’ If the gener-
ators for SU(r) obey commutation relations"

[E,E ] = — E, 5, and the extremal state is | 1), then

za(e Y E, — " Ep, (15)

j~2

= exp[

and the expectation values of the operators E; in the first
fundamental representation are

<f" E f">—h‘
S\ il o) = 41

h,=cos8/2, i=1,

(16)
“%sin@ /2, i>1,

5)-5G)
2/ ,Z-Z 2/
These results are valid only in the fully symmetric represen-
tations of SU(r). We remark that Hamiltonians constructed

from operators belonging to su(r) have been studied in nucle-
ar physics forr=2," r=3,"and r = 6.

=—te
2
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Example 1: For SUQ2), J, = (E,, — E,;))/2,J. = Ey,,
J. = E,, so that

<6‘;l (J/NHK l6J>_ (sisinf )X, 0<s =K /N<L.(17)

The classical limit of J_is (s/2)(e ~ * sind ) and for J, it is
(s/2) cos@. This is the basis for the algorithm described
above.

Example 2: For SU(3), in the representation character-
ized by Young partition (4,,4,), A = ufi + @,f>, where
(,ul,,uz) =(A, — /12,}» ) and f, and f, are the highest weights (%,

4~ Hand &,

<n' (X/N)E '0>:(S‘<132' XI.(32>+SZ<E)| XIE)))K’

(18)

— %) of the 3and 3 representations,

where s; = lim g,/N and Xesu(3).
N v

Application: We assume the Hamiltonian describing a
system of N nucleons, each with r available states, has the
form

—H/N

For the diagonal contribution we take

= (diagonal) + (interaction). (19)

(diagonal) = i e(H/N),

i=1

€<E <<€,  (20)

where H; and E,; are elements in the Cartan subalgebra of
su(r). We assume a quadrupole form for the interaction, as
follows,

E. \2 E.\2
(interaction) = %[(_1\;’_]) + (—A’;l—> ], 1 <j<r, (21a)

Ei' 2 E'i 2 ..
s (67 RN

where Q>0. Expression (21a) describes an interaction be-
tween the ground and an excited state, (21b) between two
excited states. The Hamiltonian (19) can be regarded as the
multilevel extension of the Lipkin—Meshkov—Glick pseudo-
spin Hamiltonian."

(21b)

The ground state of (19) belongs to the fully symmetric
representation of SU(r), with A = Nf,, so that s, = 1,
s; =+ =35,_, = 0in (14). Therefore the classical limits of
(20) and (21) can be read directly from (16):

r 9 2
(20) —¢.cos —z— + Ye (—— sm—g-) 22)
i=2
6, ,
(2la) — %(—9— sm—g— cos— ) (e™ 7 4+ ), (23a)
8.6, . ,
(21b) — —(22-(-6—; sinzg) (e7 MO @ 4 209,
(23b)

Equations (20) and (21) represent Step ! in the extension to
“nonspin” systems of the algorithm described in Sec. I.
Equations (22) and (23) represent Step 2.
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For the Hamiltonian, (20) 4 (21a), the ground state en-
ergy per nucleon is obtained by minimizing (22) + (23a). A
simple local bifurcation analysis® shows that the system is
disordered (all 8, = 0) for Q< 4, = ¢; — €, but a second-
order phase transition occurs as Q becomes larger than 4,
and the system becomes ordered, with cos 6, = 4,/Q, all
other 6, = 0(i=)). This result is exact in the thermodynamic
limit.

For the Hamiltonian (20) + (21b), the ground state en-
ergy per nucleon is obtained by minimizing (22) + (23b). A
nonlocal bifurcation occurs that may be treated by a catas-
trophe theory analysis.** The ground state is disordered for
Q<4; — 4,. There is a locally stable ordered state for

0>4; -4, whlchlsmetastablefor\/Q <\/A +\/A

and globally stable for \/ o > \/A + \/A The corre-
sponding phase transition is first order The order param-
eters of the locally stable ordered state are defined by
P = 1,4, + ¢;arbitrary, 07 + 02 =1, 0/6]
=[Q—(4,-4)/0+(4,—4)],6, =0and ¢, arbitrary
(k=~4i, k7). The saddle barrier separating the ordered state
from the disordered state has height 4.4 /Q.

4. SUMMARY AND CONCLUSIONS

A simple formula (14) is derived in Sec. 2 for the classi-
cal limits of operators belonging to compact Lie algebras.
This allows the extension of a simple algorithm (Sec. 1) for
determining the ground state and thermodynamic critical
properties of systems whose Hamiltonians are constructed
from operators belonging to such algebras. In its first appli-
cation to groups other than SU(2), the algorithm reveals that
the multilevel extension of the Lipkin~Meshkov-Glick
pseudospin Hamiltonian supports second or first order
ground state energy phase transitions, depending on wheth-
er the quadrupole interaction between two levels does or
does not involve the ground state.
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Path integrals for waves in random media®
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The problem of wave propagation in a random medium is formulated in terms of Feynman’s path integral.
It turns out to be a powerful calculational tool. The emphasis is on propagation conditions where the rms
(multiple) scattering angle is small but the log-intensity fluctuations are of order unity—the so-called
saturated regime. It is shown that the intensity distribution is then approximately Rayleigh with calculable
corrections. In an isotropic medium, the local or Markov approximation which is commonly used to
compute first and second (at arbitrary space-time separation) moments of the wave field is explicitly
shown to be valid whenever the rms multiple scattering angle is small. It is then shown that in the
saturated regime the third and higher moments can be obtained from the first two by the rules of
Gaussian statistics. There are small calculable corrections to the Gaussian law leading to “‘coherence
tails.” Correlations between waves of different frequencies and the physics of pulse propagation are
studied in detail. Finally it is shown that the phenomenon of saturation is physically due to the appearance
of many Fermat paths satisfying a perturbed ray equation. For clarity of presentation much of the paper
deals with an idealized medium which is statistically homogeneous and isotropic and is characterized by

fluctnations of a single typical scale size. However, the extension to inhomogneous, anisotropic, and
multiple scale media is given. The main results are summarized at the beginning of the paper.

1. INTRODUCTION AND SUMMARY OF
RESULTS

The problem of propagation of waves in a random me-
dium appears in a number of areas of research and applied
science. Some examples are atmospheric optics, radio as-
tronomy, and underwater sound. The problem is further-
more an old one which has been studied extensively. The
earlier work (summarized in the monographs of Tatarskii'
and Chernov?) employed the Rytov approximation. In this
approximation the logarithm of the amplitude is computed
using first order perturbation theory. The Rytov method is
applicable whenever the intensity fluctuations are small.
When the wavelength is small it reduces to first order geo-
metric optics or WKB. More recently, a different approxi-
mation which reduces the problem to a Markov process has
lead to considerable progress in cases where the intensity
fluctuations are not small. This method is explained in Ta-
tarskii’s second book® and in two excellent reviews of the
recent literature.** Nevertheless, important problems re-
main. In particular, there does not exist a global view of what
is going on in the so-called saturated regime where the inten-
sity fluctuations are important.

In this paper Feynman’s path integral® is applied to the
problem of wave propagation in a random medium. It pro-
vides a natural and systematic method for attacking the
problem, especially when the intensity fluctuations are large
and the Rytov approximation fails. The path integral is
widely used in quantum mechanics and statistical mechanics
but it is expected that many readers will not be familiar with
it, thus the paper is meant to be self-contained. The reader
who desires further background information on path inte-
grals will do well to consult the book of Feynman and
Hibbs.*

“This work was done under the sponsorship of the Advanced Research
Projects Agency Contract DAHC15-73-C-0370.

894 J. Math. Phys. 20(5), May 1979

0022-2488/79/050894-273$01.00

Because some readers will not be familiar with path
integrals there are some peculiarities in the organization of
this paper. In real situations, random media are often statis-
tically inhomogeneous or anisotropic and frequently have a
power law spectrum in the scale size of fluctuations. Path
integrals are capable of handling all these complications. (In
fact the author first developed the method for propagation of
sound in the ocean,” a problem which has these complica-
tions and more.) However, it is vastly easier to explain the
path integral method for an idealized medium which is sta-
tistically homogeneous and isotropic and whose fluctuations
are characterized by a single® typical scale size L (small com-
pared to the distance R of propagation). The bulk of the
paper is therefore devoted to a study of this idealized situa-
tion. Once this has been done the transition to realistic media
is relatively simple. However, this manner of presentation
has a defect for which only an apology can be offered. Be-
cause of the temporary restriction to a single scale size , re-
sults which are directly applicable to atmospheric optics do
not appear until late in the paper (specifically, Secs. 7 and 8).
Finally, to illustrate the power of the path integral method
(and, hopefully, motivate the reader), a number of results for
the idealized problem will be summarized below. The trans-
lation of these results to more complicated cases is generally
straightforward: The details are given in the text. Listing the
results will require the definition of some symbols. This will
(temporarily) be done in terms of the idealized problem and
the reader who has worked on propagation in a random me-
dium will find that they are familiar objects, e.g., Tatarskii’s
phase structure function D. For other readers, the motiva-
tion for these definitions will become apparent in Secs. 2 and
3

Actually, there are two distinct kinds of problems of
propagation in a random medium, corresponding to whether
the scattering angles, single and/or multiple, are large or
small. If the fluctuations are weak so that a single scattering
approximation (Born approximation) applies, there is little
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FIG. 1. The difference between multiple large angle scattering (a) and mul-
tiple small angle scattering (b).

distinction between the two cases. However in a multiple
scattering regime, which is the case of interest here, the two
kinds of problems are very different. This is illustrated in
Fig. 1. The considerations of this paper will be restricted to
situations where the single and multiple scattering angles are
small. This is sufficient to cover the applications mentioned
above. The large angle multiple scattering situation is like a
problem in radiative transport and is most efficiently treated
by other methods.

It will be assumed that the problem can be reduced to a
scalar wave equation with an index of refraction n(x,¢ ) which
may depend on the frequency w =ck. In a homogeneous me-
dium {n) is a constant and for waves of a fixed frequency can
be set equal to unity. Defining

,u(x,t):l—n(x,t), (11)
w4 will be taken to have a zero mean and a covariance
u(x,)Hu(x' 1y =p(x—x'lt—1). (1.2)

It will be further assumed that either g is a Gaussian’ ran-
dom field or that kL{u?>"* is small, in which case the distri-
bution need not be specified.

Let the two-dimensional vector ro=(x,,y,) label the lo-
cation of a point source' in the plane z=0. Then in a plane of
constant z > 0, the signal will be E (z,r,r,,t ) where r=(x,y)
specifies the transverse coordinates of the observation point.
The total range of propagation will be denoted by R and for
Irl, frd<R, and a CW source it is useful to define a complex
envelope & by

E (z,r,r,t y=Re[ & (z,r,ro, )™ 2~ 0], (1.3)

The time dependence of & is due to fluctuations in the medi-
um. It will be assumed that the full wave equation for € can
be approximated by the parabolic wave equation®7!!

('b% + i 2 —kp(r,z,t ))Z(r,ro,z,t)zo, 1.4
where

ik &
— +
ox>  dy?

V=

895 J. Math. Phys., Vol. 20, No. 5, May 1979

plus a boundary condition at z =0
Ea”—+(47rz)“exp(lk (r2 ro) ) (1.5)
z

If L and T are the characteristic lengths and times over
which ¢ changes, the validity condition for Eq. (1.4) are (i)
kL> 1, (ii) kL €T, and (iii) that the rms multiple scattering
angle ({u*>R /L )* should be small.

Feynman’s path integral gives the solution to the para-
bolic wave equation in terms of a (strictly speaking) infinite
dimensional integral. It turns out that this integral can be
studied in almost exactly the same way as Mercier'? original-
ly attacked the phase screen integral. The result is that prop-
agation in a statistically homogeneous medium is very simi-
lar to the phase screen problem. This will continue to be true
in rather general inhomogeneous media, of which the phase
screen is a special case.

In order to indicate what can be learned from the path
integral it is necessary to review some known features of
propagation in a random medium. The qualitative character
of & is determined by two parameters @ and {2 defined by

D=k Z<(Lkp(ez z,t )dz)2>

=k2RJ‘oc p(|z|,0)dz + O (L /R), (1.6)

where ¢, is a unit vector in the z direction and in the second
line it has been assumed that R>L and

Q=6kL*/R. (1.7)

The parameter @ is just the rms phase fluctuation as com-
puted in first order geometric optics' and serves as a measure
of the strength of the fluctuations. The other parameter £2 is
essentially the square of the ratio of the scale size L to the
extent of a Fresnel zone. As shown in Fig. 2 if & is less than
one or less than (2, then the Rytov!™ approximation is valid.
In the region where the Rytov approximation is valid, the
problem can be considered to have been solved years ago.
The intensity fluctuations (scintillations) are small and the
relation between & and u is simple and direct. Also, as

P

Ry tov nf

Approximation

/ fno

Saturated

FIG. 2. Parameter regimes in @ — {2 space.
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shown in Fig. 2, when both @ and @ /12 are greater than
unity, the fluctuations in & saturate." In particular, the vari-
ance of In|& |* = In I approaches a constant of order unity
and the properties of & are determined more by statistical
considerations than by the detailed properties of u.

Path integral methods have nothing new to add when
the Rytov approximation is valid. The considerations of this
paper will therefore be restricted to the saturated regions.
There is then a small parameter & = £2 /P whose order of
magnitude" is

6 372
R <uz>{
The path integral allows the calculation of any moment of &
as an asymtotic series in . The result is that & is uniformly
distributed in phase and that the moments of intensity
I=|%|* are given by

"™ =nKI>[1 + in(n — DNCa + O (a?)], (1.9)

where C is a calculable constant of order unity whose precise
value depends on the spectrum of . In the limit @ = 0 the
distribution is therefore Rayleigh® with

Pl)= 1 exp[ — —I——]
> I
However, the correction grows with # and cannot be neglect-
ed for n 2 (2/a)*. It follows that there must be significant
deviations from a Rayleigh distribution when 7 /{I > is great-
er than ~(2/a).

In addition to the distribution of &, one also wants to
know the coherences in space and time. Recent work on
coherences has been greatly facilitated by the observation’”
that under certain conditions the problem can be replaced by
asimpler local or Markov one where, in effect, one makes the
replacement

—~

(1.8)

(1.10)

p(x,t)—=8@)p( | r |,t), (1.11)
with r = (x,y) and
A( |r|,t)=r p((r* + )4t )dz. (1.12)

Note that ¢?is equal to k 2Rp(0,0) and it will be convenient to
use the function p to define T and L by the expansion

kRp(|rht)=01— = e )
rit)= ——— o)
A ( 2 2T

Within factors of order unity, the L and T so defined will be
equal to the length and time over which the original covari-
ance p is nonvanishing.

(1.13)

It has been pointed out by several authors®~ that in the
Markov approximation the coherence of € * and & can be
computed exactly. It is

(E*( ot ) B (T,r0t)>

S =eX —ID(r—l",l' —rl9t—t’)]’
£ 3 1) B o1, pl—2 e

(1.14)

where
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Y
B o(tr0) = I >iexp[z’k (’—i‘i] (1.15)
2R
and D is the phase structure function of first order geometric
optics'

1
D (r,rot)=2k ZRJ [5(0,0)—p( | ur + (1 —u)r, | £ )]du. (1.16)

The phase structure function always appears in an exponen-
tial and in the saturated region where &? is large, D can be
approximated by an expansion in r,r,, and ¢
P +ri4rr 2
TP L N
3L T’
Coherences are then characterized by two parameters ®/T
and @/L.

The literature is somewhat confusing as to the validity
conditions for Eq. (1.14). It turns out that the approximation
leading to Eq. (1.14) has a very simple interpretation in the
path integral formalism. In the next section it will become
evident that for the isotropic medium under consideration,
Eq. (1.14) 1s valid as long as the parabolic wave equation is
valid. From the path integral one can actually compute the
first correction to Eq. (1.14). It is of order of the rms multiple
scattering angle (R/L }""*u*>"* which must be small if the
parabolic wave equation is valid.

(1.17)

For small a the path integral also allows the calculation
Of (B *(1, ko, YE*(1' ko, t )V E (1 kot )€ ("' 15 ,t'"")> and more
generally an arbitrary 2nth order moment. In the limit a =0,
the real and imaginary parts of & are jointly Gaussian. To
see the use of this result, let us consider a typical question of
practical interest. Take a fixed source and receiver so that &
is a function only of time and suppose that at t=0 & /&, is
known to have a value 7. An interesting practical question is
then what is the probability P (7’) that (¢ }/% , will take on
the value 77'. Since & has a Gaussian distribution, P (77°) is
simply

: lg' —e 2W2y|? ~D()
P(n):exp(— —0 (1l —e ),

1—e
(1.18)

where D (¢ )=D (0,0,¢ ) = ®*(t/T ). The qualitative behavior of
P (%) is indicated in Fig. 3. It is evident that the signal stays
in one quadrant of the complex plane and is therefore coher-
ent over a time of order 7/®. A further property of Gaussian
statistics and a covariance of the form exp[ —1(®1/T )] is
that the signal will move in a straight line for times less than
~T/®. One can ask the more general question of given that
& (r,ro,t )/ & o1, is equal to 77, what is the probability that
% (',ro,t')/ & ot ,ro) will be equal to 77°. The result is just Eq.
(1.18) with D () replaced by D (r —r',ro—ro,t —1').

As stated above the Gaussian statistics leading to P (1")
are obtained by computing moments. Again the approxima-
tion scheme breaks down for moments of order (2/a)"? and
Eq. (1.18) is valid only for |7 |and | %’ | less than (2/a)'"*.
Actually the order « corrections to any moment are calcula-
ble. They are most important for intensity correlations

where they lead to coherence tails® of order @ which are small

but fall much less rapidly than e 2.
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FIG. 3. [Nustrating Eq. (1.18). The signal 5’ will lie, with 90% probability,
within the circles: (1) for @t/T small, (2) for @t/T~1, and (3) for @t/T
large. The location of the signal 77 at =0 was an unlikely one lying outside
the 90% probability circle for a Rayleigh distribution.

The path integral also provides a simple method for
calculating the correlation between waves of different fre-
quencies.** In the saturated region, where @ > 1 the result is,
for | — ' | small compared to o=4i(w+w")

S_g*(—w,)@=exp[ L ( a);a)' )Z]A(w—wl)’

E’pg((l)')?—ﬂpO(ﬂ)) 2 g
(1.19)
where w, is
R d 2
a)g’zz <<f —(ku(ez,t ))dz) > (1.20)
o do
and for a single scale medium
A(a)):( bieo )”2/sin< bic )1/2 (1.21)
Wt W

with w, *=c; *Rp(0,0), where c, is the unperturbed group
velocity. For a nondispersive medium w,=w, When a is
very small the second factor on the right-hand side of Eq.
(1.19) falls much more rapidly than the first one. The first
factor

-5 (5]

2 ),
can than be replaced by unity. In the limit @ =0 the higher
order correlations in frequency are Gaussian. One can then
obtain probability distributions in frequency from Eq. (1.18)
with exp[ — D/2] replaced by the right-hand side of Eq.
(1.19) and e~ ? replaced by its absolute value squared. It is
worth noting that a first order geometric optics calculation
misses the second and dominant factor on the right-hand

side of Eq. (1.19) and therefore vastly overestimates the
range of coherence in frequency.

It can be seen from the path integral that saturation
corresponds to the appearance of multiple Fermat paths
which satisfy a perturbed ray equation. The signal tends to
propagate along these Fermat paths and because there are
many of them, they interfere and produce Gaussian statis-
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tics. They will become manifest in an experiment with a
pulsed source where the received signal will tend to show
several arrivals. These multiple Fermat paths are responsible
for the factor A in Eq. (1.19).

With one exception these results can easily be extended
to statistically inhomogeneous or anisotropic media and to
media with multiple scales. The exception is that A(w) de-
fined in Eq. (1.19) cannot be computed for certain multiple
scale media. Actually, the path integral yields further infor-
mation in the case of multiple scale media. It appears to be
only partially understood’ that in this case there are two
distinct saturated regimes. An examination of the path inte-
gral shows that there are indeed two, one of which (the fully
saturated regime) is analogous to the saturated regime in
single scale media and another one (the partially saturated
regime) is new. Many experiments in atmospheric optics lie
in the partially saturated regime and this case is treated in
some detail (Sec. 8). The fundamental distinction between
the fully and partially saturated regimes shows up in correla-
tions between waves of different frequency. In the fully satu-
rated regime the real and imaginary parts of & () are jointly
Gaussian random variables. For partial saturation & (@) acts
like a random phase times a Gaussian object. A consequence
is that propagation of narrow pulses is qualitatively different
in the two regimes. Depending on the medium there may be
further qualitative differences between full and partial
saturation.

The detailed organization of the paper is as follows.
Sections 2—-6 and Appendices A and B are devoted to the
idealized homogeneous, isotropic medium with a single scale
size. In Sec. 2 the path integral is introduced and applied to
the calculation of the first and second moments. Appendix A
contains the calculation of the error in Eq. (1.14). Section 3 is
devoted to the calculation of higher moments when « is
small and Sec. 4 summarizes the statistics of & in the limit
a=0. Special attention is given to statistics in frequency and
pulse propagation. The corrections to the limiting statistics
are derived in Appendix B and discussed in Sec. 5. The ap-
pearance of multiple Fermat paths is demonstrated in Sec. 6.
Media with multiple scales are introduced in Sec. 7 and the
distinction between full and partial saturation is made. In
the fully saturated case there is a simple modification of the
results for a single scale medium (Table II). The partially
saturated regime is more difficult. Section 8 is devoted to
partial saturation in a medium like that encountered in at-
mospheric optics. Appendix C contains some calculations
relevant to Sec. 8 and Appendix D discusses some other
kinds of multiple scale media. Methods for handling inho-
mogeneous and anisotropic media are given in Sec. 9 and
Appendices E and F.

2. FIRST AND SECOND MOMENTS FROM THE
PATH INTEGRAL

Feynman® pointed out that the solution to Eq. (1.4)
with the boundary condition in Eq. (1.5) is given by an infi-
nite dimenisonal integral. It is defined as the limit of a finite
dimensional integral with 2n — 2 integration variables corre-
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sponding to the Cartesian components of n — 1 two-dimen-
sional vectorsr "l = 1,2,....,n— 1. With the convention that
T;|,_oandr,|,_, are the sourcer, and receiver r coordinates,
Feynman’s integral is

& (r,rot )—hm —J(H XZWIR)”

ikR &

55 [ () ]
Q.1

X exp[

where each component of r;j=1,...,n—1, is integrated over
the range — o t0 + o andz,=jR/n.Iny, r;is understood to
be a vector in the xy plane and e, is a unit vector in the z
direction. At each point r,,r,,...,r,  in the integration vol-
ume, the n — 1 points in space (r,,z,), (r.,2,),...(r,,_;,z, ) can
be thought of as discrete points along a path r(z) connectmg
(r,,0) to (r,R ) with r,=r(z,), see Fig. 4. In this sense Feyn-
man’s integral is an integral over paths. Associating R/n
with a differential increment dz in range the argument of the
exponential has a continuum limit

ikR & [nz (rj—r,-fl)z ]
— ) —u(r.+e of
. ,Z', S\ ur+ez,t)

R
_>z'kJ‘ [1(r'@) > —u(r(@) +ezt ) ]dz, 2.2)
0
where r'=dr/dz. The path integral for & can then be sche-
matically written as

# (5,Eo )= —Z%Jd (paths)

R
Xexp[ikf [3(r'@))*—pu(r(z)+ezt )]dz‘,
0

(2.3)

where the integration is over all paths connecting (r,,0) to
(r,R ) and the volume element in path space d (paths) is the
coefficient of the exponential in Eq. (2.1).

We will be computing averages of products of path inte-
grals and the following formula will be needed. Let r,(z),
n=1,2,-- be some set of paths and £, = +1 corresponding
phases. Then if either  is a Gaussian random field or
kL{u*>'"<1 and its statistics are arbitrary, it is well
known'™* that

(r,R)
(Ta,24)

(r3,23) (rs, Zs)

FIG. 4. A path in the path integral for n=6.
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R
<exp[ *z'kzg,,j L@ ez, dz]>
H 0

- exp( _ "7 Y f " f "o 102 — 1]

+z' =2}, —1,) dzdz’).

(2.4)

As a first application of the path integral we can com-
pute {#>. This will not turn out to be a particularly interest-
ing quantity but the calculation is simple and it will show
how path integrals work and where the Markov approxima-
tion comes in. Bringing the average inside the path integral
and using Eq. (2.4) yields

i ik (®
& = E\_Jd (paths) exp(?fo Ydz— —

R R
xf j oL (@) —r@)N*+(z—2)71"%0) dzdz’).
0 0
2.5)

The Markov approximation now appears as follows. The
parabolic wave equation assumes that the normals to the
wave fronts point in directions that are close to the z axis. In
terms of the path integral this means that for the important
paths | r' |=| dr/dz | must be small. It then follows that for
important paths (r(z) —r(z'))’+(z—z')’ = |z—Zz'|* and Eq.
(2.5) becomes

(E>= ——exp(— -——J‘ f pllz—2 |0)dzdz)

jd (paths) exp( 5 J (r )zdz>

The remaining path integral is just the path integral for &,
and for R>L the double integral over p can be replaced by
Rp(0,0). The final result is then

&>=¥ exp[— 397
This is the usual formula obtained in the Markov approxi-
mation.* What we have seen here is that this approximation
has a very natural interpretation in terms of the path integral
and that it is valid as long as the parabolic wave equation is
valid.

(2.6)

Q.7

Since @?is large in the saturated region (& > is exponen-
tially small and therefore not particularly interesting. The
same is true for (& &> and its complex conjugate (& *& *>.
The path integral for (€ &> will be a double path integral
over two paths r,(z) and r,(z) and will contain a factor

ﬁz_ R (R _ "2 _ 22 172
exp(— . f f oL@ 1)) + @21 20

+p(l (r,2)—r,@)) 2+ (z—2')?] 172 )
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+20[(r(2) —ro2)) + (2 —2) %1 1"} dzd2'),
2.8)

where ¢ is the time difference between the two &’s in the
average. This factor is of order exp[— @] in all important
regions of path space and (& &> is exponentially small.

A more interesting quantity is (& *(2)& (1)) where
# (1) is a shorthand notation for & (¢,,F,,,1)) and & *(2) for
% *(ry,To5,t,). The formula for this object is

1 s ik (% 2 g 2 _
Wjd (paths)exp(—z—L [(ri@) —(ry2))°] dz V)(,z .

where the path integral is a “double path integral” over two
paths r,(z) and r,(z) connecting (r,,,0) to (r,,R ) and (r,,0) to
(r,R), respectively and

k(R "Ny 2 27122
V—T {pl(rn@—r@N’+(z—2)21"50
0 JO

+P([ (rz(z)—l'z(z'))2+ (z—z')?] 1/2’0)
—20([(r(2)—1:2')* + (z—2")?] 213} dadz.

(2.10)

There is now a region in path space where the integrand is
not exponentially small. It is r,(z) = r,(z) and almost all of the
path integral will come from this region. As before,

(r.(z) —r,(z"))? and (r«z) —r,(z'))? can be neglected relative to
(z—2Z')? and in the same spirit [(r,(z) —r(z")y + (' —2)1]""
can be approximated by [(r,(2) —r.(2))*+(z' —2z)*]"%, where
z=14(z+2'). Then for R> L the integral over z—2z' can be
done and

R
sz d (|n@)—ry(2)|.t,—1,)dz, 2.11)
o
where
d (|r].t) =k (30,0 —4(|r|,1)]. 2.12)

At this point it is convenient to change variables to paths u(z)
and v(z),

Q) = (@) + 1) —4ri 1) £ 4G +rm)( 1— %)

(2.13)
v(2)=r{2)—-r:(2),

which satisfy the end point conditions u(0) =u(R )=0 and
v(0)=(ry; —ry,), V(R )=(r,—r,). From the finite form of the
path integral in Eq. (2.1) it is clear that this change of vari-
ables is allowed and that the associated Jacobian is equal to
unity. After integrating the first term in the exponential by
parts and using the end point conditions, the path integral
for (& *(2)& (1)> becomes

<Z*<2)Ef(1)>=(3—’,{5)2%;(2%0(1) d*(paths)
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X exp[ —ik jRu(z)-v”(z)dz
0

R
—f d( IV(z)I,t)dz], (2.14)
0
where t=1,—1,. In analogy with the formula
_1_[ e™dy =5(x), (2.15)
27 )

the integral over the path uin Eq. (2.14) will produce a ‘6
functional” which forces v to vanish identically.'® With the
end point conditions given above v(z) must then be

V(Z)=(r1—r2)i; +(r01—r02)(1 — %) (2.16)

In d the path v can then be replaced by the right-hand side of
Eq. (2.16) and the factor containing & then becomes just
exp[— 1D ]. The remaining path integral is equal to
(27R/k ) and the result' reproduces Eq. (.14),

ErQEAY
#oE (1)

where D (1,2) is a shorthand notation for
D(r,—r,rg —rgt, — 1)

=exp[—1D(1,2)], (1.14")

Appendix A contains an explicit calculation of the first
correction to the Markov approximation for (£ *(2)& (1)>.
It is shown to be proportional to the rms multiple scattering
angle ((u>>R/L )* which must be small if the parabolic wave
equation is valid. Henceforth, all calculations will be done in
this Markov approximation. The general prescription is that
whenever p([ (r(2)—r(z'))*+ (z—2')*],t,—t) appears, it is
to be replaced by

oo (5) o5 )

Turning now to the calculation of (& *(w')% (w)), the
path integral for this quantity will contain [with k=% (0)
and k' =k (0]

R

<exp[ - ikf U (r2) +e,zydz + ik’

e @.17)

Xf :LL(U' (rZ(Z) + ezz)dz]>;
0

where the time dependence of ¢ has been suppressed and the
subscript indicates that for a dispersive medium g can de-
pend on w. Let us first compute this average in the absence of
dispersion. When ., is independent of w it is, in the Markov
approximation

exp( — 3(k — k 'YRB(0,0) — kk '

R
%[ 1500 —p(n@ —r@| 0. @19

For paths which make a significant contribution to the path
integral, the second term in the argument of the exponential
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must be of order unity or less. In this term one can therefore
approximate kk' by k * where k= 1(k+k'). Generalizing to
dispersive media, one finds that in the same approximation
the result is just Eq. (2.18) with R3(0,0) replaced by (c,/w,)’,
where w, was defined in Eq. (1.20). The path integral will
also contain a factor
. ~R .1 R
exp[if (ry(z))’dz— K f (ry(2) )Zdz], (2.19)
2D 2 Jo
which can be simplified by making an orthogonal transfor-
mation to paths u and v defined by

k'v(z) kv(z)
r(z)=u(z)— r.(z)=u(z
(z)=u( P (2)= ()kk'
After making this transformation the path integral factors
into a product of integrals over u and v. Upon dividing by
& "% o(w) the integral over u cancels and the final result
is, for | w —’ | small compared to v =i(w +w'),

(2.20)

<k€):"(w')'z/’/(m)> :exp[ B L( w—o' )Z]A (0—o.
# (@ E () 2 B
2.21)
where
Alw —~ o) = Jd (paths) ex [ — __,_1;2___ ) (v'(2))?dz
PL™ 20—y

- R ~
i f [p(0,0>—p<v<z),0)]dz}/df(paths)

X exp( 2(k ) J (v (z))zdz) (2.22)

In the saturated region where @ is large, | v(z) | will be very
small for the important paths and the expansion

PO —p(| )] 0) =400 X2 2.23)

can be used. The path integral for A is then
ik
2k—K")

R I 24 R
XJ- (V(2))dz — ]—(—BLOL.)J (V(Z))2d2>
o 2L Jo

A(w—w")= | d (paths) exp( —

/fd (paths) exp[ 2 k)f (v(z))zdz}
(2.24)

This type of path integral was evaluated by Feynman and
setting k —k' = (0w —w")/c,, it is equal to

' —m’\1/2
A(w—a)')<6i“’ w)m/sin(&'w “’) . @29
W

W

wherew; * =R/3(0,0)/c82, anda=6(L */R *$(0,0))*=10/®.
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Combining Egs. (2.21) and (2.25) yields Eq. (1.19). Some
features of these correlations in « were mentioned in the
Introduction. We will return to their interpretation in Sec. 6.

Except for the explicit verification of the validity of the
Markov approximation, the above results could be obtained
by more familiar techniques which do not employ the path
integral. The power of the path integral will become appar-
ent in the next section when higher order moments are com-
puted. They are extremely difficult to treat by the usual
techniques.

3. HIGHER MOMENTS FOR SMALL o

When @ is large, the average of any path integral will be
exponentially small unless there is a region of path space
where each path associated with an & is close to a path asso-
ciated with an # *. Such a region does not exist for (%> or
{#*> and we have already seen that they are exponentially
small. More generally, any moment with an unequal number
of #*s and % *’s will be vanishingly small.

Beyond (# *(2)% (1)) the first nontrivial object is
(E*(B)E (3)E*(2)# (1)>. It is given by the quadruple path
integral over four paths r,(z),---r.(2),

EHDEEX2)E (1))

-4 ik & .

=(2k) Jd ‘(paths) exp(— =N (1Y
2jT1

xJ;R(rJ'-(z))Zdz—M). 3.1

where

4 R

-1y (—l)i*ffo d (|1£2)—1(2)|.t;—1))dz. (3.2)
Qg1

There are two regions of path space where M is of order unity

or smaller. They are: (a) |r,(z) —r2) | < L/®,

| ry(z) —r(2) | < L/P, with the distance between pairs of

paths arbitrary and (b) | r,(2) —r«(2) | < L/®,

| ry(z)—1:(2) | < L/ P again with the distance between pairs of

paths arbitrary. In region (a) where |r,(z) —ry(2) | is of order

L/®, the oscillating factor

. R
exp(’—zlffo [(r@)*— (r'z(z)f]dz)
~exp[—ﬁf (@) — 1@ (F@+E@dz| (33
2 Jo

in the path integral will restrict | r;(z) +r,(z) | to be of order
2&/(kLR). For a typical path | r,(z)+r,(2) | will then be
roughly

1 (DR
3( ) ri i) |~ Sk

The centroid of the other path r,(z) +r.(z) will be restrained
in a similar way. It follows that most paths will be such that
the ratio of the distance between the pairs to the scale length
L is roughly @R/(6kL ?)=a', where a is the parameter de-
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fined in the Introduction. For small a the pairs are separated
by many times L and therefore are uncorrelated. In region
(a) M then reduces to

R
M:f d(|rn@)—rl2)|,t,—t,)dz
(¢}

R
+J d (|r2)—r2) |, t;—t)dz 3.4
(0]
and in region (b) it becomes
R
M:j d ( |l';(2)—l‘2(z) | ,tj_tz)dz
0
R
+ 1 d(n@) —rd2)| .5 — t.)dz. (3.5)
(4]

Thus in each of the two important regions of path space, the
quadruple path integral factors into the product of two dou-
ble path integrals, each of which is precisely the integral

encountered in the calculation of (€ *# >. The result is that

(EXHDER)EHDE()>=E*BE QBN E*E (1))
+ {EXQF BN E*HE (1)),
(3.6)

where the two terms come from the two regions (a) and (b).

In Appendix B the error in Eq. (2.6) is obtained by com-
puting the first correction. It is of order a and will be dis-
cussed in detail in Sec. 6.

Generalizing to an arbitrary moment is easy. The gen-
eral nonvanishing moment is

(Mz-oflzo)

=1 i=1

and can be written as an integral over 2» paths r(z) and r (z).
There will now be n! important regions of path space corre-
sponding to the number of ways paths r(z) can be paired
with the paths r(z). In each of these regions the 2»-tuple path
integral can be approximated by a product of n double path
integrals. Some simple combinatorics shows that the result
will be as follows. Let 7be a permutation of the indices i. For
example, if n=13 and the permutation is (1,2,3)—(3,1,2),
then 1=3, 2=1, and 3==2 or if the permutation is
(1,2,3)—(2,1,3), then 1=2, 2=1 and 3=3. With this
notation

(zollzo)= 5 1= 0o,

perms ij=1

(3.7

where the sum is over all n! possible permutations of the
indices /.
The same result holds for correlations in frequency. Ex-

tending the notation % () to include a frequency label w; we
have

E*PNEGD [ i ein. L@@
P22 —ep| —40 - {222 |4 @),
& o(NE o0 z 2\ o, g

(3.8)
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which holds in the saturated region where only small values
of 0, — o), |r,.—rj| , etc., are interesting. The same construc-
tion that led to Eq. (3.7) for equal frequencies then shows
that it holds for unequal frequencies as well.

The interpretation of Eq. (3.7) will be given in the next
section. A final remark here is that the arguments leading to
Eq. (3.7) do not depend on the validity of the Markov ap-
proximation. The latter is needed only when (& *(1)& (2)> is
explicitly evaluated.

4. THE STATISTICS OF # IN THE LIMIT =0

The moments of Eq. (3.7) correspond to a complex
Gaussian distribution. The probability that & (7)/ & ,(j) will
be equal to 7, for j=1,...,n is then

P (n,,...n,)=(det[7M ]}~ !

exp| - n,*(M),;‘nj], 78)

fj=1
where the n by r matrix M is

M= SEXDEG)

—1D (i
Ji £ ) CXP[ 3D (iy)

R Y “’f)z}A @ —w). @2)

@Dyg

Equation (1.10) corresponds to the special case n =1 and Eq.
(1.18) is obtained by dividing P,(57,1") by P,(7). The measure
is d *'n=d (Imn)d (Ren).

In principle, Egs. (4.1) and (4.2) determine all the statis-
tical properties of . For example, it follows from Gaussian
statistics that for & (j)=4 (j)e'? ? the correlations of ampli-
tude and rate of phase ¢ =d¢/dr are'*

A4

=F M, —-1i(1- 1 2 121 7
aS (|M;]) — 4( |M| K (M)

(4.3)

where F and X are the complete elliptic integrals of the first
and second kinds and

GDPR>=— 2%—2 In(1— M)

1 @2

where in the second line in the expansion of D in Eq. (1.17)
has been used. Equation (4.4) can be extended to the deriva-
tives of @ with respect to r and r, in the obvious way. Intensi-
ty correlations 7 (j)= | 4 (j)|* are simpler with

T I Q=L +[KEXDE Q) . 4.5

The appearance of Gaussian statistics in frequency is
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somewhat unfamiliar. To see what it implies, let us compare
the saturated regime to a simpler unsaturated one. When
simple first order geometric optics applies and the medlum is
nondispersive, ¥ (@) is equal to & ((w)e™”, where 7 is a fluc-
tuating time shift independent of w. Under such propagation
conditions, the statistics in w are essentially trivial. The enve-
lope #'(w) fluctuates but does so in such a way that at a fixed
time when 7 has a definite value a knowledge of & at one
value of @ determines & for all . Another way to say the
same thing is that a pulse will be subjected to a random time
shift but will not be distorted in shape. For propagation in
the saturated regime the statistics of & (w) are nontrivial and
things are completely different. At one fixed time a knowl-
edge of % (w) at one w yields only statistical information
about #" at nearby frequencies. Correspondingly, the medi-
um will distort a pulse in a way that is predictable only statis-
tically. A peculiarity is that (€ *(w')# (w)) and has a phase
corresponding to an average retardation.

The above remarks about & (w) are most easily made
quantitative in terms of pulse propagation. It is worth going
into this in some detail both because the physics is intetesting
and because it will connect with the Fermat paths of Sec. 6.
For simplicity the unperturbed medium will be assumed to
be nondispersive with w=ck. Let the transmitted signal be
FiT) = fe~ “fi(w)dew where fi —w)=/o(w). Taking the un-
perturbed arrival time as the origin, the received signal will
then be f£(r)=fe ' & (w)fo(w)dw. The signal £,(7) is a
Gaussian random variable whose complete statistics are de-
termined by the covariance of fo#. Assuming” that vari-
ations in # (w)fo(w) over a frequency corresponding to the
width of (4 *(—1w)¥ (Jw)> can be neglected, this co-
variance is

TV @) @) & (@)= | fol @ +0") |*A (0 —a),
(4.6)

with

Aw)= (1' 2) Z/Sin<i ﬁ) i,
w, w,

where the small & limit of Eq. (1.19) has been used and
w1 =wut/6=c,L /R p(0,0).

Denoting the received intensity £ 2(7) by # (1), the aver-
age {.# (1)) is a measure of the distribution of energy over
arrival times. According to Eq. (4.6) it is

f/(-)> — El_ff efiw‘rA (a))da)
U 7 (T)d7'> T
0 7<0
=] —2w, Ex: (—D'"(nm)’exp(—n*mo,7) (%))

-l

7>0

and vanishes for 7 < 0 because the integrand is analytic in the
upper-half plane. Evidently, all the energy comes in after the
unperturbed arrival time and is confined to a region

05 7% (w,m)". The net retardation is consistent with what
was said above about the phase of (& *(0")& (w)). The com-
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plete absence of energy for 7 < 0 is peculiar to the limit of
small @ and will later be seen to have a simple physical inter-
pretation (see Sec. 6).

For a sharp transmitted pulse the distribution of energy
over arrival times can be thought of as being due to two
effects. One is the wander in arrival time of the center of the
pulse and the other is spreading of the pulse around its cen-
ter. The two effects are in principle distinct. For the simple
case of propagatlon in an unsaturated regime where
# (w)=e"", the wander is of order <7'2>"Z while the spread is
just the width of the transmitted pulse. As we will now see, in
the saturated regime the spread and wander are roughly
equal. The width of (.#(7)> measures the sum of spread and
wander. A quantity which measures the spreading, indepen-
dent of wander, is

. <jif(7+ T’),f(r')df'> | s

UZ (f(r’))dr’)z

When ;& has a Gaussian distribution P (7) is

— M * 2 L = — T 2
P(r)= o J-,wIA (w)|*do+ 277,[, cme |A ()] dw,
(4.9)

where

(J‘ Sr+mY()dT )

(] mfé(r')dr')

The two terms in P (7) have the same height at 7=0. The
spike proportional to Py(7) falls rapidly leaving the second
term whose width is a measure of the spread. Comparing
with Eq. (4.7) one sees that

Py(r)=

(4.10)

f (I (T II (i

( J j;(/(f))dT')

and it is clear that the spread and wander are essentially the
same. A physical interpretation of the two pieces of P (7) will
be given in Sec. 5. Finally, a useful formula is

|A@@))2= \— /(sm (2Zl)l/2+sinh2<2(—:)l)l/z). 4.12)

It is interesting to ask why it is that the square of the
autocorrelation of f; rather than the autocorrelation of £
appears in P,. The answer is that when Jo@)% (w) has a
Gaussian distribution, the medium cannot transmg any in-
formation that is not contained in the coherence {f
()& * (o' )ﬁ)(a))g(a)» As given by Eg. (4.6) this coherence
depends only on | f f(w) P and the medium can only transmit
information about the autocorrelation of /.

_l_f 71(uT|A(a))|2da)_
2mJ

4.11)

The statistics of the signal as a function of spatial wave
numbers can be analyzed in a similar way. Multiplying
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& (r,r,,t ) by a suitable function of r, and integrating over r,
one can represent a boundary condition at z=0 correspond-
ing to, say, a plane wave emerging from a finite aperture. For
such a signal, the Fourier transform

L fe g (0)d
(2m)?

will be sharply peaked around some I=1,. With the corre-
spondences t—1,c—r one can proceed as above and discuss
spread and wander in l. Again the medium can only transmit
information contained in (& *(r)#& (r')) which will typically
depend only on | & (4 +1)) |

Zol) = (4.13)

5. CORRECTION TO THE a=0 LIMIT

The leading corrections to the & =0 limit are computed
in Appendix B. The main results are as follows.

The order a correction to <I "> is dominated by fluctu-
ations near the transmitter and receiver. This is not unex-
pected since near their end points the paths cannot be sepa-
rated into uncorrelated pairs. Explicitly </ ") is

A S=nD"[1+in(n—DaC+0(@)], (5.1)
where
L rq’ﬁ(q,o)dq
3
c=08m° o (5.2)
JO qp(g:0)dq
and p is the three-dimensional Fourier transform of p
47 (= . -
plIx]t)= ﬁf gsin(g|x)plgi)dg.  (53)
(o]

The consequences of the fact that the error grows with »
were noted in the Introduction. Note that the correction to
(I is positive. This means that the intensity fluctuations
overshoot (i.e., become larger than Rayleigh) near the
boundaries of the saturated regime.

The correction to a general correlation can also be com-
puted. They are always fractionally small. For example,
(FE*QF*)E (1)# (1)) is proportional to e~ in the
=0 limit and the correction to it is of order ze~??, The
corrections to intensity correlations are the most interesting.
In the =0 limit {J (¢,){ (¢,)) is equal to
KD 1+exp[—D (t,—1,)]1}. At t,=1, the order « correction
is given by Eq. (5.1). However, at large | ¢, — ¢, |, T (¢)I (t,)>
must approach </>? and the corrections must go to zero. It
turns out that half the correction dies like exp[—D (¢, —1,)]
but the other half falls much more slowly, leading to a coher-
ence tail. (Note that this is consistent with what was said
above about the corrections always being fractionally small.)
For the general intensity correlation the coherence tail® is

<I (ri,Fon, 1)1 (1, To0 1))

= <1>2[ l4e P04 (a\/;/S)L

f 7o (@ —t) ol |Fr—r2]q)
(0]
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+ Jo( Irm - roz'q) ]dq/J; QI;(q,O)dQ],

(5.4)

where J, is a Bessel function and specializing tor, = r, and
Io, = Iy, produces

I (1))

=D t+exp[ —D (. —1,)]

(5.5)

N aVir L§gcgp(gt — tz)dq]
4 5§ qp(q,0)dq

Equation (5.1) is not reproduced at ¢, =¢, because a term of
order ae 22 has been dropped from both Egs. (5.4) and
(5.5).

6. FERMAT PATHS

There is an interesting connection between averages of
the path integral and averages over Fermat paths which sat-
isfy the perturbed ray equation

r''(2)+ Vu(r(z)+ez)=0, (6.1)

where V= (d/dx,d/dy). This will be illustrated for the spe-
cial case of sources and receivers located at r=r,=0 so that
& 1s a function only of time. The path integral for

(EHEO)) is
(EH)EO))= (—é—fd (paths)

R
Xexp{ikf [L(r(2)* — L(ry(2)?

0
—u(r(z) +ez,0) + pu(rz +e,2)!) ]dz}).

(6.2)

In the the saturated region we know that for
(& *(t Y& (0)> to be nonvanishing, ¢ must be small and that
only paths for which | r,(z) —r,(2) |is small (~L/® ) contrib-
ute. Changing variables to w(z)=1(r,(z}+ry(z)) and
v(z) =r,(z) —r,(z), the path integral can then be approximat-
ed by

CEX)E 0

= <$ d *(paths) exp( — ik J;R [V(Z)'[W"(Z)

+ Vu[w(z) + ezz,O]] — i (w2) + ezZ’O)}dz»»
(6.3)
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where the first term in the argument of the exponential has
been integrated by parts and a dot indicates differentiation
with respect to time. The integration over the path v(z) pro-
duces a **8 functional” which forces w'* + Vu to vanish for all
z. Thus the integral over w(z) is restricted to paths which
satisfy the ray equation (6.1). This is a general feature of the
saturated region. Higher order correlations are dominated
by configurations where paths r(z) and r;(z) are pairwise
close. A similar analysis shows that for each such pair, the
path w(z) =1[r(2) +r.(z)] satisfies Eq. (6.1).

Equation (6.3) can be further analyzed. For most media
/¢ and p are satistically independent. The average, { >, can
then be thought of as two independent averages { >, and
{ >, over u and s. The 6 function of w"' + Vu that is pro-
duced by the integration over v is effected only by the aver-
age { »,, while the phase exp[ikifz] is effected only by the
other average { »,. It is therefore possible to write
{# ¥t )£ (0)> as the integral over paths w of a -averaged §
functional which can be interpreted as the probability that a
given path w will satisfy Eq. (6.1) times a phase which is to be
averaged over . To do this correctly, it is necessary to go
back to the definition of the path integral in Eq. (2.1). The
integration variables v, and w,, k= 1,2,....n are then discrete
and the mathematics is straightforward. The integration
over the v’s can be done trivially and after some manipula-
tion, one finds

EX )ﬁ(o)):fd (paths)'P (path)

><<exp[ikt LRp(w(z)+ezz,0)dz]> , (6.4)

#

where the integration d (paths)’ is over paths w(z) with a
modified volume element

ar(fm &) 9

which does not contain & and

n 2n—2 fn—-1 nz
P(path):(E) < (52(—R—2(wj+l+wjv,—2wj))

j=1

d (paths)’ =

+Vu(wj+e;,,0)>
7

(6.6)

is the probability that w will satisfy the finite difference
approximation

2
%(wﬁﬁwj,l_2wj)+v/t(wj+ezzj,0):o 6.7)

to the ray equation. In the limit #-» oo, P (path) is the prob-
ability [with a measured (paths)’] that w will satisfy Eq. (6.1).
Equation (6.4) shows explicitly that (& *(z )% (0)) is a sum
over Fermat paths with fluctuating phases ktfz. Finally,
bringing the average of £ inside the exponential yields
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CE*)E(0)>= | d (paths)'P (path)

Xexp[ _’; t Z<(LR/1 (w(z)+ezz,0)dz)2>ﬂ]. (6.8)

In the Markov approximation where w(z) is neglected rela-
tive to ez in the average of iz, Eq. (6.8) becomes

(E*1)E (0)y= exp[ L4 2<LT)ZUd (paths)'P (path)

- exp[ _ 0 Z(LT)z]a 5 (6.9)

which is the standard result.

This provides a new way to look at the Markov approxi-
mation. It requires that an average like
(R (w(z)+ez,0)dz)> along a path which satisfies the
perturbed ray equation (6.1) should be well approximated by
the corresponding average {(f&i(ez,0)dz)> along the un-
perturbed ray. Forahomogeneousandisotropic medium, this
will be the case as long as the rms multiple scattering angle
({D>R/L )Y is small.

According to Eq. (6.8), (% *(¢ )% (0)>canin principle be
computed by a geometric optics method which searches out
the rays which satisfy the perturbed ray equation. Geometric
optics corresponds to an approximate evaluation of the path
integral by the method of stationary phase.® In the saturated
region the stationary phase approximation will in fact be
valid since for @ > 1 the phase kfXudz is necessarily large.
To get Gaussian statistics for &', it is necessary that there be
several rays connecting a given source and receiver. In path
integral language this means that there will be multiple sta-

tionary phase points and # will be a discrete sum =,4,¢"
over contributions, one from each stationary phase point or
ray. The phases ¢, and amplitudes 4, as well as the number
of rays will fluctuate with u yielding Gaussian statistics for
& .

It is difficult to prove rigorously that there are always
multiple rays in the saturated regime. However there is a
simple construction which shows the essential physics. At
one fixed time the rays are stationary points of the path
length S defined by

R
Szkf [1(r @) —p(r(z)+ez))dz (6.10)
o

Let S(r) be S evaluated for the special paths that goin a
straight line from the source at (0,0) to an arbitrary point
(r,z,) with 0 <z, < R and then follow another straight line
from (r,z,) to the receiver at (0,R ). Multiple stationary points
of S (r) as a function of r will be indicative of multiple station-
ary points of the complete functional in Eq. (6.10) and the
spacing of such points in r will be similar to the spacing
between multiple rays. Now doing a simple integral shows
that S (r) can be written as

S (r)=3@)B—S\(r), (6.11)
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where B=kR/z((R —z,) and S, is ku integrated along the
above mentioned path. To simplify S (r), B ' can be replaced
by its average value R/(6K ). Then defining r=_Lu and
S.(r)= @£ (u) the quantity to be studied is

100 —&f () 6.12)
and we are interested in its stationary points which satisfy
Qu—P@Vf(u)=0. (6.13)

By construction fis a random function of order unity which
changes by order one when its argument changes by order
one; i.e.,| Vf|~ 1 and V/changes sign roughly each unit in u.
For 2> @ the first term in Eq. (6.13) dominates and there
will be a single solution near u=0. This is the unsaturated
regime. In the saturated regime, $» {2, the random charac-
ter of f guarantees that there will generally be many solu-
tions, spaced by about one unit in u (a distance / in r) and
filling up the interval 0 <|u| < @/2 (0 <|r|<PL /). To
find the other boundary of the saturated regime, @ > 1, we
have to ask when the multiple rays are physically meaning-
ful. From their interpretation as stationary phase points of
the path integral it can be verified that two rays will be phys-
ically distinct if S varies by a quarter cycle, i.e., order unity
between the two. The variation in S between two solutions of
Eq. (6.13) will be roughly @ and if they are to represent
physically distinct rays ¢ must be greater than unity.

An experiment with a pulsed source will tend to see
several arrivals corresponding to the multiple Fermat paths.
This random multipathing is the origin of the rapid falloff of
frequency coherence which takes place in the saturated re-
gime. To see how the orders of magnitude work, the differ-
ence in travel time between the ray nearest u=0 and the
furthest one out at | u|~®/£2 is
=0 (P /202+P)=P*/(22w) where the two terms come
from the two terms in Eq. (6.12) and it has been assumed that
@3> 102. Frequencies which differ by more than ¢, will then be
incoherent in agreement with Egs. (1.19) and (1.21). Note
that ¢, is positive. This is why in the limit @ =0 all the energy
arrives after the unperturbed arrival time and <.# (1)) van-
ishes for 7 < 0. Also the two terms in P (7) (Sec. 4) can easily
be interpreted in terms of fluctuating multipath. The spike
Py(7) is the autocorrelation of each arrival with itself and the
broad second term is the autocorrelation of different arri-
vals. Finally a word of caution. The above construction vast-
Iy underestimates the number of rays. In reality the number
of rays is probably an exponential of @/(2 rather than @/
as the construction would imply. It may be extremely diffi-
cult to actually resolve the arrivals.

It is interesting to consider the transition into the satu-
rated regime in terms of propagation of a pulse. Consider
first crossing the line @ =42 from the region where both ¢
and (2 are large but 2 < @. With @ and {2 large but well
outside the saturated region, one knows from the Rytov ap-
proximation that the receiver will see a single arrival with a
considerable wander in time of arrival. At the boundary of
the saturated region the pulse will begin to split into several
arrivals and well inside the saturated region there will be
many arrivals that are spread out over a time long compared
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to the original wander in the single pulse. Crossing the
boundary @= 1 from the region where both ¢ and 12 are
small is rather different. In this case one knows that well
outside the saturated region, there will be a single arrival
with no discernible wander in time of arrival accompanied
by a small scattered wave spread over a continuum of arrival
times. As the boundary of the saturated region is ap-
proached, the single peak will shrink and the scattered wave
will grow in amplitude. Well inside the saturated region, the
original peak will have disappeared completely and the now
large scattered wave will have broken up into a number of
discrete arrivals.

7. MEDIA WITH MULTIPLE SCALES

So far it has been assumed that the fluctuations in ¢ can
be characterized by a single scale size L. Technically, this
requires that the expansion of p,

R0 =b(1— 5 10" )
KRA(rIO =07 (1= 5T a ot (7.1)
through order r* exists and that the coefficient a is of order
unity. There are cases of practical importance where this is
not true. For example, optical index of refraction fluctu-
ations induced by Kolomogorov turbulence have the proper-
ty that the (three-dimensional) Fourier transform p(q) of p
behaves like | ¢ [!'* over a long interval in g and the expan-
sion in Eq. (7.1) makes sense only when the cutoff (inner
scale) is taken into account and then a is very large. This and
the following section are devoted to these media with multi-
ple scales. It will be assumed that p(g) goes like | g |~? 7 for
large g where 4 > p > 1. (If p is greater than four, the medium
acts like one with a single scale size and for p < 1 it is so
singular that (¢2?> does not exist.) In practice there is always
some physical cutoff at large ¢ (inner scale). However, the
effects of such a cutoff will be ignored in what follows.

For p > 2, the length parameter L will be defined by Eq.
(1.13) as before and in the case p <2, L will be defined by

1 ”] (1.2)

AN ,0)=,a(o,0)[1 -5 r

L
for small | r|. For Kolomogorov turbulence, p is equal to

and 5(0,0) and L are related to Tatarskii’s C, by 2.91C 2
=p(0,0)L ~*”*. The parameters @ and {2 continue to be de-
fined by Eqgs. (1.6) and (1.7).

The main qualitative difference between propagation in
single and multiple scale media is that in the latter case there
is more than one saturated regime. In terms of the Fermat
paths of the last section, it turns out that in a multiple scale
medium the smaller scale inhomogeneities can make multi-
ple Fermat paths before the large ones do. This leads to anew
kind of saturated regime. Even in a single scale medium with
p >4 theline @ = £2is not a sharp boundary. In reality there
is a transition zone where random focusing along singte Fer-
mat paths produces intensity fluctuations bigger than Ray-
leigh. As p decreases below four this transition zone opens up
and becomes a new saturated regime. The boundaries of this
new regime can be found by studying the object
102 (u)* — @f (u) of Eq. (6.12).
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To see when the smaller scales can make multiple Fer-
mat paths, imagine throwing out all scale sizes larger than
AL where 1 > A > 0. The new scale length will be AL and &
and £2 will be replaced by A #*@® and A22. The combination
@/(2 becomes A ¥ Y2/() and is equal to unity when
A=(®/£2)% " Thus if p < 4 the small scales can make
multiple Fermat paths when @ < (2, i.e., before the large
ones do at @ ={2. However, if these multiple paths are to be
physically meaningful 4 7> must be greater than unity and
the smallest permissible value of A is @ ~ %7, Putting every-
thing together, the small scales can make meaningful Fermat
paths when @ #7202 > 1. This is one boundary of the new satu-
rated regime. To find the other boundary, we need to ask
when the multiple Fermat paths can be separated by L. For a
given A the minima of 1422w’ — A ?/2f (u) extend out to a
maximum | u which is the largest value of | u | for which the
equation A22u— A ”*@Vf (u) can be solved. The maximum
jujis (@/02)4 Y P7?and noting that uis distance in units of
AL one sees that the Fermat paths can be separated by L
when (@/02)1 % ?72=1. For p> 2 the most separated
paths are due to large scales with A =1 and the other bound-
ary of the new region is @=412. However, if p < 2 the smaller
scales produce the largest separation and taking the smallest
permissible value @ ~ 2’7 for A one sees that there can be
Fermat paths separated by L when @ *7/£2 > 1. The regime
where there are meaningful multiple Fermat paths all lying
within L of each other will be called the partially saturated
regime. The regime where the spacing between Fermat paths
can be greater than L is analagous to the saturated regime of
the single scale case and will be called the fully saturated
regime. The boundaries of these regimes are summarized in
Table 1.

Although these boundaries have been obtained with a
hueristic Fermat path argument they are in agreement with
what one finds from more precise calculations. It is known
that outside the saturated regimes the intensity fluctuations
(I3 —<LD?¥)/{H*aresmall, implying both the validity of the
Rytov approximation and the absence of saturation. Inside
the saturated regimes (as given by Table I) the intensity fluc-
tuations as computed in the Rytov approximation are large,
signaling the onset of saturation. The line between the fully
and partially saturated regimes corresponds to the place
where two pairs of paths, in the sense of Sec. 3, can be sepa-
rated by more than L. When they are separated by more than
L the pairs of paths are completely independent (full satura-
tion) and Gaussian statistics for & follows immediately. If
all pairs are within L of each other (partial saturation) then
one expects that at least some statistics will not be Gaussian.

Nothing that was done in Sec. 2 or Appendix A depend-

TABLE 1. Boundaries of the saturated regimes.

ed in any essential way on the assumption of a single scale.
The reader can verify that Eq. (1.14) for (% *(2)#'(1) at
equal frequencies continues to hold whenever the parabolic
wave equation is valid. The only subtle point is that for p < 2
the rms scattering angle is not well defined and, correspond-
ingly, in Appendix A, Eq. (A6) cannot be approximated by
Eq. (A9). However, a rather straightforward analysis of Eq.
(A6) shows that the fractional error in Eq. (1.14) is of order
D (k ,0)anditis known that D (k *',0) < 1 is the validity con-
dition for the parabolic wave equation when p < 2. Turning
to coherences in frequency, there is however a significant
defect in the theory if p < 2. When p is less than 2, the path
integral in Eq. (2.22) cannot be approximated by that in Eq.
(2.24) and A must be understood as a function defined by Eq.
(2.22) whose evaluation would require a numerical
calculation.

In the fully saturated regime where pairs of paths can be
separated by L or greater, the arguments of Sec. 3 proceed as
before. One readily verifies that in the fully saturated regime
the statistics of & are Gaussian and the discussion of Sec. 4
applies [except Eq. (4.7) which assumes Eq. (1.21) for A].
Equations (B12) and (B17) of Appendix B holds in the multi-
ple scale case. The reader can then verify that for p > 2, Egs.
(5.1}, (5.2), (5.4), and (5.5) for the corrections to Gaussian
statistics continue to hold in the fully saturated regime and
that for p < 2 these same equations hold if @ is replaced by &’
where

. 4(p+1)3/pr(3/p) Ky
a= 33/277.1/2‘” ¢(6—2p)/p'

7.3)

The situation for the fully saturated regime is summarized in
Table 1I.

The higher order statistics in the partially saturated re-
gime are more complicated. For the case p < 2 everything
can be worked out in detail and the results will be given in the
next section. However, for p > 2 the path integrals yield only
qualitative information. It is summarized in Appendix D.

Finally, in multiple scale media the notion of multiple
Fermat paths should be used with care. They exist but there
are so many of them that they cannot, even in principle, be
completely resolved. Nevertheless, the notion is useful in
interpreting the path integral calculations and will continue
to be employed.

8. THE PARTIALLY SATURATED REGIME FOR
p<2

The partially saturated regime for p < 2 is of consider-
able practical importance. Many atmospheric optics experi-
ments lie in this region and, luckily, the complete statistics of

Partially Saturated Regime

Fully Saturated Regime

D> 1,0%7/0> 1,
P> 1,0Y7/025 1,

2<p<d
l<p<?

D/0 <1 D>1, D/2>1
P/ <1 &1, V/N>1
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Table I1. Changes needed to apply the formulas of Secs. 1-5 to the fully saturated regime.

Corrections to the

Boundaries Limiting Statistics Limiting Statistics
2<p<4 Unchanged Unchanged Unchanged
lap<? Replace @/£2> 1 Unchanged except Replace a by o’

by &7/ 1 that A is not known

explicitly

# can be worked out. There is a natural small parameter
defined by

B=(02/®*")*7".
For p = %, B is related to Tatarskii’s' C, by

B=1.19C, **R ~ '3k =7/15 and to the intensity fluctu-
ations as computed in the Rytov approximation by
{(nIy) —<In1 |, = 0.803 " The signal statistics
will be given through order 3.

(8.1)

Partial saturation is due to the appearance of multiple
Fermat paths all lying within L of each other. The larger
scales (~ L ) will tend to correlate the locations of these paths
leading in general to a complicated statistics. However, for
p < 2 the spectrum is so heavily weighted toward small scales
that the locations of the Fermat paths turn out to be uncorre-
lated. This is not the case for p > 2 where the multiple Fermat
paths become correlated and the path integral yields over
qualitative information (see Appendix D). Even for p <2
where the locations of the paths are uncorrelated the large
scales can still correlate the phases along different Fermat
paths. We will see this at the end of the section when coher-
ences in frequency are studied.

Consider Egs. (3.1) and (3.2) for <I %) in the partially
saturated regime with p < 2. In the integration region (a) the
separation between members of a pair of paths v,(z) (using
the notation of Appendix B) must be such thatd (jv.(z)| ) S 1,
i.e.,|vi(2) | S L/® *'?. The distance v,(z) between pairs (again
in the notation of Appendix B) will be limited by the oscillat-
ing terms in the path integral to values such that £2] v,(z)
vi(z) |~L *or|v,(2)|S L@ *7/1). Note that the ratio of the
cutoffon| v, |to thaton|v, |is @ *?/£ and is large. Now both
[v,|and|v,|are small compared to L and Eq. (7.2) can be
used to evaluate M in Egs. (3.2) or (B3). Taking account of
the fact that | v, (| v, |, the expression for M in Eq. (B3) of
Appendix B then becomes *

R

M:WR#J YR p(p—1)
0 L
i@ |2 val2) [P 2
xf =/ (8.2)
o L L

and when |v,/L |~® *7and|v,/L |~® 7/ the second
term on the right-hand side of Eq. (8.2) is of order 8 and can
be dropped. This is the same thing as saying that different
pairs of paths in the path integral, or equivalently different
Fermat paths in the sense of Sec. 6, are not correlated and
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{I*> becomes 2{I»*. What is happening is that for p <2 the
fractional power behavior of d at small separations is making
the arguments of Sec. 3 valid even though the different pairs
are separated by less than L. Note that this will only happen
for p < 2. The generalization to (I ") is straightforward and
the result is a Rayleigh distribution with {J">=n{I>".
The true test of the method comes when one evaluates

the corrections to Rayleigh statistics. It is shown in Appen-
dix C that to order B

I">=nKD"[1+3n(n—DCP)B ],
where C (p) is a constant which depends only on p. This con-
stant is evaluated in Appendix C and C'(3) = 1.06. The cor-

rections are small for small B showing that the approxima-
tion scheme is consistent but there will be significant
deviations from a Rayleigh distribution when

(8.3)

KDV 2/8C () .

The statistics of # (r,r,) as a function of source and re-
ceiver locations can be investigated in a similar way. One
finds that they are Gaussian and at equal times and frequen-
cies the results of Secs. 3 and 4 hold in the limit #=0. There
are coherence tails of order 5. These are discussed in Appen-
dix C.

In the fully saturated regime the dynamics of the medi-
um enters only through D (7). This is not always true in the
partially saturated regime. It is true when the Taylor hy-
pothesis is valid (a frozen field convected by a “wind™) and
the statistics in time can be obtained from the spatial statis-
tics. However, one can consider a different kind of medium
where the time dependence of i is associated with linear
waves whose dispersion relation is © ~ k ®?. The Fourier
transform of the second time derivative p of p will then be-
have like

p(la]) =(const)|q| “'* @ (8.4)
at large | q | For the Taylor hypothesis Eq. (8.4) holds with
6=2 and in general § can be considered as being defined by
Eqg. (8.4). Assuming p <2, the statistics of # at unequal
times are Gaussian in the partially saturated regime pro-
vided that p —§ < 0. This can be verified by explicitly com-
puting the corrections. For p <2 and p —& <0 the correc-
tions to Gaussian statistics are fractionally small for small 3
and the results of Secs. 3 and 4 continue to hold at unequal
times. However for p — &8 > 0, a direct calculation shows that
the corrections to Gaussian statistics are not fractionally
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FIG. 5. (a) The schematic track of a signal satisfying Gaussian statistics in
time. (b) The track of a signal which moves faster in phase than amplitude
(phase wrapping).

small and therefore that the approximation scheme of Sec. 3
is not consistent at unequal times.

To see what is happening for p — & > 0 one can compare
the path integrals for <Z (£)1 (¢)> and {((£*())*(%(t))?).
The latter is sensitive to the time dependence of the phase of
# while the former is not. A rather involved but straight-
forward calculation then shows that for p —§ > O the signal
moves more rapidly in phase than in amplitude. This is to be
contrasted with the case p— & < 0 where the time statistics
are Gaussian and according to Eq. (1.18) there is no tenden-
cy tomove in phase as opposed to amplitude. Aslongasp <2
the signal has a Rayleigh distribution and over a long time
the track of the signal will fill out a disk in the complex plane.
The difference between p—6 <0 and p — 8 > 0 comes in how
this disk is filled up. For p—& <0 the signal is Gaussian and
it will make a track of the type shown in Fig. 5(a) which
looks something like a random walk. However, for p—&>0
the track will wrap around in phase and slowly move in and
out in amplitude as shown in Fig. 5(b).

These peculiar features of time statistics in the partially
saturated regime can be understood in terms of Fermat
paths. We know that & (¢ ) is schematically
3,A4, (¢t )explid, (¢ )] where the locations of the paths are un-
correlated (for p < 2) but the large scales may correlate the
phases &, (1 ). The question of random walking vs. phase
wrapping is equivalent to the question of whether or not the
time derivatives (d/dt )¢, =g, are correlated. For p—8 <0,
the time derivatives are sufficiently weighted towards small
scales that the &, are uncorrelated and the signal random
walks. However for p— & > 0, the effect of the large scales 1s
strong enough to produce a correlated phase derivative com-
mon to all the Fermat paths.

Propagation of sound in the ocean is an example of a
situation where #'(¢) phase wraps in the partially saturated
regime.” For the ocean p =~ 2,6 =0, and in this special case it is
possible to work out the detailed statistics of £’ (¢ ).” However,
for other combinations of p and § it is not possible to com-
pute fourth and higher moments of #'(z ) analytically, except
when p -8 <0.

Checking consistency, it was stated above that for p < 2
the statistics of # (r,r,) as a function of r, and r are Gaussian
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in the partially saturated regime. If the time derivatives on
the right-hand side of Eq. (8.4) were replaced by spatial de-
rivatives we would have §=2. Since p—~2 <0 for p <2 it is
consistent that the statistics in r, and r are Gaussian and that
the statistics in time are Gaussian when the Taylor hypoth-
esis (implying §=2) is valid.

For p <2 and p—6 <0, the statistics of (r,r,,¢) in the
partially saturated regime are essentially the same as in the
fully saturated regime. The reader may therefore wonder
what the basic distinction between the regimes is. The an-
swer turns out to lie in the statistics in frequency.

Let us examine the path integral for
{E*w)E ()& *(w:)& (ws)). Up to a normalization it is

E @) (@,)8 ¥ ()6 (w.))

: Tl PP
~ [ gany exp(1 3 — 1y 2 @ ra - ).
= 0
(8.5)

where with the Markov approximation, surpressing time ¢

_22( )H]

and for simplicity the medium has been assumed to be non-
dispersive. There are the usual two important regions of path
space (a) and (b). Let us concentrate on (a) where
ir,—r,|<L/®¥?and |r,—r1,| < L/® . First we will see
how Gaussian statistics arise in the fully saturated regime
and then see how the partially saturated case differs. In the
fully saturated case typical values of, say, |r,—r, | are large
compared to L and p(|r,—r.|) can be set equal to zero. Ig-
noring correlations between the different pairs then yields

(£ )

CL)
fp<|r(z) (@)dz  (8.6)

) J SN — r(2)|)dz

(8.7)

which is a sum of two terms one of which depends on w, and
w, and the other on . and w,, and the result is Gaussian
statistics. In the partially saturated case typical values of
|r,—r, are small compared to L and p(|r,—r.|) is approxi-
mately equal to p(0). Now we have to set correlations be-
tween the different pairs of paths equal to p(0) rather than
zero and N becomes

, 4 @, 2 . . 2 4
Ve S L R0+ 3+ S )
;o1 il {j =3
Lo, (R .
X(-l)”/d‘f [6(|r(2)—r(2)|) —p(0)]dz. (8.8)
(A

)

The path integral again factors into a product of two double
path integrals and is expressable in terms of A as defined in
Eq. (2.22). Collecting the contribution from both regions (a)
and (b) and supplying the correct normalization yields

< & ¥ w)t (w,) A *w,) & (©.))
£ )8 (@) 8 (@) E ows)
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]

—exp| -3 S~y 2 Ro0)]

=1

XA (@1 —0)A (0 —0)+A @1— @A (@—)].
(8.9)

Because of the common exponential factor in front of the
two terms on the right-hand side this is not Gaussian statis-
tics. What it corresponds to is an & of the form

& (0)/ % w)=e"""y(w) where ¢ is a real Gaussian random
variable with <¢>=0, <¥*>=Rp(0)c?, and y{(w) is an inde-
pendent complex Gaussian random variable with zero mean
and covariances {y{@)y(@")>=<{y*w)y*(@")>=0 and
M)y (@))y=A(w" —w). It is straightforward to verify
that this ansatz does in fact yield the correct 2nth moment of
# (w) in the partially saturated regime. In particular the sec-
ond moment

(E¥@)E (@) _ o * ,
) Faw) (expli(@’ —)W 1y (o) (o))

= (expli(w’ — o)) YH)y(@))
=<exp| — o —o'YRH0)c?]A (o' —w)

(8.10)

comes out right. For a dispersive medium {¢*» becomes w, 2
as in Eq. (1.20) and ¢, rather than c appears in A.

Thus the fundamental distinction between the fully and
partially saturated regimes is that in the former the statistics
in frequency are Gaussian while in the latter they correspond
to a phase times a Gaussian. Well inside the partially saturat-
ed regime w, is small compared to the width in @ of A. The
phase ¢*°¥ then dominates the moments of &(w), except for
correlations involving only | ' (w) | where ¢ cancels. As the
boundary @ ¥7/£2=1 of the fully saturated regime is ap-
proached the width of A(w) becomes comparable to w, and
upon passing into the fully saturated regime A dominates the
moments and the signal becomes Gaussian. In the terminol-
ogy of Sec. 4, for partial saturation the spread is small com-
pared to the wander. In pulse propagation e““Y represents a
quasideterministic wander which dominates (.#(7))>. The
phase e"”¥ cancels out in the integral [Eq. (4.8)] for P (7) and
the spreading of a pulse is proportional to the inverse width
of A.

In terms of Fermat paths & (w) =24, (w)exp[id, (®)],
the non-Gaussing statistics can be understood as follows.

TABLE M. The statistics of 4 in the partially saturated regime for p < 2.

Each 4, (w) can be written as oy +4¢, (0) where wy is a
common phase generated by the larger scales. The phase
differences A¢, (w) are due to the small scales. They vary
from path to path and are responsible for the Gaussian factor
x(@). Note that only correlations in frequency measure ¥
directly. Correlations in space or time see only Vi or ¢
which for p < 2 and p— &8 < 0 are dominated by small rather
than large scales, leading ultimately to Gaussian statistics.
The phase wrapping in time for p —& > 0 is a remnant of .

The statistics of & in the partially saturated regime are
summarized in Table IIL

The reader may be curious as to what happens at p=2.
The “small” parameter Zis then equal to unity but according
to Appendix C the coefficient C (2) in Eq. (8.3) vanishes. A
detailed investigation’ then shows that the corrections to
Rayleigh statistics in the partially saturated regime are of
order (In@)". More generally, if p=2 and In® is large the
statistics given in Table III apply with errors of order
(In®@)'. Atp=2itis possible to compute A. It is given’ by Eq.
(1.21) with wea replaced by w.,a(In®)™'. In general, a medi-
um with | p—2 In® < 1 will act like one with p=2.

As mentioned before, the case of partial saturation for
p > 2 is discussed in Appendix D.

9. INHOMOGENEOUS AND ANISOTROPIC
MEDIA

In practice, random media are only locally homoge-
neous and the covariance.

P(x - X,,t - tl;i) = <,u(x,t )‘U(X’,t ’)> - </L(X,I )> </1(X',[ ')>
9.1)

depends on position X=4(x +x"). It is always assumed that
the variations of p in x —x’ are much more rapid than those
in X but over a long propagation path the dependence on X
cannot always be neglected. Also, in an inhomogeneous me-
dium {u(x) > =u(x) will generally not be a constant and

consequently cannot be absorbed in the definition c=w/k.

Finally, the medium can be statistically anisotropic so that p
depends on the orientation of x — x’ as well as its magnitude.

To obtain tractable path integrals in an inhomogeneous
medium we will have to approximate the path dependence of
X in p by evaluating X along some central path which will
turn out to be an unperturbed ray. From Sec. 3 we know that
paths are separated by L®/12 ( the precise definitions of L, @
and {2 for inhomogeneous anisotropic media will be given
below) and the problem will be tractable if

(i) for changes in X of order L ®/12 the corresponding

Intensity Variations in
Distribution Space time frequency
. p—6<0 p—6>0
Rayleigh Gaussian Gaussian phase phase times
wrapping a Gaussian
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variations in p can be neglected. It will also turn out to be
necessary to expand z, in powers of distances between paths
and we will have to require that

(ii) po(x) is slowly varying over distances of order
L®/12. The one other condition is that

(1ii) the parabolic wave equation is a valid
approximation.

When p,(x) is not a constant this requires that the nor-
mals to the wavefronts in the ‘“unperturbed problem” where
1(X)=p4(x) remain close to the z axis. If this is true locally
but not globally, then solutions based on the parabolic ap-
proximation can be patched together in the obvious way.

When conditions (i), (ii), and (iii) are met it is reason-
ably straightforward to extend the path integral method to
inhomogeneous and anisotropic media. It amounts to: (1)
showing that with suitable definitions of @ and D, (&> re-
mains exp[ — 1&®?] and Eq. (1.14) continues to hold, (2) find-
ing a suitable definition for {2 and then showing that the
boundaries of the saturated regimes are still given by Table I,
(3) showing that in the fully saturated regime the statistics of
# are Gaussian and that in the partially saturated regime
they are (for p < 2) as given in Table II1, (4) giving new for-
mulas for the corrections to Gaussian statistics and coher-
ence tails, and (5) giving a method for computing A(w).
These steps will be carried out in order. In doing so it will be
assumed that a ray approximation is valid for the unper-
turbed problem with g =g,.

A. The first and second moments
The path integral for (%> will contain a factor

k 2 R R ,
exp[ — —2~L dzjO dz’ p(r(z)—r(2")

+e(z—2)0:3[r@)+r(z)] + 3ez+2))]. -2)

The path dependance of the third argument of p will be ap-
proximated by setting 1(r(z) +r(z'))=s(z) wherez=14(z+2")
and s is the unperturbed ray satisfying

$"(2)+ Vio(s(2) + €.2) =0,

Here s=(s,,s,) is a two-dimensional vector and (s(0),0) and
(s(R),R ) are the source and receiver coordinates. If there is
more than one unperturbed ray connecting the source to the
receiver, it is assumed that they are far enough apart that the
path integral reduces to a sum of (statistically) independent
terms coming from paths near each ray.”” Defining a new
path u(z) by r(z) =s(z) + u(z), the Markov approximation
now amounts to setting

H2)—r(@) + ez~ 2) = (s @) +e)z—2).

The essence of the approximation is neglecting u(z) —u(z’).

By requirement (ii) the substitution s(z) —s(z') =s'(zZ}(z—2')
is always valid. The reader will note that by (iii) s’ is actually
small compared to e,. However, in a sufficiently anisotropic
medium s’ cannot be neglected on the right-hand side of Eq.
(9.4). Assuming for the moment the validity of the Markov
approximation, the analog of $(0,0) will be 5(0,0;z), where

(9.3)

(9.4)
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;S(0,0;z)zJ. pUS () +e,]u,0;8(2)+e2)du 9.5
and the path integral for (%>, which is now trivial since p no
longer contains the path u, will yield (& >=& ;exp[ —1®?]

where

R
P =k f 5(0,0;2)dz.
0

Continuing to assume the validity of the Markov ap-
proximation, the next thing to compute is (£ *(2)% (1)>.
There are two paths r;=s+w, and r,=s+w, where s satis-
fies Eq. (9.3) with the boundary conditions $(0) = 4(r,, +rs,)
and s(R )=1(r,+r,) and the approximation is

(9.6)

JokdzLRdz’ pr2)—rfz)+elz—2)t,—1;
L[E@)+1)] + ez +2)
=~ LRﬁ(w,-(z) ~ W2}t —t;2)dz 9.7)
forij=1,2, where
p(w,t;2) =fw pw4[8'(z)+e, ut;s(@)+ezdu.  (9.8)
The path integral flor (E*)% (1)) is then
CEXQE))

= ! Jd *(paths) exp[iSo(path 1) —iSy(path 2)

4k?
R
ﬂJ d(wl(z)——wz(z),tl—tz;z)dz], 9.9)
o
where
R
So:kj [4(F' @) —uor(2) + e.2)1dz (9.10)
0
and
d (w,t;z) =k }[5(0,0;2) —p(w,1;2)]. 9.11)

Introducing paths u=4(w,+w,) and v=w, —w, we can, ac-
cording to (ii), expand Sy(path 1) —S,(path 2) in powers of u
and v and keep only the leading terms which are quadratic.
Proceeding in this way yields®

—————<£7j(2) A0 =|2k#%,]| ’ZJd z(paths)exp[ikf (W' 2)-v'(2)
£ 5% (D °

R
—u )V (2))dz J d (v(2),t, —t3z)dz ] , 9.12)
4]
where the two by two matrix (in e e, space) u,(z) is
2
,U,,-I(Z) :u’O(x) | x =8(z) + ez’ (9 1 3)

Ox; dx;
The path u now appears only as a linear factor in the expo-
nential and integrating over it will produce a product of §
functions which force v(z) to be equal to the special path «(z)
which satisfies the differential equation and boundary
conditions*
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o (@) +p @ e(2)=0,
”(0)=r01 — o2,
s(R)=r,—r,

Then setting v equal to  in d the remaining path integral just
produces'’ | 2k & , [ and one finds Eq. (1.14)

E*QE()D=%;(2) €o(Dexp[—4D]

(9.14)

(1.14")
with

D=2J_Qd ((2),t, — 15; 2)dz. (9.15)
R

The object D defined in Eq. (9.15) is just the phase
structure function of first order geometric optics'” for a gen-
eral inhomogeneous anisotropic medium which satisfies (i),
(i1), and (iil). Note that « is always linear in r,, —ry, and
r,—r,. When 4, is a constant,
(2)=(o—re)(R—2)/R +(r,—r;)z/R, and for a homogen-
eous isotropic medium Eq. (9.15) reduces to Eq. (1.16).

For an isotropic medium where p depends only on the
magnitude of x —x', the Markov approximation is valid
whenever the parabolic wave equation is. The reason is the
same as in Sec. 2. In Appendix E the formula for the first
correction to the Markov approximation to { & *& > is given.
One can explicitly verify that the error is small when the
parabolic wave equation is valid.

The situation for anisotropic media is more complicat-
ed. Consider an anisotropic but homogeneous medium with
constant u,. Typical inhomogeneities will not be spherically
symmetric and one needs to consider the three cases shown
in Figs. 6. The asymmetric inhomogeneities introduce a new
small angle §,, the ratio of the small dimension to the large
one. Examining the error in the Markov approximation as
given in Appendix E one finds that, for the case shown in
Fig. 6(a), the Markov approximation fails when the rms
multiple scattering angle is of order 6,. For the case shown in
Fig. 6(b), it fails when the rms multiple scattering angle is of
order of the angle of incidence &, and for the situation in Fig.
6(c), it fails when the rms multiple scattering angle is of order
unity, i.e., when the parabolic wave equation fails. Since &,
can be small compared to unity, the Markov approximation

—— t ——
%CQ G/i =
(a) (b)

(c}
FIG. 6. Propagation through an anisotropic medium. The blobs are sche-

matic inhomogeneities and the heavy directed lines are the unperturbed
propagation path at various angles with respect to the long axis of the blobs.
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can fail in an anisotropic medium before the parabolic wave
equation does but only for some propagation paths. When it
fails Eq. (1.14) is not valid and this represents a defect in the
theory which is not easy to remove.

It should not be surprising that the Markov approxima-
tion can fail sooner in an anisotropic medium. The Markov
approximation can be interpreted as the statement that the
system has ‘‘no memory” in range, i.e., that scatterings at a
given range point are independent of previous distant scat-
terings. In an isotropic medium this will be true as long as the
rms multiple scattering angle is small and the wave keeps
moving in the same direction. However, in an anisotropic
medium, when the scattering by a given inhomogeneity can
be highly dependent on the angle of incidence, a distant scat-
tering which has deflected the wave only through a small
angle will not be “forgotten.”” For the inhomogeneities
shown in Fig. 6 the scattering is strongly dependent on angle
of incidence (measured from the long axis of the inhomoge-
neities) when the angle is of order 8,. When the incident wave
is along the long axis as in Fig. 6(a), it begins to remember
previous scatterings when the scattering angle builds up to 6,
and the pieces of the wave have incidence angles greater than
6,. For the case shown in Fig. 6(b) the past history of the
wave becomes important when pieces of the wave have been
deflected by 8, and are incident along the long axis. When
6 ; approaches 77/2 as in Fig. 6(c) the process has no memory
as long as the rms multiple scattering angle is less than unity.

Yet another way to understand the peculiarities of ani-
sotropic media is to return to the remarks following Egs.
(6.8) and (6.9). For an isotropic medium the average of ¢
integrated along a Fermat path w will be the same as the
average of iz integrated along the unperturbed ray s as long as
the rms multiple scattering angle is small. However, in an
anisotropic medium the average of iz integrated along a path
can be very sensitive to the local direction w’ of the path. In
fact, for the situation shown in Fig. 6(a), the average of it
integrated along a Fermat path deviates from the average
along an unperturbed ray as soon as | w’' |~ 6, and for the
situation in Fig. 6(b) when | w' |~ 6 ,. This leads to the same
criteria as before.

The cominbation of an anisotropic medium and a spa-
tially varying 144(x) leads to a new set of complications. This
will be illustrated for propagation in a channel where the
unperturbed rays make loops as shown in Fig. 7 and where
the long axis of the inhomogeneities is parallel to the channel
axis. The medium will also be assumed to be statistically
homogeneous in the direction of the channel axis but not
necessarily in the transverse directions. (This is a prototype
of the physical situation which occurs for sound propagation
in the ocean.”) The scattering will be strongest when the tan-
gent to the unperturbed ray is pointing along the long axis of
the inhomogeneities, i.e., at the turning points. For small 6,
one can in fact ignore all of the propagation path except for a
set of discrete regions around turning point where the tan-
gent to the ray is within 6, of the channel axis. Assuming that
a Markov approximation is valid for propagation through
one of these regions, it will also be valid for propagation
through many turning points provided only that the average
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FIG. 7. Propagation in a channel. The channel axis (z axis) is parallel to the
long axis of the inhomogeneities (blobs). The medium is assumed to be
isotropic in the z direction and the unperturbed propagation path (heavy
directed line) makes periodic loops.

scattering at a given turning point is at most weakly depen-
dent on scattering at previous turning points. Assuming that
the turning points are separated by more than a coherence
length the effect of previous scatterings will be a random
modulation of the range z, and (transverse) location s, of a
turning point. Now the average scattering around a turning
point is dependent only on its location s, in the channel and
not on its range z,. Thus the Markov approximation will be
valid out to a range such that random variations in s, are big
enough to change the average scattering. This turns out to be
a much longer range’ than that for which the rms multiple
scattering angle (which is dominated by variations in z;) be-
comes of order &,. The extended validity of the Markov ap-
proximation can be demonstrated explicitly using the Fer-
mat path formalism of Sec. 6. One works out the properties
of Fermat paths which are randomly deflected at turning
points and then compares averages of  integrated along
these paths to averages of  integrated along the unper-
turbed ray. For a given channel one can then find out when
the Markov approximation will break down. The result is
just the criteria stated above.

B. The saturated regimes

It will temporarily be assumed that the medium has a
single scale. Then in an anisotropic inhomogeneous medium
the scale length L becomes a z dependent two-by-two matrix
(in e, e, space) defined by the expansion g,”

pw0:2) = pO02)[ 1 — 4L @) a0, + O ([W])]. ©.16)

The first task in discussing the saturated regimes is to
find the correct definition of (2 and establish their bound-
aries. The general definition of £2 will involve L and some
geometric parameters associated with the unperturbed prob-
lem. From Secs. 3 and 7 one can see that £2 measures the rate
at which the phase of the oscillating factor in the path inte-
gral varies as a path moves away from an upperturbed ray.
To examine this in more detail consider paths that leave the
source at z=0, go to the receiver at z=R, and at some point
Z,1in between are separated from the unperturbed ray s(z,) by
1. Let S (1,2,) be the minimum of Sy(path) —S, (unperturbed
ray) taken over all paths of this class. The minimum is
achieved for a path that follows an unperturbed ray from the
source to (s(zo) +1,zo) and then another unperturbed ray from
(s(z,) +1,z,) to the receiver. When g, is a constant S (1,z,) is
simply

S (z))= %(I)ZB (z0),

where B which already appeared in Eq. (6.11) 1s

(9.17)
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kR

B(z)) = —— 9.18
@)= ) 9.18)
and £27' is the average of B~'L 7, i.e.,
Q=L
1 R
_ -z[_ j B"(zo)dzo]. (9.19)
R Jo

Thus 2 is a measure of the phase change required to move a
path a distance L away from the unperturbed ray. In general
there is a two-by-two matrix B defined by the expansion for
small 1,2

SQ,z0) = 3IBfz) + O(|1]%), (9.20)

and 2! willbeanaverage of L B ™. It isconvenient to weight
the average by p(0,0;z) and £2 will be defined as®

@ =4 THED,

$Ep(0,0:2)(L (2 (B (2) Az

(9.21)
$50(0,0:2)dz

(S

With this definition of £2 one can follow through the argu-
ments of Sec. 3 and verify that saturation and Gaussian stat-
istics are expected when @ > 1 and @/£2 > 1. A more precise
procedure is to compute ({I 2> —<»?)/<I)* in the Rytov ap-
proximation to find the boundary of the saturated regime
and then in the saturated regime compute the corrections to
Gaussian statistics and verify that they are small. A straight-
forward evaluation of (<{/ *» — {I}?)/{I)gy, Shows that it
does in fact exceed unity when @ > 1 and ¢/£2 > 1 indicating
that the boundary is correct. Using the formulas of Appen-
dix F one can verify that in the saturated regime the correc-
tions to Gaussian statistics are indeed small.

With the appropriate change in the definition of (L =),
for p < 2, the same procedure can be extended to media with
multiple scales. The result is that with £2 defined as in Eq.
(9.21) the boundaries given in Table I remain correct and
that for p < 2 the partially saturated statistics given in Table
III also remain correct.

Toactually calculate B,(z) the following result is useful.
Define a Green's function g (z,2") by*

az [} f ’
e g(2,2") + (208 (2,2)=6,6(z—2"),

i (9.22)
g0,z =g,(R,z)=0.

Then it is straightforward to verify that

(B (2)),= —g,{z2) (9.23)

C. Correlations in frequency

In general one can write

# (@)E (@)
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(1.19)

—m' \2
=exp[— _L(w i ) }A (0—0a"),
2 4
where the exponential factor comes from geometric optics
and A is to be computed from the path integral. The geomet-
ric optics decorelation frequency w, is

o, '= <(£}’ LR [1.(8.(2)+ezt)

2
s @+ ez)1dE) ) (9.24)
and for a general dispersive medium both g and the unper-
turbed ray s will depend on «. For a nondispersive medium
®, is equal to /P where P is evaluated at the central fre-
quency o.

As before, the path integral for A is tractable only for
media with p > 2. The derivation proceeds as in Sec. 3 and
after introducing scaled paths

k¢ 172

= (——g——) (v—s5), wherew=3(w+w')andc, is
2w —w")

the group velocity at o =@, the path integral for A gives

K(w)
A@)= —— 9.25
(@) KO (9.25)
where?
R
K (a)):f d (paths)exp[ ~zf [E'(2))
0
-§;(Z)§,(Z)(,u,~,-(2)+iwh,-j(z)]dz] 9.26)
with
hz)=c, 'p(0,02)(L *(2));; (9.27)

Ifthe path integral for K is written out in its finite form it
becomes an ordinary integral of large dimension whose inte-
grand is the exponential of a quadratic form. Such an inte-
gral is proportional to one over the square root of the deter-
minant of the quadratic form and in particular A will be the
square root of the ratio of two determinants. As the number
of integration points goes to infinity the determinants be-
comes functional determinants. There are two equivalent
methods® for computing the ratio of these functional
determinants.

In the first method one has to find all the eigenvalues w,,
of the differential equation

£ 07 @)+ DE @) — w0, h (2)E () =0 (9.28)

subject to the boundary conditions £”(0) =" (R ) =0.
Having done this A(w) is

A= 1 172
w)‘_(l,-lll%»l'a)/w,,) )

In the second method one defines a two-by-two matrix

(9.29)
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M (z,0) by the differential equation

M ,;(z,a)) +4 (M (2,0) +iwh, ()M, Az,0)=0 (9.30)
and boundary conditions®? in z
M (0,0)=0, M;I(O,a)):(S,_.,.. 9.31)
Then A is given by the ratio of determinants®
A(w)=(w)m. (9.32)
detM (R,w)

As an example of how A is computed consider a homo-
geneous isotropic medium where u,;,=0 and
hy;=6d ¢, 'p(0,0)L . The eigenfunctions of the operator in
Eq. (9.28) are then of the form &, sin(n,7z/R ) and
8,,sin(n,7z/R ) and the eigenvalues are —nimw, and
—mmo, where @, =c,L /R *p(0,0) as in Sec. 4. The infinite
product in Eq. (9.29) is then a product over two sets of
integers

o= [0 -5

2
n =1 n,ﬂzw]

) ~ 1J1/2
x I (l—i 2“) ) }
=1 nym,

and the two equal factors just cancel the square root. The
result is

A(a)):f[(l—i @ )‘

nel nrw,

- ()5

n= —x

ns0

(9.33)

_ (iw/wl)‘“

9.34
sin(fw/w,)'"*? ( )

and with o, =w/6 Eq. (1.21) is reproduced. To compute A
by the second method one finds immediately that

1/2 1 1/2
M (z2,0)=5,R (‘i) ' sin(i (’L") ’ )
v R \w,
M (2,0)=6,z,
and Eq. (9.32) yields the expected answer.

Once w, and A have been determined everything pro-
ceeds as in the homogeneous isotropic case. In particular #’
satisfies Gaussian statistics in the fuly saturated regime and
in the partially saturated regime for p < 2 (where A is unfor-
tunately not known) it is a phase times a Gaussian. There is
one new point worth mentioning. In the calculation of Sec. 4
{F (7)) vanished for r < 0 because A was analytic in the up-
per half-plane. When p,(z) is nonzero there can be a finite
number.of positive eigenvalues w,. Then A is no longer ana-
lytic in the upper half plane and {.# (+)> is nonvanishing for
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7 < 0. This in fact happends for propagation of sound in the
ocean.’

The transition to inhomogeneous anisotropic media has
now been completed. The reader who is interested in seeing
how the method works in detail for a realistic problem can
consult the book of Flatte, et al’

10.CONCLUSIONS

The path integral has turned out to be a powerful tool.
It has provided a precise (very nearly), complete and global
picture of what goes on in the saturated regimes. The unsatu-
rated regime where the Rytov approximation is valid could
also be treated by path integral methods. While this would
lead to a more unified picture, in the end it would only
amount to a rederivation of the Rytov approximation. A
more fruitful endeavor would be to make an attack on the
remaining unsolved problems in the saturated regimes. For
situations where a scalar wave equation is sufficient and the
(multiple) scattering angles are small the remaining prob-
lems are:

(a) How to compute (except numerically) the coherence
in frequency, A(w), for multiple scale media with p < 2.

(b) What are the detailed (beyond those given in Appen-
dix D) statistics of #” in the partially saturated regime for
4>p>27

(¢) How to compute the second moment (% *(2)% (1))
for those propagation paths in highly anisotropic media
where the Markov approximation is not valid?

(d) What is the detailed behavior of #” at the boundaries
between the unsaturated and saturated regimes and between
the fully and partially saturated regimes?

These are difficult problems which may not have any
simple solution and, in particular, the path integral may not J

APPENDIX A: CORRECTIONS TO THE MARKOV
APPROXIMATION

be the best method for attacking them. On the other hand, it
is quite remarkable that the use of Feynman’s path integral
has reduced the problem to a few unknowns which occur
only in special cases.

Among the other methods for treating wave propaga-
tion in random media, the most powerful ones uses the Mar-
kov approximation from the beginning. With the Markov
approximation one can derive local partial differential equa-
tions for the moments of # . These equations have been
stuided extensively, especially by the Russian school.’* In
the Markov approximation the path integrals for the mo-
ments are formal solutions to these partial differential equa-
tions. The equations for the first and second moments can be
integrated analytically and correspondingly the path inte-
grals can be done analytically. For the higher moments, the
differential equations have yielded only some information
about* (I (1)1 (2)>. The reason that this approach has not
yielded more is that to determine the asymptotic (long-
range) behavior of a function from its defining partial differ-
ential equation is highly nontrivial. The path integral has the
advantage that it works on a global rather than local level,
making it easier to determine the asymptotics.

The reader who is familar with Mercier’s'? treatment of
the phase screen problem (an idealized case where all the
scattering takes place on a thin sheet) will have noticed the
similarity between his methods and those used here. The
similarity is partly just the mathematics of manipulating in-
tegrals but there is also a physical reason. Any medium can
be approximated by a (perhaps) large but finite number of
phase screens. The wave field can then be expressed as a large
but finite dimensional integral over the surfaces of the
screens. But this is just the path integral in its finite form.
Thus the path integral can be thought of as a scheme where
one approximates the medium by # phase screens and then
letting # go to infinity recovers the original problem.

The exact path integral for (% *(2)% (1)) can be expanded as

rEay= 5 =

"m0 m! 4k?

. R
f d Z(paths)exp(% f [y (@) — (ry(2))* ] dz — Vo) (V=¥ 1m,
4]

(A1)

where Vis given by Eq. (2.10) and ¥, is the Markov approximation given by Eqs. (2.11). The m=0 term is the Markov
approximation and the m =1 term will be computed below for the special case EXDHYE (D)),

For (& *(1)# (1)>={I> the first correction contains [V, —

7] which can be replaced by — V because, as may be seen from

Sec. 2 the piece proportional to ¥, vanishes. We then have to first order

<D:<[>0‘— e

R
L f d 2(paths)exp[ik J V()W (2)dz— Vo |V,
0

(A2)

where paths v(z) =r,(z) —r,(z) and u(z) = 4(r(z) +r.(2)) have been introduced. In terms of the Fourier transform p of p [Eq.

(5.3)] Vis

R R .
V=2%k JJ dz]J dzzf d qdq, p(q* +4q2)"*,00explig (z.—2,)) explig-(u(z)) —u(z))] sin[ 1q-v(z)) Isin[ q-v(z.)],
O (8]

where g=(g,,9,) is 2 two-dimensional vector. Writing
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R

explig-(u(z,)—u(z;))] =exp [iq-f u(2)[6(z—z)—d8(z ~zz)]dz}

0

and inserting ¥ as given by Equation (A.3) into Eq. (A.2) one finds that since ¥; depends only on v the integral over u(z) can be
done and that it leads to a -functional which forces v to satisfy the equation

v'(2)= % [8(z—2)—8(z—2,)], (Ad)

with the boundary conditions v(0)=v(R )=0. In terms of the Greens function g(z,z") which satisfies (#°/9z*)g(z,2) =5(z—2')
and g(0,2")=g(R,z')=0, v(z) is constrained to be v,(z) where

vo(2) = % ((z.2))—~g(z.2,). (AS)

The path integral is then done by replacing v(z) by v«(2) in ¥, and in the representation of ¥ and the final result is

R
— <_1><__I>i_[>°_ =2k ZJ; dzlfOR dzzfdzqdqab(\/ @+¢2 0)exp[ig.(zi—2)]

X sin[—;— q-vo(zl)]sin[—;— q~vo(zz)]exp[ —J;R d (|v(2)|,0)dz|. (A6)

To estimate the size of the integral in Eq. (A.6), one notes that |z, — z,| will be restricted to order L or less and that for
Iz, —2z|~ L, q-v,(2) is of order ¢*L/k ~q/k which is assumed to be small. The sines can then be expanded and using the identity

[g(z02) —g(z02) ) [g(znz) — glznz) ] = — iz—'—le&(ifl (A7)
one finds
<1>—<1>0__1__ R K 2 ~({a? 21/20 4 _ 2z
Lo fo iz, L dz, J dqdq. 5@ + 4)0)@ — 2,)
R
x g(z,,zz)exp[iqz(zl —z)— fo d (|ve@),0)dz . (A8)

Ignoring the term fd (vo(2),0)dz in the exponential which can only make the integral smaller, changing to variables y =z, —z,
and z=1(z, +z,), approximating their limits by — « <t < « and 0 <Z <R, and setting g(z,,2,) = g(Z,2) then yields
I>=LI _ _ RpOO) R (A9)
> 3L2 3L
The correction to Markov approximation to (& *(2) ¢ (1)> can be analyzed in the same way. It is fractionally small as long
as {u’>R/L is small.

APPENDIX B: CORRECTIONS TO GAUSSIAN STATISTICS
To begin with something simple, consider </ ). It is given by the path integral in Eq. (3.1) with ¢,=¢, and the end point
conditions r(0)=r(R )="0. Changing variables to u,, u,, v,, and v, defined by
r(2)=u(2)+5v.(2) + () + $v.(2),
r:(z) =u(z) + §v(2) — fu(2) — $v,(2),
r(2)=u(z) - §v.(2) + ju:(2) — 4v.(2),

r(2)=u,(z)— Lvi(2) — tu(2) 4 Lv,(2),

(B1)

the integral over u,(z) can be done and it produces a & functional which forces u,(z) to vanish everywhere. With the end point
conditions u,(0) =u,(R )=0, the only solution is u,(z) =0. The quadruple path integral then reduces to the double path integral
over paths v, and v,,
gy 1 j dz(paths)exp[ik fR V,(2)Vy2)dz—M } (B2)
D 4k’ 0
where M was defined in Eq. (3.2) and for u,=0 it is explicitly
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R
M=L [2d (v.(2),0)+2d (| v(2) | ,0) —d (| vi(z) + v:(2) | ,0) —d (| v:(2) — Vx(2) | ,0) 1 dz. (B3)

The two regions (a) and (b) discussed in Sec. 3 are |vi(z)| < L/ with v, arbitrary and |v,(2)| < L/® with v, arbitrary.
It was pointed out in the text that M is of order unity or smaller throughout regions (a) and (b). Actually, there is a further

region [having some overlap with (a) and (b)] where M can be small. It is (c) |v,(z)| < LV ;, [v,(2)] < L/\/; and owes its
existence to the fact that when both |v,(z) | and | v,(z)| are small, Mis quartic in the v’s. In all other regions of path space, e ™ is
exponentially small.

Our first task is to dispose of the extra region (c) by showing that for small a the volume of path space occupied by this
region is exponentially small compared to the volumes occupied by regions (a) and (b). An estimate of the volume of path space
occupied by region (a) is
R

ﬁ; f d 3(paths)exp<ik L

where the integral is done by integrating over v,(z) which produces a § functional that forces v,(z) to vanish. An estimate of the
volume occupied by region (c) is

S @ (R
v,(2)-v5(z)dz — TR L (vl(z))zdz)z 1, (B4)

R R R
—lz— f d¥ paths)exp(ik J v,(2)-V5(2)dz — _q_b__z i)+ v%(z))dz) = _(i/a) — ~ 24 exp(— Vv 3/a),
4k 0 ZRL? Jo sinh’V 3/a +sin’V 3/a @

(B3)
where the value of the path integral is taken from Ref. 6. For small a, the volume occupied by region (¢) is therefore
exponentially small compared to the volume occupied by regions (a) and (b). This result, which may surprise some readers,
deserves an explanation. In region (a) where |v,| is always less than L /@, the factor

exp[ik J:)Rv'l(z)-v'z(z)dz] = — exp[ik J

0

R

vl(z)-v;(z)dz]

will restrict | v, | to valuesless than @ /(kLR ). Typical values of |v,| will thenbe R ? |v3)/6~L /a. Atagivenrange point z,, the
variables v,(z,) and v,(z,) span a four-dimensional space. In this space the volume occupied by paths in region (a) is roughly
L*/(Pa)’. At the same point the volume occupied by paths in region (c) is roughly L ¢/ & * Thus at each point z,, the volume
associated with region (¢) is a factor of ¢® smaller than that occupied by region (a). To compute the total volume in path space,
one has to multiply together the volumes at each range point z,, taking into account the fact that the paths cannot bend too
rapidly. The path integrals in Eqs. (B4) and (B5) do just this. The resulting exponential ratio of volumes should no longer be a
surprise since at each range point the ratio is down by o*.

it is therefore sufficient to consider only paths lying in regions (a) and (b). The fact that integrating separately over
regions (a) and (b) leads to a slight over counting can also be ignored. The volume in path space where regions (a) and (b)
overlap is even smaller than the volume occupied by region (c). Now as was pointed out in Sec. II1, for most paths in region (a)
M=M", where

~R

M;,a’:2J d(|vi(2)|,0dz (B6)
0
and for most paths in region (b) M =M ¢’ with
R
M= zf d(|viz)| O)dz. (B7)
8]
The path integral in Eq. (B2) can then be expanded according to
R ) o ] R ) @ (zMS”—-zW)m
fd Z(paths)exp{ik f v(2)-v,(2)dz—M ] ~> |4 2(paths)exp[zk f v(2) v, (2)dz— M —
0 m -0 0 !
e R ) M(h MY
+ E d 2(paths)explil’c J v,(2)V,(2)dz—~M ’} LL_Q)_ (B8)
= (4] m'

which is an asymptotic series in . It is not a convergent series because (exponentially small) contributions from region (c) and
the overlap of regions (a) and (b) are not being treated correctly. The m =0 terms correspond to Rayleigh statistics and the
m=1 terms are the first correction. They will be computed explicitly below.

Equations (B8) generalizes to an arbitrary correlation in the obvious way. For a 2nth order moment there are #! important
regions of path space. In each such region there is an M, given by the analog of Eq. (3.4) or (3.5). The generalization of Eg. (B8)
is then a sum of n! terms, each of which is a series of powers of the appropriate M,—M.

The path integrals for the m = 1 terms in Eq. (B8) can be evaluated by inserting a spectral representation for Mo—M. If p is
the three-dimensional Fourier transfer of p [see Eq. (5.3)], then in region (a)
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R
M — M—4rk f dz | dq p(|a]Dexpliaqv:(2)] [1—costavi(z)] (B9)
4]
and

R
- f d Z(paths)exp[fkf v',(z>-v'2(z)dz—Mg">] (MO —M]
O

=1 J;R dZ’J- d’*qp(|a] )j d Z(paths)exp[ —ik ,[, R vz(z).(v'{(z)—% §(z—z’))dz_ Mg“)] [1—cos(qv,&')]. (B10)

Since M & depends only on v,, the integral over v, can be done and it produces a § functional which forces v,(2)—(a/k)5(z—2') to
vanish. In terms of the Greens function g(z,z') defined by

2
L 8(z2)=6(z—2") (B11)
az

with boundary conditions g(0,2")=g(R,z')=0, v,(z) is constrained to be (q/k )g(z,z"). In M @@ and cos(q-v,(z)) one can then set
v,(z) equal to (g/k )g(z,z') and the remaining path just gives (/. The calculation of the correction in region (b) is identical and to
leading order in a,

%gf—’z=47rk2JORdzdeqﬁ(lql)qul) ®12)
with
@ lq| ):2[1 —cos(%:— g(z,z))}exp[ ——ZLR d (—I%I— g(z,z’),O)dz’]. (B13)

An examination of the integral on the right-hand side of Eq. (B12) shows that for small «,
@ d (1L ge20)
can be approximated by
I\ 2
1k 35(0,0 (—mqg(z’z )) :
3k °p(0,0) KL
qz qz 2
(ii) 2[ 1 _COS(I g(z,z))] can be set equal to (? g(z,z)) ,
and
(iii) the dominant contribution comes from the regions z=0 and z =R, where g(z,z") =z(R—2')/R and z'(R —z)/R.
The contributions from the regions z~0 and z= R are the same and

%ﬂ: 87k ZJ: dzf dgp(|q| )(qki)zexp[ “R_p(%,oz_zi]

4 J5'9p(q,0)dq

The correction to {/ ") involves n! regions of path space and in each of these regions there are n(n — 1)/2 terms in M, — M
which differ only by permutations of the paths. The result is that the correction to </ "> is n!(n) (n — 1)/4 times the correction to
.

Moving on to a more complicated object, consider {7 (1)I (2)>. It is given by the path integral in Eq. (B2) but the end point
conditions on the paths are now v,(0)=v,(R )=0 and v,(0) =ry, —rp,, V,(R )=r,—r, and now M is

R
M:f [2d (|vi(2)|.0)+2d (|v(2) | .1, — 1) —d (| Vi(2) + Vo2) | .1, ~ 1) —d (| vi(2) — v:(2) | £, — 1) )dz. (B15)
(0]

The integration over region (a) gives </>*(1+ corrections) while the integration over region (b) gives (/>% ~?"? (1 4 correc-
tions). As indicated the corrections in region (b) are proportional to e ~ ? and are a small effect of no particular consequence. The
corrections in region (a), on the other hand, are small but do not contain e = ? and hence fall much less rapidly. This leads to a
coherence tail in </ (1)1 (2)) which is not present in (£ *(1)#(2)>. The interesting corrections in region (a) are computed by
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changing variables from v,(z) and v,(2) fo v,(z) and w(z) =v,(2) — (/R ) (r,—r,) —[(R —z)/R ] (r,,—¥,.) and then proceeding in

exactly the same way as before. The result is

AMIQp=<D 1 +e PCP 4 p(n —rpr —rot —13)],

where

R
y(e,r,t =27k ZL dzf dg exp(z’ zqR-r +i (R—2)qT o(1q].£)Q (, |a])

R

(Bi6)

(B17)

and Eq. (B12) is not reproduced for 7 (1) =1 (2) because a small term of order ye ~© from region (b) has been dropped. For small
« this integral can be simplified in the same way that Eq. (B14) was obtained from Eq. (B12). It becomes

oV 3r L§&gp(gn)Ifg|r))+Jog|r|)]dg

V(r’l'o’t ) = =
8 5 dp(q,0)dq

(B18)

Corrections to more complicated correlations and terms of order & or higher can also be computed—the only obstacle
being the labor involved. The calculation of the general coherence tail involves only some combinatorics. It is

(T kY™ =TT _ KT (R)Y™)
&)™)

="“Gaussian terms” + > mmy(k—j),

(B19)

kg1

where y(k —j)=y(r, —r;To, — gyt —t), the “Gaussian terms” are what one would compute from the Gaussian distribution

and all terms of order e ~? have been dropped.

APPENDIX C: CORRECTIONS TO GAUSSIAN
STATISTICS FOR p <2

Equations (B12), (B13), (B16), and (B17) of Appendix
B do not assume a single scale media and will be the starting
point. For p < 2, in either the fully or the partially saturated
regime Q can be approximated by
)

0 lah=(L e exp( -
(1

where the cosine has been expanded, the short distance ex-
pansion for 5, Eq. (7.2), has been used and the identity

R R
J |g(z,2")|7dz' = —— |g(z,2)|” (C2)
0 p+1

@ | 1a/8G2)
p+1i kL

has been employed.

In the fully saturated regime the main contribution to
Egs. (B12) and (B17) again comes from z=0 and z=R. Us-
ing Eq. (C2) for Q then yields Egs. (B14) and (B18) with
replaced by @' where ' is defined in Eq. (7.3).

In the partially saturated regime all values of z contrib-
ute to the integral but the dominant contribution comes
from large lg| where
_ PO (1 +5p)]” sin(mp/2)

4 |L ||q) '
For n=2, Eq. (8.3), with

Cp)={@+ D" Prr[r(1+ip)Ep—Dn)

plg:t) (C3)

xsin(mp/2)" (4 —p)/p)/pm6? P (2p—2) (C4)
is obtained by inserting Egs. (C3) (with t=0) and (C1) in Eq.
(B12). The extension to general # works in the same way as
before. The coherence tails in the partially saturated regime
are obtained by inserting Egs. (C3) and (C1) into Eq. (B17).
For r,r,.=~0 this leads to integrals which cannot be done
analytically.
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APPENDIX D: THE PARTIALLY SATURATED
REGIME FOR p > 2

It is difficult to make quantitative statements about the
partially saturated regime when 4 > p > 2. There is however
some qualitative information.

Equation (1.14) holds and {#"> is equal to

# sexp(—1®?) in all regimes as long as the Markov approxi-
mation is valid. Furthermore (¥ *(»")# (w)) continues to be
given by Egs. (1.19)-(1.21). The argument that any correla-
tion involving an unequal number of ¥’s and # *'s vanishes
also goes through as before. Thus # is uniformly distributed
in phase. The difficulty arises when one attempts to compute
the nonvanishing higher moments.

The statistics are not Gaussian. This can be verified by
assuming that they are and then computing the corrections.
They are not small. Some information can be obtained how-
ever by comparing the path integral for (¥ *(2))X(# (1))*>
with that for <|#(2)3% (1)F>. Upon doing this one finds that
# always phase wraps as shown in Fig. 5(b). It turns out that
the typical space time scales over which the phase and inten-
sity change are those listed in Table DI [the parameter § was
defined in Eq. (8.4)]. Note that for partial saturation where
@*P/(2 > 1 but /L2 < 1 the rate at which the intensity
changes is always small compared to the rate at which the
phase changes. Examining more complicated correlations
leads to the conclusion that at a fixed frequency # can be
represented as

()= & explid N1y (), (D)

where &()) is a real Gaussian random variable with {é(/)>=0
and

(@ —-8M))=DGJN

The other factor y is an independent (of ¢) complex random
variable about which only three things are known:

(D2)

(1) any correlation involving an unequal number of y’s
and
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TABLE DI. Time and space scales associated with phase and In/ in the partially saturated regime with 4 >p> 2.

Phase L/® T/®
InJ (L/D){2/P)r D40 (T/D Y2/ D)/ P (T/DY /PP 2V
p—6>2 2>p—6>0
Scale Length Scale Time

Y *’s vanishes,
@ W =1,
and

(3) the decorrelation lengths and times for y are those
listed
under intensity in Table DL

To see what the representation in Eq. (D1) means
consider

(F*E )

= [ (1) —d ()] 1) (y*)y(1
T E) (explilg (N—¢ 1) (*Qp (1)

=exp[—4D (1,2)1{| x|, (D3)

where to get the second line one notes that {y*(2)y(1)> will
be approximately (Jy[*> for all space or time separations such
that exp(— 1D ) is not vanishingly small. Thus, Eq. (1.19) is
reproduced, as it should be. Similarly,

(F*QPE )

(% §Q(E 1))
and this correlation is known up to a constant. However, all
that is known about the intensity correlation

QI =@’ |x(D >

are its space and time scales.

=exp[-2D(L,D)1{|x|*) (D4

(D5)

The extension to unequal frequencies is straightfor-
ward. At different frequencies
($(©)— (@ M) = [(©—')/w,)? and
*(@)y(@)>=A(w—w"). The higher order moments of y
areagain non-Gaussian and unknown. However, their width
in @ is large compared to @,. As in Sec. 8 this means that
pulse propagation is dominated by wander rather than
spreading.

As was mentioned in Sec. 8, there is a case where the
non-Gaussian statistics of y can be studied in detail. It is for
correlations in time when p=2 and § =0 and is explained in
Ref. 7.

The above results are most easily derived using the Fer-
mat path formalism of Sec. 6. One can work out the joint
probability that two paths will satisfy the perturbed ray
equation. In the partially saturated regime with p > 2 it turns
out that the Fermat paths are highly correlated and tend to
liewithin L (@/02)*’“ P ofeachother. Studying averages of
4 and u’ along correlated Fermat paths then leads to the
above conclusions. The detailed calculations are relatively
straightforward but tedious and will not be given here.
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APPENDIX E: CORRECTIONS TO THE MARKOV
APPROXIMATION FOR INHOMOGENEOUS
ANISOTROPIC MEDIA

If the X dependence of p is evaluated along the unper-
turbed ray then the first correction to the Markov approxi-
mation can be evaluated for a general homogeneous aniso-
tropic medium. Let

px,8(2) +ez) = fa' Te5(L,t;2),
then the generalization of Eq. (A6) is

_ =L
<o

R R
pys f dz, f dzzfdzqdqp(wezqz,o;%(z.+zz))
0 Q

(ED)

X expli(g, + q:s'(3(z + 2))(z, — 2,)]sin[4q-ve(z))]

R
X sin[%q-vo(zz)]exp[ —j d (vo(z),O;z)dz}, (E2)
(6]

where ¢ = (g, ,q, ) is a two-dimensional vector, d is defined
in Eq. (9.11), and

0i2), = % (2,520~ g,(2.22) ] (E3)

with g, defined in Eq. (9.22).

For an isotropic medium Eq. (E2) can be analyzed in
the same way as Eq. (A6) and one finds that
(D> —L>0)/{I), is of order of the rms multiple scattering
angle.

It is also straightforward to analyze Eq. (E1) for a ho-
mogeneous but anisotropic medium. The result of doing this
was stated in Sec. 9 A.

APPENDIX F: CORRECTIONS TO GAUSSIAN
STATISTICS FOR INHOMOGENOUS
ANISOTROPIC MEDIA

When the approximation of Eq. (9.7) for the correlation
between two paths is made, it is possible to compute the
corrections to Gaussian statistics in the saturated regimes.
The calculation is a fairly straightforward generalization of
that done in Appendix B and only the final result will be
given.

Define a function p,(q;z) where q=(q,.4,) by
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P£(q,5,2) =p(q —e,(s'(2)-9),t;z) where p is defined in Eq. (E1).
Then the analog of Eq. (B12) is

(17 =2(1)?

R
Qe [ [ dap@oaeca.

(F1)
where
Qu(z,q)=2[1—cosqqg(z.2)k ']
R
X exp[ — ZJ d (vl(z,z'),O;z')dz’] (F2)
(8]
with
viz.z')=k "'qg,(z.z) (F3)

and d and g,; are defined in Egs. (9.11) and (9.22).

Using {2 and @ as defined by Eqgs. (9.21) and (9.6) it is
possible to show that the right-hand side of Eq. (F1) is small
in the fully saturated regime and in the partially saturated
regime for p < 2. As before, in the fully saturated regime the
dominant contribution comes from the regions z=0 and
z~ R and in the partially saturated regime p, can be approxi-
mated by its aymptotic form for large [g. Also, @, can be
simplified by expanding the cosine and replacing d by its
expansion for small v,. The detailed calculation which is then
fairly straightforward will be left to the reader.

The generalization to {I") works in the same way as in
Appendix B.

The coherence tail is given by Eq. (B16) with
R
W0, — Ty Fg —Topt )= 27k ZJ dlj d’q
(0]

X expliq--(z)1p.(q,5:2)Q(4,2) (F4)

where « is defined in Eq. (91.4). The approximations men-
tioned above can also be made in the integral for y. Finally,
Eq. (B19) holds with y given by Eq. (F4).

'V. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill,
New York, 1961).

L. Chernov, Wave Propagation in a Random Medium (McGraw-Hill,
New York, 1960).
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'V. Tatarskii, The Effects of Turbulent Atmospheres on Wave Propagation
(National Technical Information Services, Springfield, Virginia, 1971).
*A. Prokhorov, F. Bunkin, K. Gochelashvily, and V. Shishov, Proc. IEEE
63, 790 (1975).

‘Radio Sci. 10, (1975), Special Issue: Waves in Random Media.

*R.P. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals
(McGraw-Hill, New York, 1965).

'S. Flatté, Ed., Sound Transmission through a Fluctuating Ocean, to be
published by the Cambridge U. P.

“The technical meaning of “‘a single scale™ is that the three-dimensional
Fourier transform p(q) of the covariance of i should fall faster than |g at
large |g|. See Sec. 7.

"The assumption that p's at different times are jointly Gaussian, places
restrictions on the dynamics of the medium. It is consistent with either the
Taylor hypothesis (convection of a frozen field by a “wind™) or time de-
pendence due to linear wave motion.

"Boundary conditions corresponding to, say, a plane wave at z=0 can be
obtained by superposition.

"Inderiving this equation one neglects (3*/9z°)# relative to 2ik (d/3z)% ,u*
relative to 2u and time derivatives of 4 . The latter requires the assumption
that the medium does not change while a wave travels a distance L. This is
true if condition (i1) (i.e., AL < 0T ) holds. Because R is always taken to be
large compared to L, condition (iii) implies {u*)' <.

“R. Mercier, Proc. Cambridge Philos. Soc. 58, 382 (1962).

"The line @=42 is actually in a transition zone where the fluctuations are
larger than Rayleilgh, see Sec. 7.

“Note that the rms multiple scattering angle is 6L/Ra so that a is restricted
to be greater than ~ 6L/R. However, R is usually very large compared to
L and there is no problem here.

"In the optics literature (Refs. 4 and 5) there is some controversy as to
whether or not P(/ ) is Rayleigh in the saturated regime. Asymptotically it
is but the corrections may be substantial in some experiments, see Secs. 7
and 8.

"“To make this rigorous, start with the finite form of the path integral in Eq.
(2.1) and repeat the steps (including a summation by parts in the first term
in the exponential) leading to Eq. (2.14) which is now an integral of finite
dimension. Integrating over the discrete variables, u, will produce a prod-
uct of & functions which forces the v, tosatisfy v, | --2v, +v, ,=0with
v.=r, - Iy and v, =r —r.. There is a unique solution and in the contin-
uum limit Eq. (2.16) is reproduced.

"Up to a normalization it is the path integral for the unperturbed problem.
The correct normalization is obtained by comparing both sides of the
equation for the case where the fluctuations vanish and ¢ =0.

*J. Lawson and G. Uhlenbeck, Threshold Signals (McGraw-Hill, New
York 1950).

"It is also implicitly assumed that the signal is in the saturated regime for all
important frequencies in f.

"Thisis M for region (a). In Appendix Bit is shown that the integration over
the center of gravity of all four paths produces a & functional which forces
the difference between members of each pair to be equal (v,).

“'The case where there are many unperturbed rays is treated in detail in Ref.

7.

“When multiplying vectors and matrices the summation convention (re-
peated indices are summed over) is used.

*This result is equivalent to that of T.P. Williams, Proc. Roy. Soc. A 342,
131 (1975). The author was not aware of his work at the time of writing.
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Higgs mechanism and the inverse Einstein-infeld-Hoffman
problem
Ronald L. Mallett

Department of Physics, The University of Connecticut, Storrs, Connecticut 06268
(Received 21 August 1978)

The Guralnik~-Hagen model for a self-coupled spin —1/2 field is minimally coupled to a gauge
gravitational field. The corresponding free gravitational Lagrangian is not explicitly introduced. It is
shown that, using spontaneous breakdown of Lorentz invariance and the generalized Gordon

decomposition, the Higgs mechanism generates a gravitational Lagrangian which leads to the usual

linearized Einstein gravitational field equations.

I. INTRODUCTION

A reformulation of the energy-momentum conserva-
tion laws consistent with the group of general coordinate
transformations is well known to lead to the conclusion that
the geodesic equations of motion of matter follow, as a neces-
sary consequence, from the gravitational field equations.
This result in one form or another may be called the Ein-
stein-Infeld-Hoffman (EIH) problem.' One particularly
simple formulation of this problem follows from the general-
ly covariant zero divergence of the energy-momentum ten-
sor which is assured by the field equations and the Bianchi
identities.? By application of a suitable transformation to the
covariant divergence a form is obtained which involves the
ordinary divergence of the sum of the energy-momentum
tensor of matter and pseudotensor of gravity. The symmetri-
cal nature of this formulation of the conservation laws sug-
gests the following question: To what extent are the gravita-
tional field equations determined by the equations of motion
of matter? This question may be called the inverse EIH
problem.

In a previous paper,’ we examined the consequences of
the spontaneous breakdown of local Lorentz invariance for a
self-coupled local spin-1 field interacting with a gauge gravi-
tational field.* The corresponding gravitational Lagrangian
was not explicitly introduced. It was found that this model
produced a term in the Lagrangian via Higgs mechanism’
which lead, in the static weak field approximation, to the
Newtonian gravitational field equation. This model was par-
ticularly interesting because it suggested that, for the gravi-
tational field, the gauge coupled matter field equations de-
termined to some extent the structure of the gauge
gravitational field equations of motion. In this paper we shall
study the analogous problem for the Guralnik-Hagen mod-
el* of a self-coupled spinor field interacting with a gauge
gravitational field. It is shown that, using spontaneous
breakdown of Lorentz invariance and the generalized Gor-
don decomposition,” the Higgs mechanism generates a term
in the Lagrangian which leads to the usual linearized Ein-
stein field equations.

Il. SELF-COUPLED LOCAL SPIN-} FIELD AND
THE GAUGE GRAVITATIONAL FIELD

We shall take as our model the Guralnik-Hagen La-
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grangian® of a self-coupled spin-1 field and minimally couple
it to a gauge gravitational field*

L = ey (0)[8, — 40P F 5\ ]¥ + P (), (1
with
Y = el (', 2)
Fapy = €3V oy 3
Vi an = 9y €y — L s €y (4)
re,.= g 3, 8+ 9,804~ 918 (%)
v = S @, ©
Sapy = (— LLLD, )
TP = L B B i) (8)
e= det(e(a)”), )

P(¢) = _’,u‘l/jl// + %/{ (Jiﬁ)z) ,U,,/l = const >0, (10)

where indices in parentheses indicate local Lorentz compo-
nents. The vierbien field e, was originally introduced as a
means of describing a spinor function ¢ in a general Rieman-
nian manifold where 3 transforms like a scalar under general
coordinate transformations. The Lagrangian (1) is invariant
under the combined space~time dependent Lorentz trans-
formation of the local spinor fields ¢, ¥ and gauge potentials
F, .z, given by

v—]1 + %U‘“ﬁ)w(aﬂ)(x)]w, (an
b0l — jo'? )w(a/})(x)]’ (12)
Frapr=Fap) + Or (XOF A )(/3)

+ Wpa )(X)F‘m)u '+, D (%), (13)
with
Y=Y (X) + @, (X)eP T YO, (14)
where
Opy = — Oppy  and Flpy= — F g,

I1l. GENERALIZED GORDON DECOMPOSITION
OF L

The generalized Gordon decomposition’ is a useful
technique for separating the interaction density into a “‘con-
vective” (i.e., ¥ matrix independent) part and an “‘internal”
part. We will apply a partial form of this technique to the
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Lagrangian density (1). Equation (1) may be rewritten as
L = ey (x)d,p — eS o Floip + €P (@), as

where F; ,, = e(,,"F.;,, and the Dirac spin density 5% is
given by

S ey — i _7,(0) a(rlp)d,’ (16)
The equation of motion for the Dirac field is from Eq. (1),
Y, — k0P o)) — pp + A G)Y = 0. (17)

Substituting Eq. (17) and its adjoint into Eq. (16), multiply-
ing by F,,,,, and using y* y*? = §* 4 0", we obtain

2p) _ QoA LoNT A
S(U * F((r/lp) =S @ p)F(m{p) - (EIU)I//F (uafpo p)z/)

i T (aBuo
X Fiuapy Fiongy — (gL PRT U g Fi
(18)

where

§10 = Q[P0

— 8Ly ()P o4y + 2(%/})%,@) preny

(19
and
[ waBolp) _ 7,(#) ;,m) 7,(/3) 7/(0) 7,(/1) ?,(p)’ (20)
[taBp) — 7,((') ?,(ﬁ),,,?/(p)_ (21)

Applying the identity y*y™ = §¥" 4 0% to the last two
terms in Eq. (18), we obtain®

” o, 1 . a
SO gy = S T OF ) — (GO " F
_ 1;'(.11)('LI')(I’)17(/1 )(/ip)] -+ P (OAP)F(O;LP), (22)

where 3 contains all the terms ¥yF with an explicit y ma-
trix dependence.

IV. SYMMETRY BREAKING AND THE
LINEARIZED EINSTEIN EQUATIONS

The Lorentz invariance of (1) is spontaneously broken
by imposing the condition

(O[W]|0y = 040, 23)
where o 1s a constant local spinor. Calculating
L) —o, 24)
Iy

we have from Egs. (10), (23), and (24),

o0 = p/A. (2%)
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Using Eqgs. (15) and (22) and expressing the Lagrangian in
terms of fields ¢ = ¢ — o possessing a zero vacuum expec-
tation value, Eq. (1) becomes

L=Ly+Lpg+L, (26)

where

L, =ed'y'(x)3,¢/, 7

Lp=(e/32A)F K, — F®¥DF ) — Leu/A,
(28)

with L, denoting the remaining terms.’ To interpret L we
linearize the gauge field F with

e/l((l) = (S,ua + h;ut‘ (29)

Keeping terms bilinear in the derivatives of 4, and neglect-
ing the cosmologicallike term (u?/4 )(1 + &), we have from

Eq. (28),
L, =(1/324)(@h 3, h,, + 29,hd h "

—3hd, h— 3B G~ FhD, k), (30)

where i = h 7. Taking the variation of Eq. (30) yields

5L _
2 " = (1/164)[CPh *F — (3,8°hP* + 3,0°h %)
af3

+ 3°3°h + 8% (3,0"h | — Fh)]. 31

Equation (31) is the usual linearized Einstein gravitational
field equation.'”
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The covariant differential properties of the split Cayley subalgebra of local real quaternion tetrads is
considered. Referred to this local quaternion tetrad several geometrical objects are given in terms of
Zorn-Weyl matrices. Associated with a pair of real null vectors we define two-component spinor fields
over the curved space and the associated Zorn-Weyl matrices which satisfy the Dirac equation written in
terms of the Zorn algebra. The formalism is generalized by considering a field of complex tetrads defining
a Hermitian second rank tensor. The real part of this tensor describes the gravitational potentials and the
imaginary part the electromagnetic potentials in the Lorentz gauge. The motion of a charged spin zero
test body is considered. The Zorn-Weyl algebra associated with this generalized formalism has elements

belonging to the full octonion algebra.

1. INTRODUCTION

In most applications of Cayley algebras to relativity
theory a modification of the algebraic structure is re-
quired so as to make it compatible with the indefinite
metric structure of the spacetime., Such modification
can be obtained by using a suitable redefinition of the
algebra over the complex field. In this case the algebra
loses its division property and becomes a split algebra,
A well-known example is given by the associative sub-
algebra of complex quaternions (or biquaternions, or
split quaternions) or the Cayley algebra in special rela-
tivity, where a Weyl representation by 2 X2 complex
matrices is used,’

Recently the split quaternion subalgebra of the Zorn
algebra has been applied to the Maxwell and Yang— Mills
fields in special relativity.? Further applications to
particle physics are also known in the literature.®™% The
purpose of this paper is to investigate the application of
the Zorn algebra to the study of the relativistic wave
equations in curved space. It is found that by using the
conventional tetrad formalism, which connects the
tangent space to the pseudo-Riemannian spacetime, it is
possible to construct an algebraic tetrad structure be-
longing to a split quaternion subalgebra of the octonion
algebra, where the algebra of octonions is here repere-
sented by a modified version of the Zorn matrices.®

It follows that the role played by the second-rank
Hermitian matrices of the two-component spinor formal-
ism are taken over by four Zorn— Weyl matrices which
are associated to each local Weyl representation in the
curved space. Since the “internal” symmetry group is
the local SL,(C) we have two different Weyl representa-
tions, which define two sets @) //, (a=1, 2) of the above
matrices. The analogy between the ¥4, and the second-
rank Hermitian matrices again indicates that the present
formalism is equivalent to a local quaternion subalgebra
of the full Cayley algebra, This property follows from
the fact that the ‘“)4, are really 4X4 matrices as com-
pared with the 2X2 matrices 0,, 7,. We also show that
this local quaternion tetrad written as Zorn— Weyl
matrices acts as projection operators which associate
to each geometrical object (tensor or spinor) a well de-
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fined Zorn—Weyl matrix. The flat spacetime limit is
then easily obtained and coincides with known results.

Our present Zorn— Weyl representation of octonions
(and of quaternions) may also be thought of as a 4x4
matrix (similarly as a y-matrix). Such matrices, and
their nonassociative law of product were already con-
sidered in the literature.® However, we mention that for
our covariant treatment involving the “internal’ group
SL,(C) such analogy is not relevant. Indeed, it is not
possible to associate to each )4/, a y-matrix since for
each value of a we have only a type of Weyl basis, and
as is known a y-matrix contains the two-Weyl basis. Due
to this we interpret the ¥/, as Zorn matrices referred
to a Weyl basis, the nonassociative product being de-
fined locally by introducing “scalar” and “wedge” pro-
ducts of the quaternion basis.

In the following sections we consider the definition of
the differential operator in flat spaces and determine
the Maxwell equations in the Zorn— Weyl formalism for
the Lorentz gauge. Then we determine the Zorn— Weyl
covariant derivative and apply the formalism for the
relativistic spin-; wave equation in curved space.

Finally the Zorn— Weyl formalism is extended for the
case of complex tetrads which generate a Hermitian
second-rank tensor field that plays the role of a gener-
alized “metric.” The symmetric {(or real) part of this
tensor describes gravitation according to general rela-
tivity and the antisymmetric (or imaginary) part de-
scribes the electromagnetic potentials in the Lorentz
gauge. It is shown that the algebraic structure of the
complex tetrad contains elements belonging to the
split octonion algebra. The covariant differential prop-
erties are extended to this formalism, and as an appli-
cation the problem of the motion of a charged spin-zero
test body in this generalized geometry is considered.

The conventions and notations which will be used
throughout this paper are the following: The four-dimen-
sional space of general relativity is assumed to have
metric signature +2. Greek indices running from 1 to
4 denote tensor degrees of freedom. Latin indices in-
dicate spacelike degrees of freedom and run from 1 to
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3. Bracketed indices are used to indicate tetrad indices.

Capital dotted, or undotted, italic indices are reserved
for two component spinor degrees of freedom and run
from 1 to 2. Finally, boldface roman indices are used
for algebraic elements, running from 1-7 for the capi-
tal indices and from 1—3 for the other indices. Summa-
tion convention is used throughout and applied to all
kinds of indices.

2. THE SPLIT CAYLEY ALGEBRA IN THE ZORN
REPRESENTATION

Let {e;} be a basis in a seven-dimensional real vec-
tor space with an inner product. The real Cayley alge-
bra, or octonion algebra, () is the linear algebra con-
structed in the above space, with the product operation
defined by

¢aCp =€zp¢ €t — 045 o3, 2.1)

where ¢z57 is totally antisymmetric and satisfies

ease =1 when A, B, C assume the values (I, 2,3), 5,1,8),
6,2,%),,3,5),6,7,3), 4,71, and (5,7,2), For all
other cases eqpp vanishes. The identity element of the
algebra is ey.

It follows immediately from (2.1) that if the indices
vary on each one of the seven above triads (4, B,C) a
quaternion subalgebra is obtained. Thus, the real
Cayley algebra contains seven quaternion subalgebras.
In the basis {03, e} a general real Cayley number is
expressed by A =xze, +xz€7, X5, x2S K. The multiplica-
tion table implies that the product operation is in gen-
eral nonassociative. Furthermore it follows that a
real Cayley algebra is a division algebra.

Now we consider the algebra of complex Cayley num-~
bers ()/C which may be taken as the set of elements of
the form

A=zze;+zzez, z3,2icC. 2.2)

The complex conjugation applied to the components
23, 23 gives a new Cayley number, A*=zFe,+ z¥ez,
and this operation commutes with the Cayley number
conjugation (A)*=(A*), In particular consider the fol-
lowing complex Cayley numbers

uy = 5leg+ie3), uz=1(es+ieqs)

and their complex conjugates. From the multiplication
table (2.1) it follows that the above set of complex
Cayley numbers together with their complex conjugates
form a basis for O/(E. The product between these basis
elements is given by equations

— gr=p Ko =9y ¥ == — Bpaif=
gty = €55l *g, Uty =— Pyjus,

usuz; =0, wjuty=uz, Uz =u7y,
wrou; =0, ugg=1uz uzu*;=0,

and their complex conjugates.

A general complex Cayley number in this basis as-
sumes the form

2.3)

where the coefficients a, b, x;, and y; are in general
complex numbers. In particular they can be real, with
A still a complex Cayley number.

A=qauf + bug +xuf + vz,

In order to introduce a representation of the complex
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Cayley algebra we consider an application Z from /)/C
assuming values on the set My,,, 5 of 2x2 matrices de-
fined over the quaternion field 4. Such application is
defined by

e; O 0 0 0 0
Z(3) = , Zlug) = , Zluz) = ,
0 0 0 e; e; 0
(2.4)
0 ~e3
Z(u? )=
0 0

Defining the sum of two such matrices and multiplica-
tion by € in the usual way, it follows that the applica-
tion 7 is linear in (J/C and from (2. 3) and (2.4) we have
ae, - xiei a -x
Z(fl) = = ,

viey  beg v b

2.5)

where we have denoted xje; by x, the same for y,

The set of matrices of the form (2.5) may define a
representation of (J/C in My,,, ; provided a product
between such matrices is defined in such a way that the
application Z is a homomorphism. In this case the
matrices (2.5) are called Zorn matrices.®

In order to introduce the definition of the Zorn pro-
duct for matrices of the form (2.5) we define the scalar
and wedge product of quaternions as

(2.6)
2.7

The Zorn product between Zorn matrices is now de-
fined in such a way that it reproduces the multiplica-
tion table of the complex Cayley basis

Z(AF) =Z{A) " Z(B)

e; xe3=— 3 (eze3 + e3¢7) = 03365,

1 -] —
o3 A e3= zleze; - e3e7) = G3en.

ac — x xw —az—dx-vpw
= (2.8)
cytbwtxpz bd—-v xz
for
a —-x c —~z
Z(A): s Z(B):
v b w d

The unit element of the resulting Zorn matrix algebra
is

1= =Z(uF) + Z(u3). (2.9)

As can be seen, a complex octonion like (2.3) re-
duces, in general, to a complex quaternion when
a=b,x=v. This quaternion belongs to the quaternion
subalgebra (1, 2, 3) of the octonion algebra. The Zorn
matrix associated to this guaternion is

a —-~XxX

Z(A)= (2.10)
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The conjugation operation induces on the complex
basis the transformation «g, u; ;. Thus, a gen-
eral complex Cayley number B such as (2. 3) which in
the Zorn representation reads as (2.5), transforms
under conjugation to

b x
Z(B)=
-v a
The norm of this octonion is given by
Z(BE) = Z(B)/:/Z(E) =(ab + X:V;)]I_

Here we are interested in the situation where the
octinion E reduces to a quaternion of the form (2.10).
In this case the norm of this quaternion in the Zorn
representation will be (@* +x7x3)I. If we take a as an
imaginary number, @ =ix;, and x;,x7 as reals, it fol-
Iows that

ZA) - ZE) = Q@A)+ 1 = — 2 + x3xy. 2.11)

Therefore, the Zorn matrix (2.10) with @ =ixj may
be thought as representing a 4-vector in Minkowski
spacetime (in this case the algebraic indices become
world indices), Likewise given an general octonion
like (2.5) with a#b, x#v but with a4, b imaginary num-
bers, a=1ixz, b=7v;, and all x3, x3, v, ¥; reals, we can
associate to this octonion a pair of 4~vectors in
Minkowski spacetime, From now on we will consider
only this particular type of octonions and quaternions
and their Zorn matrices. The corresponding quaternion
subalgebra of the complex Cayley algebra given by the
set of matrices of the form (2, 10), with the law of
product given by (2.8), and with norm given by (2. 11)
is a split algebra., This corresponds to the property
that the Minkowski spacetime contains isotropic vectors.
Similarly we have a split octonion algebra which cor-
responds to the property that the Minkowski spacetime
contains pairs of orthogonal 4-vectors.

3. EXTENSION OF THE METHOD TO CURVED
SPACETIMES IN THE TETRAD REPRESENTATION

In this section we apply the previous algebraic meth-
ods to a curved four-dimensional spacetime. Such a
type of formalism is an extension of previous works
which apply these algebraic methods to special rela-
tivity.? The formalism which will be developed in this
section corresponds to the use of only a part of the
Cayley algebra, namely the quaternion subalgebra of
the complex Cayley algebra. As in the previous section
we will use this algebra with reference to the Zorn ma-
trices defined in a quaternion basis. In applications to
relativity it is of interest to use the quaternion basis in
terms of the three Pauli matrices and the 2X2 identity
matrix, that is, in terms of a Weyl representation of
the quaternion algebra.” From the algebraic point of
view this Weyl representation is obtained by the applica-
tion W: H/T —~M,,, , which may be defined either by

Wez) =05, Wlez) =01, (3.1)
or by
Wez) =%, W(e?)=(;1.)°07- (3.2)
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The symbols %03, “05 denote the Pauli matrices and the
2% 2 identity matrix, respectively. In the first case
they satisfy the usual law of multiplication of the Pauli
matrices together with the 2X2 identity matrix, and in
the second case they satis{y the same law of product
as the e;, e;, namely,

Wles) Wley) =— by; Wles) +e3s Wey),

(3.3)
Wles) Wiez) = Wley) Wieg) = Wier).

We will use the second alternative. It should be ob-
served that the Zorn representation of the quaternion
algebra treated on the last section is distinct from the
usual Weyl representation of quaternions. However,
since the Zorn matrices associated to quaternions are
defined over the quaternion field, a combined Zorn
— Weyl representation of quaternions can be obtained
by considering the Weyl representation of elements of
the Zorn matrices. Denoting the resulting composition
by ZW, we have for a Zorn matrix like (2.5) for
a=1ix;, which gives the Zorn representation of the
split quaternion subalgebra of the complex Cayley alge-
bra.

Wa) -Wix) ixzWleg) = xyWiesy)
ZW(A) = = ’
Wix) W) xiWleg)  ixsWles)

which, from (3. 2) takes the form

ixgoy - l’ x,%73
ZWd)=
1~Z, x3%07  ixglog ©.4)

Presently we have to adapt this notation to our prob-
lem of a curved spacetime with a Riemannian structure,
For this purpose we consider only the local properties
of this spacetime translated in terms of the Zorn— Weyl
algebra. With this in mind we consider the local tangent
space at each point of the Riemannian spacetime, and
the set of four local tetrad vectors h, = (hey,). All
algebraic quantities, with indices o,17, 7, etc. now be-
come quantities defined on the local tangent space with
indices (0), (i), (), etc. The metric g,, is related to
the Minkowski metric 17,5 by means of the local tetrad
field

a8
Luv =Ny "R, Neape

The matrices Oo(c), 00(,.), 0;, o, have degrees of free-
dom given by the indices A and A which run from 1 to
2, both indices taken as contravariant indices. The
matrices denoted by 7 have both indices as covariant
indices, also of the type KM. The matrix denoted by / is
the 2 X2 identity matrix of the form (5%). In the local
tangent space which here is taken with signature +2
we can define three types of identity matrices: “0'?,
°T(oy, andf, The matrix °7(,, is defined by °7,, =€’0f ¢
=I and is numerically identical to the identity 2X2
matrix, but has covariant indices of the type KM, Here
€ is the matrix

0 1
€= (GKM) = (GKM) = o
-10

Since local indices are raised and lowered
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respectively by 7°® and n4s, we have °0(,, =—1. The
covariant matrix product is defined only between
matrices of the type 0 and 7. This implies that the
algebraic formulas defining the quaternion structure
like (3.3), and the formulas defining the ZW represen-
tation of quaternions have to be translated in this
covariant notation, With this in mind we define the
following Weyl representations on the local tangent
space, which are associated to SL,(C):

1 (
Wley) zfoo(in Wile () =20,

(3.5)
1 r
Walew) =7 10, Wale(o) =T
In the limit where we consider only the action of
SU,(C) on the spinor degrees of freedom they degenerate
in the representation given by (3.2) for the spacelike

degrees of freedom, Wiley,) — Wleg,). Besides this we
also define

Wyleg) =1=(6%),

It can be shown that the covariant law of product for
the Weyl representations (3.5) has the form
Wile i )Waley) == by Wslewop)* ey iyom Wilew) Y Wa (o),
(3.6)
Wile (o)) Waleo,) = Wiler,)- (3.7

These formulas presently substitute the formulas
(3.3).

Given the Zorn matrix associated to a quaternion we
can write it in the Weyl representation of the type Wy as

e pmyWilewy) = auWilen,)
apWiley) i Wile)

(3.8)

For the same quaternion, or in generalfor any other
guaternion, we can write the ZW matrix of the type W;
by replacing the subscripts 1 by 2.

On the remainder of this section we will use these
matrices in place of the matrices (3. 4).

The product of these matrices is defined similarly
as before [see Eq. (2.10)]:

o ¢
ZWy(A) » ZW,(B) =ZW,(C) = ’ (3.9)
v b
where
a=0==abyWilew) = @b Wilewy) *Wale)
By == (i by T i b Wilen)) Wale )
= ag by Wiley) A Waleg)).
From (3. 6) we define by analogy with (2.6) and (2.7),
Wileay) » Weleg) == 250, 5 (Wilew) Wele )
=0y Walen). (3.10)
Wleq)n Waley,) = 2Ba,nWilew) Wyle )
=26 I Wilew) Waleo)

+ Wi(e( o)) IVZ (e(k))]
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=€ Wileq) Wale,)
=€ Wilew) Wale,), 6.11)
where

Sti,n Ty and Eq 53Ty,
for any 7'y, mean
Sti,n T =Twwn Y Tihay EanTorg =Twmg = Toia -

Of fundamental importance are the ZW matrices
associated to the tetrad field, which are defined by

(‘17/1/“ — ZW'1 (Hu)

iy Wileoy) = hu gy Wilew))
, (3.12)
haiyWileay) i) Wileo)
(2)#“ :ZI'Vz(Hu)
_ illu(o)lf[/z((?(o)) "'hu.(i)WZ(e(i))
= , {3.13)

Ty iy Waleds)

where H; =1, (51 Cioyt Ru 3305y

ity oy Walega)

From these definitions it follows that the metric of
the Riemannian spacetime is given in terms of the ZW
matrices (3.12) and (3.13) as

22, ZWsleqy)

=ZWi(H,) 0 ZWy(H,) + ZW(H,) = ZW,(H,), (3.14)
where
Wsle ) 0
ZI’V:}(?(O)): =1I.

0 Ws(e )

The world indices labeling the several elements of the
algebraic quantities given by (3. 12) and (3. 13) are
raised by the metric field g"*. The process of raising
(lowering) world indices is presently equivalent to a
sum of terms representing the multiplication of Zorn—
Weyl scalars, the metric components, by Zorn—Weyl
matrices which display free world indices,

(1)/1u :’guv (1)]1%'/’ (2)/111 :guv (2)/11/ .

This process is extended to any other ZW matrix pos-
sessing free world indices.

4. THE ZORN-WEYL DIFFERENTIAL OPERATOR
IN FLAT SPACETIME

We define a flat spacetime Zorn—-Weyl differential
operator in the quaternion representation as

iW,leg) 8y — Wyle;) 2,
D, =

4.1
= \Wyiepa, —iWlen g @y

:ZW,,(au),

where « takes the values 1 or 2. Here 9,, ¢; denote the
usual partial derivatives. The operator {4.1) acts on a
Zorn—Weyl matrix as D (A)=D,oA. It follows that

DicDy=D 0Dy=DynDy=Dy > Dy =711 (4. 2)
where

C=03,8, n*f=diag(-1,+1,+1,+1).

If A, is the electromagnetic potential its associated
Zorn—Weyl matrix is given by A, =ZW,(4,). Using
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(4. 1) it is possible to show that the Maxwell equations
in the Lorentz gauge assume the form?

1)2"\ (El "\742):_‘]_2: (4'3)

where J, =ZW,(j.) are the two Zorn—Weyl representa-
tions of the current 4-vector.

5. ZORN-WEYL MATRICES ASSOCIATED TO
GEOMETRICAL OBJECTS

The Zorn—Weyl matrices associated to the four
vectors of the tetrad H, = (h, gy, ui1yy Puczys Musy) are
given by @/, =ZW _(H,). Then the Zorn—Weyl matrices
associated to a vector B, are defined by

(5.1)

Algebraic Zorn—Weyl objects may also be associated to
tensors, spinors, and mixed geometrical objects. To
B, a tensor of rank two, we can associate the Zorn—
Weyl matrices

(a)B:(a)//uB“t :(a)//u ~ ﬂBuw

@, =9 B, a=1,2, (5.2)

a
where B, =h(y B, .

It is also possible to associate with B,, a further
Zorn—Weyl matrix given by

C :((1)/¢7u -~ (2)%/V)Buw

If B,, is symmetric the expression (5, 3) becomes
C=g""B,, *1. If B,, is antisymmetric C contains only
nondiagonal “matrix elements.”

(5.3)

Now we consider the problem of associating ZW
matrices to spinor fields in curved spaces. This
correspondence is obtained by recalling that two-
component spinors are related to tensors through well-
known formulas. Here we are mainly interested in two-
component spinor fields of the type X4, w?, since we
want to obtain the Dirac equation for a massive spin-3
particle in terms of the Zorn algebra, With this in mind
we consider a pair of real null vectors V,(x) and W ,(x).
Then

¥, () = 1028 (0)x ()xg (), (5.4)
W, (x) = 3022 (x)w , (W) w5 (%) = 30,45 )0 (W)’ (x), (6.5)

where 022 ) =7,4, )°0*) 4% | In matrix notation we have

x=(xA)=<§‘>, x'=(x3) = (), o, =(2%)=0].
2
Similarly we denote
1
w
f = (w) = (0!, w?).
Raising (lowering) of spinor indices is obtained by
the use of the spinors €45, €48, as usual, ¥*=e*¥y,,
¥4 =0%xa. Now Eq. (5.5) can be written as W, =32,
where p, = (UuAE):pI. Since W, is a real vector field,

Wy =W,=307pz0*=- 1077, Q*,
Similarly Eq. (5.4) gives
Va=13x"0,X.

Therefore, we get the Zorn—Weyl matrices associated
to the spinor x and Q:
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(G)B:(a)/j/l" Vu-: }(a)//u - [IXTU X
2 w Xo
@ — Cady W, =~ %(a)//u m’ﬂQTTuQ*,

(5.6)
(5.7)

Zorn—Weyl matrices associated with higher rank
spinor fields may also be constructed. For example,
if dapcp is a spinor associated to a second rank tensor
field,

By, () = 10 (1)0D () 43 5 (x).

Then Zorn—Weyl matrices of the type (5.2) or (5.3)
may be obtained. Finally we may also construct
Zorn—Weyl matrices associated to mixed spin-tensor
objects. For example, for the spin-tensor field ¥4 (x),
the associated Zorn—Weyl matrices are

(a);A:(a)ﬁud)ﬁl:(a)/_/u ,-,\[1.4)‘-:\_ (5.8)
6. THE COVARIANT ZORN-WEYL DIFFERENTIAL
OPERATOR AND FIELD EQUATIONS

Now we consider the problem of forming higher order
tensors, spinors, or mixed objects by taking covariant
derivatives in the Zorn—Weyl formulation of these
objects. For that purpose we introduce an affine con-
nection and define the differential operator

Ou:1"8u+ru, (6.1)

and, using (5.1), its associated Zorn—Weyl covariant
differential operators are constructed as

(a)lD:guu (a)}/_/uz)u:(a)/_/u/)u. (6.2)

The definition of I', will depend on the space where ta)p
operates. We can write I, = (I, %) where the indices

®, B are to be taken as world indices, or spinor indices.
Thus if ‘“D operates on a Zorn—Weyl matrix associated
to a world vector, then I',%z is given by the Christoffel
symbols {£*8}. On the other hand, if ‘“ID operates on a
Zorn—Weyl matrix associated with a spinor field the
T'.*7 are the components of the spinor connection. We
may also consider ‘““'D acting on Zorn—Weyl matrices
which are associated with mixed objects displaying
vector and spinor indices, in this case T, E‘g is a more
complicated object where the indices &, B take on the
values of spinor and tensor indices. In this case

(T, %5 are represented by a sum of terms involving

the Christoffel symbols and the spinor affinities. In

Eq. (6.1) 1 denotes the identity element with the same
index structure as the term in T,,. For example,
considering the mixed object zl)ff of (5.8) we have

Dutt= (%0.-1 2 4ot e 0.
Therefore, in this case 1 is represented by 6552 and
(PEE) _’(— {“PV} 6$ + Fu,ADéxe)\‘

Here I',#, represents the spinor affinity associated to
local unimodular transformations of the spinor indices.
In the flat space limit, in Cartesian coor %glates,

Higy — 8%, Buigy ~Mus, and I, —0, so thatD' —~ D, Now
using the covariant operator {(6.2) we may construct
covariant wave equations involving tensors spinors or
mixed objects. As a first example consider the
expression

WP o@D/ @Wyypp Wik o) B (6.3)
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where B,(x) is an arbitrary vector field. Using the
properties

[)uh?v):(h Du 1=0

and assuming that B, =A, (the electromagnetic potential)
in (6.3), then‘"D & ‘DB gives the Zorn—Weyl matrix
associated to the electromagnetic field F,, in curved
spacetime. A straightforward calculation shows that in
the flat Iimit this expression reduces to the expression
D, @A, of {4.3). Now consider the Zorn covariant de-
rivative of a real null vector associated to the spinor

X |see Eq, (5.6)]. Denoting

(6.4)

A=DDaDE (6.5)

and using unities such that ¢ =% =1 and usual spinor
connection condition /), 0, =0, we have that the diagonal
matrix elements in (6. 5) are given by 5(x!,0%X
+x10%xq )L
Defining for any Zorn— Weyl matrix
= Wle () 0
S(a) 7 :(a)N+(a)1\1: (a)l\r& FALE e )
W) tr 0 Wiew))’

we have for (6.5)

S(PD & DB) = (x],0%x + x'0%x; 1. (6. 6)
Similarly for the matrix (5.7) we have
S(PD e V) = - (QF, 7% % +QTre0x ). 6.7)
Introducing
L=A{s1Q7 e x +sx" 00, K =(s3x"2%+5,Q7x)1, (6.8)

where sy, 59, S3, and s; are constant numbers to be deter-
mined, we find

S((Z)ID ®(1)§) +/ :{[Xt;aoa + SIQT]X

(6.9)
+Xt[0ax;a +SZQ*]}U‘ 3
S(PD e PC) +K ={27[- 70z, +six]
+[ = QL ™ + 55X QL (6.10)

For the choice sy =s3=-m, s3=s4=m, the terms be-
tween brackets in the right-hand side of (6.9) and (6. 10)
give the left-hand side of the Dirac equation written in
terms of two-component spinors.8 Here m is the rest
mass of the spin-3 particle. According to our method
we may present the Dirac equation in the Zorn algebra
on a curved space as

S((z)]D ® (1)g) -2mRe(Q7- X)ZWg(e(o)) =0,
(6.11)
S@PDe (1)6) +2m Re(Q7- X)Zws(e(m) =0.

Note that from the right-hand side of (6.9) and (6. 10)
the Dirac equation is written as ¥ ¢;, — im¥ =0, for

0 -*oi, 0 47 Xa X
.),ot: . == ) Z[): . = .
io*B4 ¢ io* 0 wh Q*
(6.12)

From our previocus definitions it follows that
Y(a¥sy==2gqs" 1.

It is also possible to derive a direct analog of the
left-hand side of the Dirac equation without the problem
presented by (6. 11) which is quadratic in the spinor ¥,
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2. For obtaining such direct analogy we recall the de-
finition (5. 8) angd rewrite the relations (5. 6) and (5. 7)
as (a)B: XA (a)mA, (a)c = ? (a)/vA, where

(a)m;l

DNy =2 P4 g 10 =19, . (6. 14)

These expressions are linear in the spinors X and Q,
and a straightforward calculation gives

Zé(a)}l/uofBXB:f‘é(a)//uEé, (6.13)

((Z)ID ) (1)7}7/A) O""AB B;uu- (6 15)
Similarly
SEPD @ ON,) = %ot 10, 1. (6. 16)

Define /)A:— mw;‘ﬂ, Fa=mxal.
and (6.16) we have

Then, from (6.15)

\S.((Z)ID ® (1)/WA) +/f)/a1) +/)A:lGuABXB;p _ W‘I(A)A ‘, (6. 17)
SOPD@ DN ) + T o= [*0%4wh, +mXal. (6.18)

Therefore, the Dirac equation in the Zorn algebra may
also be directly obtained from (6. 17) and (6. 18) as

SOD e DAY 4+ ph 0, S(PDa> PN+ F4=0.
{6.19)

Now we derive the Zorn—Weyl version of the Klein—
Gordon equation. Defining the spinor operators (or
Cartankmatmces associated with the covariant deriva-
tive) 0g4/), and 0* CBﬁu, we can form the ZWelements

0 =ZWyle)08a Du, 0D =2ZWyle))o"© /)u~
From (6. 15) we find

0 oS (Do =1 -0f, o"“xs;u;u, (6.20)

0(1)AB ®S(YDe (1)/\/,4)"1 o gt A8 0% 3wE @Sy 6.21)
We have
XB;v;u :é(xﬂ;v;u"" Xasui) +2(Xaswin - XB;u,u)

L (6.22)
:JZXB(;v;LL ) + EPfuB XRr»

where P,, is the curvature 2-spinor. Similarly

W =20l + 1RG0, (6. 23)

Substitution of (6.22) into (6.20) and (6. 23) into (6.21)
gives

0% @ SIPD @ VY = - ZW3lew)Xe;u;vg™

6. 24
+ 1 ZWyle() PR, 533 Cxe (6.24)

(3<1)AB®5((2)D ® (I)M) =-ZW, (e(o))wB:uwg uy

;) 3 3 R 6. 25
_111ZW3(6(0))PEMIQZWVBCQF: ( )

where
Z\uvac — *O‘éAUu;lB _ *U‘éAU““;B.
From (6. 18) it follows that
6(02/i®/9'i = Wl[lU*Aw f= =m?ixe.

Similarly from (6.17) and (6. 19)
OB T =m Lo 4y, =m' 1 o
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Then, the Klein— Gordon equation for each component
of X and £* has the form

&%\ (- {S ((2)]D o (1)//HA) 4+ /)Aa}

(6.26)
=1{-Uxc+ .:PfuBZ:chXR + ’772Xc}:0y
amAé FSOD ) + 74l
(6.27)

=U{- 1w® = IT#8 P, Chof + ma® i =0,

Vi

where ! represents the covariant D’Alembert operator.
The equations (6.26) and (6. 27) in the limit of flat space
reduce to the correct Klein— Gordon equation, for the
signature (+2), in special relativity.

7. SYMMETRIC-ANTISYMMETRIC THEORY IN A
COMPLEX TETRAD FORMALISM

As was seen in the previous sections, the geometry
of the four-dimensional Riemannian space, described
locally by the tetrad field, is algebraically described as
a split quaternion subalgebra of the Cayley algebra. In
this section we look for a generalization of this geom-
etry in such a way that part of its algebraic description
is contained in the full Cayley algebra. With this in mind
we consider a general second-rank tensor field G*¥(x*)

given in terms of a complex tetrad as
G*Y = o, k)T, (7.1)

Here n"‘ﬂ indicates the Minkowski tensor with signature
{(+2). The matrix G = (G*") is Hermitian, G™* =G**,
The symmetric and antisymmetric parts of this matrix
are given by

G(uv) — é (Guv + Guu) :Re(Guv)’

GUVI Z L(GH*Y _ G ) ={Im(G*Y).

(7.2)

Denoting the matrices associated with the symmetric
and antisymmetric parts of G*” by g and if, we have
G =g +if. The matrices g and f are supposed to be non-
singular, and the matrix g is used for raising four-
dimensional indices (and g'1 for lowering these indices),

_ V oeoo wose __ ~(u1) (yo) __ so
Aleee =G A , AP =G%A4) Gu, G = 6.

3

The use of chdrh-plex tetrads is known in the literature,®
and our present formalism giving the Hermitian tensor
G"" in terms of a complex tetrad is a condensed notation
for a formalism due to Smith,!°

From (7.1) we have
Guy =Py (a3 Ity =Gu pyHay - (7.3)

In matrix notation this takes the form K=(G,,),
K=g-+ig-'-fogt=K"

Associated with the field of complex tetrads we define
in each Zorn— Weyl basis the set of four split octonion
elements (for each of the two values of a)
oy Wylewoy) = hE) Wolew)
hL(Lk) “/a(e(k)) lh?z)u) Wa(e(o))

which may be written as ‘“A*=ZW,_(K*), where

(a)Ku. —_ (7.4)

TR * 21, K L H it
K = iR pyulyy +ihEY wioy Ty ueny + hih ui,

In the limit Im(kY,,) = 0 the Cayley numbers K* de-
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generate in elements of the split quaternion subalgebra
of the octonion algebra. A straightforward calculation
gives

ZWHK™) @ ZWo(K¥) = GHY ZWsleqy), (7.5)
where for any quantities A*, B*

A(uBu) :%(Aqu +AVB“).
Therefore, the ZW elements @)i* are associated to the
symmetric part of the Hermitian tensor G*,

It is also possible to introduce ZW elements belong-
ing to the split quaternion subalgebra associated to the
complex tetrad,

ih‘:ﬁ)wya (e(o)) - h‘(l's) W/a(e(s))

(E)Lu — o
i, Wole o)

h“(s) I/Va(e(s))
Since these objects are 4X4 matrices we may introduce
their Hermitian conjugates

1% Wales)

- ih{H Wy lecn)

- ihtfy Wile )

{g) 7/ tu
L —hf*s%W;((’f(s))

In this equation we have to use that Wi(e,,) = W,(e,,)
and Wi(e(,,) == W,{e,). Defining for any ZW element
the operation §('® M) =24 ="'917, we find by a direct
calculation

S((i)L[u & (2)/_Tv]) - ZG[W]ZW’:;((%(O)).

This is a relation involving product in the ZW algebra
which generates the antisymmetric part of G**.

In the formalism presently considered the real part
of G"" plays the role of metric of a Riemannian geom-
etry with affinity ', =T}, (the Christoffel symbols).
Thus, only one kind of covariant differentiation is used,
namely the usual covariant differentiation used in gene-
ral relativity. Therefore, all previous conventions re-
garding covariant differentiation in the ZW algebra apply
here. The antisymmetric part of the Hermitian tensor
G"? is related to the electromagnetic potentials by the
definition'®

A = )\GlEuV] , (7n 6)
where X is a constant. The potentials A* satisfy the
covariant Lorentz condition A%, =— AR, ,G™"1=0, where

R,,=R},, is the Ricci tensor of the Riemannian
geometry,

The operator of covariant differentiation in the ZW
algebra is here defined similarly as before by

(a)]D — (a)/(uﬁu .

As an application of the present formalism we con-
sider the motion of a charged spin-zero massive test
body under the action of gravitation and electromag-
netism, described by the corresponding covariant
Klein—Gordon equation. We take unities such that
c=%=1, The equation of motion takes the form

D D
(G(uu) D® W +WZ2>\II =0, (. 7
D 1
D—xuzl—.[)u\ll—eAu‘If (7.8)
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Using the notation P, ¥ =(1/4)/), ¥, Eq. (7.7) takes the
form (in the Lorentz gauge)

2 .
GUIP, P = 0GP, == (m? + X 2G T GEY o )
(7.9

Writing ‘@B =@4*P,$ we have

(i)EG (2)B:(1)K“0u @ (2)/\/ upvd/]:j(l)/\/u@(Z)K'Vpupvzp.

From (7.5) we get

(1)]]_3@(2)3 :iG(umPuP,ﬂb:Z.GLWPHP,,J'\. (710)

A similar operation may be extended for the vector
field

Dy .
_ﬁ—xiit— :Pud'—A@G[w]’%-
Defining
., D
<a)11:(“)/<“ ..Ij,;hu :% (a)]D__ (?(a)A, (a)R: (a)/< © ek
we have
= I L, D D
MR :(I)K u@(z)KV 5;; % P
Then,
o= v D D
Mg+~ _ Y frw ~ (2) v
S(MmePR) =S (MK 0 PR g o
D D
— Wo) o e 2
=26 . Dx* Dx"z‘b'

Therefore, the Klein— Gordon equation takes the sim-
pler form

G(One DR)+2mP 1 =0,

The first term on the left-hand side of this equation
is the Zorn— Weyl gauge invariant covariant
“D’Alembertian® (divided by a factor 3).

8. CONCLUSION

In the Zorn algebra formulation presented in the
previous sections the spacetime remains four-dimen-
sional. Therefore, the Zorn— Weyl differential operat-
or is written in Sec. 7

(a)]D:(a)/\/u o

has octonion coefficients ‘“X* but the covariant dif-

ferential operator /), acts on coordinates of the four-
dimensional spacetime. This is in part related to the
fact that exist four octonions ‘“’X* for each of the two
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values of the “Weyl index” {a). It should be possible
to think of an operator which involves four extra co-
ordinates as

ID:(H)/"’“D(Q)”, (1:1,2,
such that

DD =5 98" ¢ VK)o
Pt

This operat(;r would be called a generalized “D’Alem-
bertian.” However, it can not be interpreted in a usual
way since there are no coordinates X'®* in the conven-
tional relativistic formalism. One possible interpreta-
tion should be to take X'@* =@o* where Vo* = (0" 44),
Dok = (0%4). Such a formalism is quite different than
the conventional relatvistic theory, since here “coordin-
ates” are the field quantities ‘“’0* (x) of the usual theory,
and the transition of this formalism to the conventional
theory is not straightforward. Since such a generaliza-
tion is not directly reducible to the conventional relativ-
istic theory, we have not considered this extension in
the present paper.

Finally it is worth noticing that in the example given
in Sec. 7, where an octonion algebra appears, the
physical interpretation of the extra four components of
the complex tetrad, or the octonion, is to incorporate
the electromagnetic interaction on a massive charged
test body moving in gravitational and electromagnetic
fields. Thus it can be said that, in our present formal-
ism, the effect of introduction of octonions (complex
tetrads) is to absorb the electromagnetic interaction of
the test particle.
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In this work the SU(2) Yang-Mills equations are studied in compactified Minkowski space. The manifold
is identified with that of the Lie group U(1)xSU(2) and a classification is made of all SU(2) principal
bundles over this base space in terms of homotopy classes of mappings f:§3—S *. Invariance of gauge
fields under transformation groups is defined in terms of bundle mappings and the case of invariance under
SU(2) translations is shown to imply a trivial bundle structure. All solutions to the field equations
invariant under U(1)xSU(2) translations are obtained as well as all (anti-) seif-dual solutions invariant

under SU(2) translations.

1. INTRODUCTION

The interpretation of classical gauge fields as connec-
tion forms on principal fibre bundles has led to a deepened
understanding of the underlying geometric and topological
structure.'™ Solutions to the SU(2) Yang-Mills equations in
Euclidean space have been extensively studied in the recent
literature and particular attention has been paid to those
which arise as a pullback of some solution on the space S*
under a compactification mapping. A complete algebraic
geometric classification has been given by Atiyah et al.’ for
the self-dual Yang—Mills fields of this type, and numerous
families of explicit solutions have been obtained.**°

The Yang-Mills system in Minkowski space has re-
ceived much less attention, partly because of the more diffi-
cult problems associated with hyperbolic differential equa-
tions. No systematic classification has been attempted,
although certain particular solutions with interesting prop-
erties have been obtained.!'”** Again, a compactification of
the space is useful on the one hand in order to have a global
realization of certain group actions leaving the field equa-
tions invariant® and is necessary on the other hand in order
to give a meaningful interpretation to such topological invar-
iants as the Chern class (instanton) number. A well-known
procedure®* leads to a homogeneous space of the Min-
kowskian conformal group [locally isomorphic to 0O(4,2)]
factorized by the isotropy group at the origin of Minkowski
space. The resulting manifold, referred to as the conformally
compactified Minkowski space, is most easily realized as the
projective cone of null vectors in R® under a quadratic form
of signature (2,4) and is diffeomorphic to (5! XS *)/Z,, the
manifold of the Lie group U(2). For simplicity, we shall
mainly be working with the twofold covering space ' X S?,
identifiable as the manifold of the group U(1) x SU(2),

“Research supported in part by the National Research Council of Canada.
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which may alternatively be regarded as the compactification
of the universal covering space R X.5"°.

A simplifying assumption which has proved useful in
the determination of particular solutions to the gauge field
equations has been the requirement that these be invariant
under some relatively large transformation group, in par-
ticular, subgroups of the conformal group of space-time.
For the case of ordinary tensor fields, such a characteriza-
tion is unambiguous and the form of such fields may be de-
termined in a straightforward fashion.? The notion of in-
variance of a gauge field, however, has been somewhat
loosely treated in the literature, since in certain individual
cases a seemingly arbitrary gauge transformation which ac-
companies the group action must first be picked.*™'* An at-
tempt has been made by Bergmann and Flaherty* to shar-
pen this notion of invariance at the level of vector bundles.
This was limited, however to infinitesimal invariance under
one-dimensional Lie groups and involved the replacement of
the finite gauge transformation by a seemingly equally arbi-
trary infinitesimal one. In fact, the precise definition of in-
variance, valid for finite group actions of any dimension, is
easily interpreted at the level of connection forms on the
principal bundle and will be given in Sec. 3.

In Sec. 2 a summary is given regarding the coordinate
systems and reference frames used in the subsequent calcula-
tions and the relevant transformation groups. Of particular
interest will be the action of U(1) X SU(2) on itself by left or
right translations. A convenient set of coframes is provided
by the canonical left or right invariant forms of Maurer—
Cartan. The corresponding metric under which these frames
are orthonormal is the natural O(2) X O(4) invariant one,
conformal to the Minkowskian metric. In Sec. 3, the condi-
tions for invariance of gauge fields under a transformation
group are studied, the “arbitrary” gauge transformations in-
terpreted as transition functions between local sections in
the principal bundle and a criterion given (Proposition 3.1)
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for when these transformations may be eliminated by a suit-
able choice of sections. The construction of all possible
SU(2) bundles over S'' X.S * and their classification by homo-
topy classes of maps f: $*-—SU(2) is given (Proposition 3.2)
and the Chern class number is shown to be equal to the de-
gree of f(Proposition 3.3). It is proved (Proposition 3.4) that
no nontrivial bundle exists which admits an SU(2) group
action projecting onto left or right translation in.S'' X § %, and
moreover (Proposition 3.5), that the existence on the base
manifold of a local connection form (gauge field) which is
invariant under SU(2) translations and which satisfies the
Yang-Mills equations is sufficient to imply a trivial bundle
structure. Thus, all SU(2) invariant solutions have vanishing
instanton number. In Sec. 4, we consider those gauge fields
which are invariant under left or right translations by

U(1) x SU(2). Since the group acts transitively, the fields are
determined through invariance by their value at any one
point, and the field equations reduce to a set of algebraic ones
which may be solved. Among the solutions are certain new
ones which are essentially complex, in the sense that no
gauge transformation may cast them into a real form. An
interpretation of these necessarily involves a complexifica-
tion of the Lie algebra and hence an extension of the struc-
ture group to SI.(2,C). The details of such a complexification
are not analyzed here; instead, we limit ourselves to deriving
all the U(1) x SU(2) invariant complex solutions to the field
equations regarded as forms on the base manifold. In Sec. 5,
all self-dual and anti-self-dual fields invariant under SU(2)
translations are obtained. The analysis for both Sec. 4 and 5
involves the canonical forms of complex symmetric 3 X 3
matrices. The results of these sections are summarized in
Propositions (4.2) and (5.1)-(5.3). Finally, in Sec. 6, there is
a brief discussion of gauge fields invariant under the group
SO(4) formed from left and right SU(2) translations and the
implementation of cyclic boundary conditions.

2. THE MANIFOLD AND GROUP ACTIONS

Let us identify each point in the space §' X.S* with an
element (¢'%,v) of the group U(1) X SU(2). Introducing six-
dimensional coordinates as

eV = us + in,, v=u'—iv'o,

(2.1

2,22 2 22
uptus=ui+uy+uytuz=1

(when i appears as a coefficient it means \/ — 1), where g,
are the Pauli matrices, the points {(u“), _,  s€R®} consti-
tute an orbit under O(2) X O(4) on the cone
C* = {(eR’ | 93— 7 — 73 — 13 — M3 + 05 = O
(2.2)
[Raising and lowering of six-dimensional indices is always to
be understood as defined by the metric diag (+ 1, — 1,
—1,— 1, — 1, + 1).] Since this orbit intersects each ray on
C* in two points (¢%) and ( — ), the projective cone may be
identified with the space (S'' X S °)/Z.. At the group level, this
may be realized by the homomorphism j : U-
(1) xSU(2)—U(2) defined by

J i@ p)y—»u=e "veU(2) 2.3)
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which has the two element kernel {(1,1),( — 1, — 1)]. We
may note however that while §'' XS is thus identified as a
twofold covering of (§'' X .5 %)/Z,, the two spaces are actually
diffeomorphic under the identification

U(2) 2pv(p’v,)eU(1) X SU(2), (2.4)
where peU(1); v, v,€SU(2) and

p O
UPEU( )
6 p

Note also that although (2.4) does not define a group isomor-
phism, it does preserve the action of left translation under
SU(2) and a similar diffeomorphism may be defined which
preserves right translation.

The compactification of Minkowski space M may be
realized by identifying the point with Cartesian coordinates

(x*),, — o, .3 with the Hermitian matrix,

h=x"o, (0.=1) 2.5)
and using the Cayley transform?®'

C:h—u=(1—ih)1 +ih)'€UQ2). (2.6)

In terms of coordinate components, this gives the usual
relations:

xt 1+ x? 1 —x?
=+ —, uw=+ * , w= 4 , 27D

T 27 27

— {x2 1 2y21172 2 2 2 2 2
where 7 = [x5 + (1 — x?)*}"? and X* = x5 — x] — X3 — X3,
and their (singular) inverse

]

Xt =

. 2.8)
ut +u

We have the following natural group actions on §' X8

Left and right translations under SU(2):

SUR), L,V 0)—(e"w), (2.9a)

SUQR)x R, (¥ v)—(eVvw), (2.9b)
where

a+ib c+i
= SU(2), 2.10

v (~c+id a—ip)SVP (2.10)
witha> + b2+ +d?=1.
Left and right transiations under U(1):

L") = R (e 0)—(e" " ) ). .11
Left action of the product SU(2), XSU(2),

L€V 0)—(woow'™),  w,w'eSU(2). (2.12)

The diagonal SU(2) subgroup [SU(2), ® SU(2)x ] p[whichis

conjugation of the SU(2) group on itself}:
D (e v)—>(e"wv w). (2.13)

From (2.1), (2.7), and (2.9)—(2.11) we see that left translation
by (¢",w) and right translations by (e ~ “%,w™') are conjugate
to each other under the map
Fopru® it ut )

—(—u’, —u, — W, — ) 2.14)

corresponding to space—~time inversion in Minkowski space.
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The product group SU(2), ® SU(2) in this representation
may be identified with the group SO(4) acting on the
(u',12,1°,u*) subspace. [More specifically, we have a homo-
morphism: SU(2), ® SU(2),—SO(4) of which the two-ele-
ment kernel {(1,1),( — 1, — 1)} acts as the identity.] Fur-
thermore, U(1) translations on .S ! may be identified with the
action of the group SO(2) in the (4°u°) subspace. The diag-
onal subgroup [SU(2), ® SU(2)g ] p acts on the (u',u*,u*)
subspace and may be identified (again, factorizing first by
the kernel) as the SO(3) subgroup defining proper rotations
in Minkowski space.

Define a basis {z,} for the u(1) @ su(2) Lie algebra as

g;
tgzi]l, ti: — 1'21’2937
2i
(2.15)
[t()yt,‘] = 0) [tnt]] = Gijktk'

A corresponding basis for the cotangent space
T*(S'x 5" is provided by the canonical (Maurer—Cartan)
left-invariant forms> on U(1) X SU(2):

o, =v'dv+idp = o t; + &Sty (2.16)
where

a)’L = — 2772/3u“duﬂ, aff=12,34, (2.17a)

o) =d = udu® — udu’. (2.17b)
The symbol 772',, is the one defined by 't Hooft,>

Nap= —Nap M= — O 1;=€" (2.18)

The canonical forms satisfy the Maurer—Cartan structure
equations:

do + e’ Aok =0,
dowf§ = 0.

(2.192)
(2.19b)

Similarly, we may define a basis of right invariant forms @
which are related to the left-invariant ones by space-time
inversion,

W, = — /;’751{- (2.20)
In terms of the above forms, we may express the natural
0(2) X O(4) invariant Lorentzian metric for ' X .S* as

g = dul — du? — du? — du’ — dul + du?
0 g 0 N, ; ;
= 0] 8 0] — o} ® V) = W} ® V% — Lok ® W,

(2.21)

= —&m
TZ

which, is conformal to the Minkowski metric g,, in M. The
sets {0,400} } and {0%,10% | define fields of orthonormal
(nonholonomic) coframes for .S'! X .S . The corresponding
volume element is thus

dan =%m%/\w}g/\wi/\wiz%w%/\wk/\wi/\wf{,
(2.22)

which, under the pullback to M gives 1/7* times the Min-
kowskian volume element.
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The dual *F of a 2-form Fis unchanged under a confor-
mal change of metric, and may be simply expressed in terms
of the basis for A 2T *(S' X .S ) provided by
the above coframes. In view of their orthonormality, we have

*0° Ao’ = 16/ N o* (2.23a)
and

*o' Ao = — 2650 A wF (2.23b)

(where " represents either o} or w/.)

The change of relative sign in (2.23) is due to the Lor-
entzian type of metric which also implies that an eigenvector
of the * operator may only have eigenvalue + i since

= —F. (2.24)
3. THE PRINCIPAL BUNDLE AND INVARIANT
CONNECTIONS

We shall now investigate the restrictions that invari-
ance conditions for a connection form place on the bundle on
which the connection is defined. Let H be a Lie group, 9 its
Lie algebra, { U} an open covering of a manifoid M and w,,
an $-valued 1-form on U,,. Let G be a Lie transformation
group acting on M on the left,

SoM—M, geG 3.1
and suppose that the U, are G invariant,

LU CU, V¥ geG. (3.2)
The condition that f ;a){, be gauge equivalent to w,, is

feo.=Adp, '®P)o, +po ' @P)p&P)

pel,, V geG, (3.3)

where

Po:G XU, —H 34

defines a local gauge transformation and satisfies, for consis-
tency of the composition law in G,

P8 'PW.8 [ (P)) = p.(88'.P)- (3.5)
Furthermore, if the local forms e, are related by

0o =Adk ;3 Yoz+ k 53'dk,g on UnUy, (3.6)
for some gauge function

Ko : UsnUg—H (3.7)
we must have, for consistency

P &Pk o () = ko (PIPa(8:P) (3.8)
and
k .5 (0)k 5 @)=k a;,‘(p), V peUnUnU, . 3.9

Using the function k4 as transition functions, we can con-
struct a principal H bundle 2 (M,H ) over M which is locally
trivial over each U,

Tt P |y —U,XH, (3.10)
where the maps 7, defining the trivialization satisfy
Ta7e 'Oh) = (kp(Ph), Y peUnU, heH. (3.11)
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A G-action fon 7’ projecting to the action fon M may then
be defined by

flor, o) =1 " C)pa E@pIh), (3.12)
which is a consistent definition by virtue of Eq. (3.8). A con-
nection @ on .’ may now be defined by

3. oy = T(AdL @,) + hdh),

where # “'dh is the Maurer—Cartan from on 7' (H)

CT(U,x H). Equation (3.6) shows that this definition is
unambiguous and Eq. (3.3) implies that the connection form
@ is G invariant under the action f: #— % . Thus the infor-
mation in Egs. (3.3)-(3.9) is equivalent to the existence of a
principal A bundle with an action of G as bundle transforma-
tions, together with a G-invariant connection. The local con-
nection forms are the pullbacks of w under the sections o,
given by

g lp) =1, '(p.e) (3.14)

and the functions p(g,p) are just the transition functions
relating o, and its image under G,

(3.13)

(fea.of . Mp) = R, s on@aD)- (3.15)
When determining the local forms w,, corresponding to
a G-invariant connection, it is helpful to know whether a
suitable choice of sections p,, may be made such that the
functions p,, take the simplest possible form. In particular,
we may inquire whether a choice exists for which the g, take
the identity element in G as their only value. The following
proposition gives the conditions for this to hold.

Proposition 3.1: If for each U, there is a smooth cross
section S, of the orbits of G in M such that

(i) G X S,— U, has constant rank, and

(i) for all seS, and geG, (the isotropy group of G at s),
we have p_(g,s) = e, then there exists a G-invariant section
o,0of 7|, andaforme, = 0¥ which is gauge equivalent
to w,, and satisfies

fEo, = Oy (3.16)

Proof: By the implicit function theorem, for all peU,
there is an open set V'C U,, containing p and smooth
functions:

8un: V—G, s,.: V=S,
such that

So i @Bad@) =q, g€V
The map

B G=P o 80 X950 (9D

defines a smooth function A, : V—H and it is immediate
that for geV NV,

P8 (D550, 0 = P800 (0):5a.0 (@D
Thus, we have a smooth function

h,:U,—H

and may verify directly that the section defined by
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0.(p) = 7., "G4 p)
is G invariant, that is,

fg ]OO’Z(IO-/;{ = (;a’
implying, by Eq. (3.15) that

0, =w=Adh, o, +h, 'dh,
satisfies (3.16).

A particular case for which the proposition applies is
when the group action satisfies (i) and is free; that is, the
isotropy group at all points is the identity element. This cer-
tainly holds for any closed subgroup of a Lie group acting by

left or right translations, which will be our main concern in
Sec. 4 and 5.

We now turn to the classification of principal SU(2)
bundles over §' X.S*. Corresponding to any smooth map
/:§'—-SU(2), we may define such a bundle by considering
the space

E=(0,7)xS*XSU(), (3.17)

regarded as the trivial SU(2) bundle over the product of the
open interval (0,;) with .S, and factorizing by the equiv-
alence relation

(p.h) 7 (I +t,pf (D)), (3.18)

Vre(0,)), peS*, heSU(2).
Let E,denote the quotient of £ by this relation, regarded as a
principal bundle over S XS,

Proposition 3.2: Any SU(2) bundle over S ' XS *is equiv-
alent to £, for some f. The bundles E and E are isomorphic
if and only if £is homotopic to g.

The proof involves certain ideas in the homotopy the-
ory of fibre bundles which may be found in any standard
text, % to which the reader is referred for further
background.

Proof: First note that by using the covering of S° by
contractible neighborhoods of the hemispheres, we find that
for any Lie group H, the isomorphism class of a principal /
bundle over S * is determined by a homotopy class in m,(H ).
Since 7,(SU(2)) = 0, any SU(2) bundle over .S is trivial.

Further, (0,;) X S being homotopy equivalent to .S, the
same triviality holds true for any SU(2) bundle over (O,%)

% 83 Given an SU(2) bundle B over S' X §°, let 7*B be the
pullback of B to (0,2)x S’ under the map 7 : (0,2)

XS '>SxS" defined by ]

7(t,p) = (™ p). (3.19)

Letting 7 (* B )— B denote the corresponding bundle map,
an isomorphism ¢ : E—7*B may be chosen under which
76 (tph) =76 (1 + 1p SR ), V¥ 1€(0,5) (3.20)

for some smooth map f: § *—»SU(2). Generally any isomor-
phism ¢ : E—7*B defines a homotopy of maps f,(p), #€(0,3),
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but may be composed with a suitable automorphism which
replaces these by a fixed S (p) in the same class. The map
¢ : E—B, in view of (3.20), passes to the quotient under the
equivalence (3.18), thereby defining an isomorphism
qg :E—~B.

Suppose now that f,g—SU(2) are homotopic by a ho-
motopy 4, satisfying #,=g,t€(0,3) and h,=f for te(l,%).
Then the automorphism of E,

(t.p,h)—tp.h - l(p)h ),
takes points which are equivalent under finto points which
are equivalent under g and hence determines an isomor-
phism E,=E,_. Conversely, to prove that if E,is isomorphic
to E, then fis homotopic to g, we apply Hopf’s theorem,
stating that two maps f,g : $ "—S " are homotopic if and only
if they have the same degree. Suppose there exists an isomor-
phism o : E,—~E,. Then there is an automorphism o of E
which takes fequivalent points into g equivalent ones.
Writing

a(tph) = tp,oP)h)
we see that

g(P)U:(P) =0y 4 t(p)f(p)

and therefore

degg + dego, = degf + dego, , ,
which follows most simply by replacing f, g, o, and o, | , by
the appropriate power map p—p", peSU(2) of degree n, to
which they are homotopic. Since o, and o, , , are homotopic,
their degrees are equal and hence so are degf and degg, im-
plying fand g are homotopic. Next we prove:

Proposition 3.3: The second Chern class number of E,
equals the degree of f; that is,

1

Cz - —
1672

f B(2N02)=degf, 3.21)
S'xS?

where 2 is the curvature of any connection @ on E rpulled

back to §'' X.S* through any choice of local sections over an
open covering and B is the Killing form:

BX,Y)=TradXadY, X, Yesu(2). (3.22)
Proof: Any connection on E may be written as
O pny=h"'dh + Adhw,,, (3.23)

where 4 “'dh is the Maurer-Cartan form on SU(2) and o, ) is
an su(2)-valued 1-form on (O,%) X 5% Inorder that » define a
connection on E, we must have

Op = Adf "0 ., +fdf, ¥ 1e0,)).
If ¢ is chosen as a C * real-valued function on (O,%) with
values ¢ =1 on (0,4) and ¢ =0 on ( 1,%), then

(3.24)

V=0 @) df (3.25)

satisfies (3.24). The curvature {2 corresponding to this
choice of connection on the open set (0,1) XS*in S x.S?

[where (0,1) is regarded as S minus a point], pulled back by
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the section o(t,p)—(t,p,e) is:
2 =do + o]

= gdt Afdf + 4> — ) dffdf ],
B(Q2AR2)=134(p>— )t AB(fdf N[fdff'df))-

(3.26)
In the notation of the preceding section, we have
B(h'dhA[h'dhh'dh]) = — 120] Ao’ ANo;. (3.27)
The S'!integral in (3.21) gives
1
1[0 —pra=1[ @ -ous= 629
0 1

Let f7'df, = 4, ' + 4, ,@* + A, w’ for peS” and define a
linear transformation 4, by 4,(¢) = 4, ,. then by (3.27) and
(3.28)

fB(m\{z)= —f (detd ol Ao Ao}
N N

= — 167 degf. (3.29)

The last equality follows from Brouwer’s degree theorem.?
The following proposition shows that it is impossible to in-
troduce a left SU(2) action on a principal SU(2) bundle over
§' XS which projects onto the left-translations (2.9a) on the
base unless the bundle is trivial.

Proposition 3.4: E admits a left SU(2) action compatible
with the action L (¢,p) = (t,gp) [g,peSU(2)] if and only if
degf = 0.

Proof: Let Eg represent the action of geSU(2) on E,.
Then L, induces a map L, on E. If we write L (¢,p,h)

= (t,gp,p,(0.g)h ), then we must have

P1 . &PV ) =f(gp)p,(g.p). (3.30)

Fix a point p,. Then the map g—/'(gp,) has the same degree as

/- The two maps g—p,(g,p,) and g—p, , ,(g,p,) being homo-
topic have equal degrees. Since the degrees are additive un-
der group multiplication, (3.30) implies that degf'= 0.

Even if we ignore the possibility of a group action on the
bundle E,, an invariance condition interpreted entirely on
the base imposes strong restrictions on /. If the local connec-
tion form of a connection on E, pulled back to the base is
invariant under left SU(2) translations, it may be expressed
as

Wy =Awy + B,d1, (3.31)

where 4 €End(su(2)), B,esu(2) and w, is the S° part of the
Maurer—Cartan form @; on .S'' X.S* [identified with

U(1) X SU(2)]. A differential equation for , such as the
Yang-Mills equation, imposes certain conditions on 4, and
B,, which then imply a trivial bundle structure.

Proposition 3.5: Suppose w is the local connection form
of a connection on E,which satisfies L ;w = w for all
geSU(2), and hence has the form (3.31). If w satisfies a differ-
ential equation of the type

A" =F(tA,4,,.,4," D.B.B,",...B,™) (3.32)
such that Fis smooth and F (£,0,0,...,0) = 0, then degf = 0.
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Proof: Assuming deg/f=~0, we shall arrive at a contradic-
tion. The condition (3.24) for the connection to be consis-
tently defined on £, takes the form:

Adf'4, | () +fdf=A4(0,),
Adf’lBl P = B,, IG(O,%).

(3.33a)
(3.33b)

Since degf70, the image of fcovers SU(2) and we conclude
from (3.33b) that B, | ecenter su(2) = {0} and hence
Bl p T Bz = 0

Taking the exterior derivative of (3.33a) at point p, sub-
stituting, using the Maurer—Cartan equations and translat-
ing to the origin ¢ we obtain

Adf ()40, ] — [Aw 4w, ]).
= Ao[w, ;| — (Ao Awoy ], (3.34)

Also, by repeated application of the exterior derivative we
find

Adf—lAI(me - A“(”)(t)/_, n = 1,2’.__7

and conclude that 4, = 4,/ = 0.

(3.35)

Due to the uniqueness of solution of (3.32) under these
boundary conditions, 4, must therefore be constant. Substi-
tuting 4, = 4, in Eq. (3.33a) at t = 0, we have

Fdf = Adw,) — Adf (o)
= (I — Adf )4 (,).

Since
det(f — AdfH=0

the argument at the end of Proposition 3.3 shows degf = 0,
contradicting the hypothesis.

4. THE FIELD EQUATIONS AND U(1) xSU(2)
INVARIANT SOLUTIONS

The Yang-Mills potential w is defined, subject to a
choice of section in the principal SU(2) bundle over $' X 57,
asansu(2)-valued 1-formonS' X S*. Thecorresponding field
is the curvature 2-form,

F=dw + w,0] 4.1)
and the field equations are
D*F=d*F 4 [0*F] =0, 4.2)

where the dual *Fis taken with respect to the metric (2.21).
In view of Eq. (2.24), the Lorentzian analog of the (anti) self-
dual equations is

‘F— FiF, (4.3)
implying that such fields are necessarily complex.

We shall be interested in determining solutions to (4.2)
and (4.3) that are invariant under the group actions defined
in Sec. 2. Since left and right translations by U(1) X SU(2) or
SU(2) satisfy the conditions of Proposition 3.1, we may with-

out loss of generality choose the value of the function p,, as
the identity, giving the simple requirements
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L ;,a) = W (44a)
or

R ;,(o =@ (4.4b)
VgeU(1) X SU(2) or SU(2).

Consider now the gauge potentials o satisfying (4.4a).
These may be characterized most easily in terms of the left-
invariant canonical form o,

w=(A"w), + B'w), 4.5)

where the components 4 *; and B’ will be constant for

U(1) X SU(2), invariant forms and, more generally, func-
tions of the S ' angle ¢ for SU(2), -invariant ones. For right-
invariant gauge fields, satisfying (4.4b), we simply replace
@, in (4.5) by w,. However, since the field equations are
invariant under the space-time inversion # ,,, we may ob-
tain all right-invariant solutions from the left-invariant ones
by making the replacements:

Alys — A=), BW)——Bi(~y),
> — 3 and  of .
It is therefore sufficient to consider the left-invariant case

(4.5) only. The field strength may be conveniently expressed
in terms of the basis &/} Aw) for A *T*(§'xS?) as:

F=[iF' o Aoy lt, “.7n

a

(4.6)

where
94,

+ EimnB HIA ”I\ (483')

ok =
and
F;A = - 611\.”7/‘1 :n + el'mnA ;”A 2 (48b)

The components of *F are easily obtained using (2.23). The
field equations (4.2), expressed in components, take the form

—l‘dZA’A+l€ __-—A)I +E B,"—’—i\" +2Al
2 dl//z 2% imn d?./} k imm dl/) k

- 361’1?7!161\’/7(1‘4 ;?”A Z + Z(A II\A an fn —A4 :n‘A an ;\)

dB" dA "

—}—%(BiBmA mk_’AikBmBm):O (4.98)
and
dA A/ ”n ¥ ¥ 7
€ t)— —AUTB" + ATATB =0 (4.9b)
' di
while (4.3) becomes
dA II . . . 1\ . /\
7 F2UA |+ €, (B/A] + i€, A47) =0 (4.10)
4

We shall be considering complex solutions to these
equations, hence w takes values in the complexified gauge
algebra su(2) ® C = sl(2,C).

For the U(1) x SU(2), invariant case the derivative
terms in (4.9) vanish, leaving a third degree set of algebraic
equations which we may solve completely. In doing this, it
will be helpful to make use of the fact that these equations are
invariant not only under the complex gauge
transformations:

Al —RA" (4.11a)
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B'—»R'B’ (4.11b)
V(R ')eSO(3,0),

but also under the following transformations, corresponding
to right-SU(2) translations:

A4 —A4 injk,
BB
V(R ij)GSO(3,C).

Let Aesl(2,C) @ s1(2,C)* denote the si(2,C) endomorphism
whose components in the {7, } basis are 4 ', and B the
sl(2,C) element with components B ‘. Multiplying (4.9a) by
A, and summing over k, we obtain the matrix equation

X (1 + trX) ¥ 3(detX }*1 — X + LB ® XB — BX)

(4.122)
(4.12b)

=0, (4.13a)
where

X=447 4.14)
and

B*= EB'B’, (4.15)

while (4.9b) may be written
XB = (trX)B. (4.13b)

The gauge invariance condition (4.11) now becomes the in-
variance of (4.13) under the transformations:

X—>RXR', B—RB, (4.16)

where R is the SO(3,C) matrix with components R ’j Itis
possible to solve (4.13) by using these transformations to
standardize the forms of X and B. The result may be summa-
rized as follows:

Lemma 4.1: Up to a gauge transformation (4.16), the
solutions of (4.13) are:

(i) B = 0 and X has one of the forms:

X=ul, p=1Lorl, (4.17a)
-1
X:( -1 ), (4.17b)
9
—1
X:( -1 ), 4.17¢)
0
(ii)
y 0
X:(iy —y 0) and B=( g), 0.
0 O 0 +2
(4.18)
(iii) X = 0 and B is arbitrary. 4.19)

Proof: (i) If B = 0, then X satisfies the polynomial
equation

X?— X (1 + trX)F 3detX 21 = 0. (4.20)

Since this is of degree 2, X must have one of the following
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Jordan forms:

A 0 0 A 0 0
(o A o) o,(l p o).
0 0 u 0 0 A

In either case, there is a two-dimensional subspace of eigen-
vectors with equal eigenvalues, and hence X has at least one
eigenvector of nonzero length. It follows that by a transfor-
mation of the type (4.16), X may be cast in the form

X +y iy 0
X =( iy X -y O).
0 0 z
Substitution in (4.20) yields the equations:
x(1 +x 42z 4 32%) =0,
¥1+2)=0,
z(1 + 2x) + 3xz'2 =0,

whose solution leads to the expressions (4.17) or X = 0. If
B0, applying the LHS of (4.13a) to it and using (4.13b)
gives

TrX = 4+ 3(detX )"? (4.21a)
while taking the trace of (4.13a) gives
TrX + (TrX)* — TrX 2 = F9(detX )2 (4.21b)

(ii) If B *5~0, B may be rotated into the form (0,0,6 ) by
the transformation (4.16). Equation (4.13b) then implies
that X may, after a suitable rotation in the (1,2) subspace, be
put in one of the forms:

y iy 0
X= (iy —y O),
0 0 z

TeX =2z, TrX* =2z, detX=0

if it has only one eigenvector of nonzero length, or

()

trtX =z, TrX’=22+2), detX = —yz

otherwise. In either case, substitution in (4.21) yields z = 0
and hence Eq. (4.13a) becomes

XA -1bH)=X7
implying that either X, B are of the form (4.18) or X = 0.

(iii) If B* = 0, B540 it may be rotated into the form
(1,£,0) by the transformation (4.16). Equation (4.13b) then
implies that X is of the form

X +y iy z
X:( iy xX—y iz ),
z iz —X

TeX=x, TrX?=3x? detY= — x°

Substitution in (4.21) yields x = 0 and hence Eq. (4.13a)
becomes

X=X?
implying y =z = 0 and hence X = 0.
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Using the results of this lemma, we may obtain all con-
stant [U(1) X SU(2) invariant] solutions to (4.9), the result
being:

Proposition 4.2: Up to a constant gauge transformation,
the U(1) X SU(2) invariant solutions to (4.9) are of the form:

lLA=awy, B=p, (4.22)
where a, fesl(2,C), yesl(2,C)* satisfy

afB=0 p2=4 (4.23a)
and either

a=0 or =0 (4.23b)

[the inner product on s1(2,C) and sl(2,C)* being defined rela-
tive to {7, and {1} as orthonormal bases].

i
II. 4 :( / )R, B =0, ReSO(3,0). (4.24)
3
IH. A =41, B=0, 4.25)
where A = Jor L.
IV.4 =0, Barbitrary (4.26)

Proof: Consider first case (iii) of the lemma. Since X
vanishes, Eq. (4.14) implies that the lengths and inner pro-
ducts of the rows of 4 vanish. It follows that they are all
proportional to a single zero length vector y:

A=aey, =0, aesl(2,C), yesl(2,C)*.
Substitution in (4.9a) gives
a(l —1B?) 4+ 1B(a-B)=0 if 4540.
Taking the inner product with B, we obtain
aB=0

and hence B* =4 or 4 = 0. In either case, Eq. (4.9b) is also
satisfied, yielding solutions of type I or IV.

Turning next to case (ii) of the lemma, Egs. (4.14) and
(4.18) imply that, up to a suitable transformations of type
(4.11) and (4.12), 4 and B have the form:

0 0 a 0
A= (Z iec z'a), B= ( 0 )
ied O + 2

a=y#0, €= t1,

Substitution into Eq. (4.9a) shows thatc = d = 0, and there-
fore 4 = a ® y, where

¢ and d arbitrary.

a=t+i, y=at,

applying the transformations (4.11) and (4.12), we obtain, in
general:

A=aoy, B=/,
where a,Besl(2,0), yesl(2,C)* satisfy:
af=0, a?=0, p*=4,

corresponding to the other case of solution L

Solution II follows directly from the case (4.17b) of the
lemma while solution 111 follows from (4.17a). A rotation of
type (4.12) need not be included in parametrizing the latter
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case, since it becomes equivalent to a gauge transformation
(4.11). The last case (4.17c) corresponds, up to transforma-
tion (4.12), to 4 of the form

A:(" N 0).

which does not satisfy Eq. (4.9a). This exhausts all the cases
of Lemma 4.1 and therefore case I-IV represent all
U(1) X SU(2) invariant solutions of Egs. (4.9).

Denoting the 7*(S*) part of w, as,, we may write the
gauge potential w and field F corresponding to the solutions
(4.22) as

o =ay,w;)+ ol (4.27)
and

F= —lay. o0 )+ @B l(row)ho]. (428)
The condition (4.23) imply, in the case a? = 0 that

[af] = + 2ia (4.29)

and hence (4.28) is an (anti) self-dual field; the only one, in
fact, among those listed in Proposition (4.2). Furthermore,
since

(4.30)

a*=YaB])} and alfaf]=

the integrands B (FA F) and B (F A *F) defining, respec-
tively, the class number and the action integral both vanish.

The gauge potential and field for solutions (4.24) may,
up to a suitable gauge transformation, be expressed as

(4.31)
(4.32)

where &651(2,(]) is any unit vector and &*esl(Z,C)* its dual,
defined by the inner product on sl(2,C). The action integral

A= -

4g7 Jis w592

w=(3— i)(;z(c;*,a)L) + iw,,

F=2iw,0, ]+ 21— daa*,[o,o, ])

FIA*F! (4.33)
takes the value 6472/g?, while the Chern number, consistent
with Proposition (3.5) again vanishes. The case R = 1 of
solution (4.24) has been found independently by Howe and
Tucker."” Solution (4.25) with 4 = § is the SO(4) X SO(2)
invariant one studied by de Alfaro et al.,'"** while the case
A = 10f(4.25) and solution (4.26) represent pure gauge po-
tentials corresponding to vanishing fields.

5. SELF-DUAL SU(2), -INVARIANT SOLUTIONS

The self-duality equation (4.10) for SU(2), -invariant
fields may be cast in a simple vectorial form by identifying
the three s1(2,C) elements {4, } whose components are the
columns of the matrix 4. In terms of these and the sl(2,C)
vector B, the gauge potential (4.5) is

w = Ap', + B 5.1
and Eq. (4.10) becomes
AF2A, 4 [BA,] + i€y [A,4,] =0. (5.2)
Defining new sl(2,C) vectors {4,}, B by
A= —Ae*?, B=42iBe*", (5.3)
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and using three-dimensional cross products to replace the
Lie brackets, we have

A; +ie* (2B XA, — €A, XA, } =0. (5.4)
Finally, changing variables to

w=e* ¥ (5.5)
we obtain the equation

A+ B XA, = SeuA; XA, (5.6)

where A ! denotes the derivative of 4, with respect to w.

The solutions to (5.6) may be systematically found by
separately considering the cases when the vectors {4,] are
colinear, when they span a (complex) two-dimensional space
and when they are all linearly independent. In the latter case,
we may further distinguish between three classes depending
upon the eigenvectors of the complex symmetric matrix Y’
formed from the dot products

Y, =A:A, (5.7
The results may be summarized as follows:

Proposition 5.1: If the three vectors 4, satisfying Eq.
(5.6) are colinear, then up to a gauge transformation they are
constant and B vanishes. The gauge potential w is thus of the
form
Haly,w,), (5.8)
where aesl(2,C) and yesl(2,C)* are arbitrary complex
vectors.

+
W =e-

Proposition 5.2: If the vectors A4, span a complex two-
dimensional space, then up to a gauge transformation and a
cyclic permutation of the labels (1,2,3), the most general so-
lution to (5.6) is of the form:

/il:a» /12:[3,9

A, = i(a cos® + B sind ), B=i(— asind + BcosH),

(5.9)

where a,fesl(2,C) are arbitrary noncolinear, complex vec-
tors and 6 is any complex number.

Proposition 5.3: If the vectors A, are linearly indepen-
dent, then three classes of solutions to Eq. (5.6) exist, de-
pending upon whether the matrix Y has two (and hence
three) eigenvectors of nonzero length, only one, or none at
all. Denoting by A the matrix whose columns are A~1, Afz, and
A, then up to a gauge transformation, B vanishes and

(1) If Y has three eigenvectors of nonzero length,

(- )
A= q , (5.10)
’
where
p =bds(b(w —w,) | m),
g =bns(b(w — wy) | m), (5.11)

r=bcs(b(w—w,) | m),

ds, ns, and cs are Jacobi—Glaisher functions,’® b, m, w.cC,
and ReSO(3,C) are arbitrary.
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(ii) If Y has only one eigenvector of nonzero length,

p+q g O
,iz( iq p—gq O)R, (5.12)
0 0 r
where
_ a
sinh[a(w — wy)]
= bsinh{a(w — w,)] ’ (5.13)
a
,e beoth[a(w — w,)] ,
a
with a, b, weC, b5£0, and ReSO(3,0).
(iii) If Y has no eigenvectors of nonzero length,
p+q iqg
A :( iq p—gq ir)ﬂ, (5.14)
r ir p
where
1
p= - )
w— W,
qg= — 3w —w)la*(w —w) —b], (5.15)
r= —a(w — wy),

with a, b, weC, a0, and ReSO(3,0).

We may remark that Eqs. (5.12)—(5.13) with b = O still
define a solution, however this is a degenerate case of class (i)
with only two distinct eigenvalues. Similarly, Egs. (5.14) and
(5.15) with @ = O define a degenerate case belonging to class
(ii) with only one eigenvalue. The solutions (5.10)—(5.11)
with R = 1 and w, = 0, have previously been obtained by
Howe and Tucker'’; the others given here are all new. It is
relevant to note that gauge transformations within the class
of SU(2)-invariant solutions alter the vectors 4, only by a
complex rotation and hence leave the matrix ¥ of inner pro-
ducts invariant. Therefore, the various classes of solutions
given above are really distinct. The vector B, on the other
hand, is transformed into Adg™'(B + gg™') under a transfor-
mation which preserves the SU(2) symmetry (the gauge
function g depending upon the S'' angle ¢ only) and hence
can always be made to vanish by solving a linear, first-order
differential equation for g. However, this does not always
give rise to the simplest form for the solutions to the field
equations.

Proof of Proposition 5.1: Since the 4,'s are colinear, Eq.
(5.6) becomes

A! + BxA4,=0.
Taking the inner product with A, shows that the dot pro-
ducts (4,,4,) are constant, and hence the ¢ dependence is

generated by a rotation. There exists therefore an SU(2)-
valued function g on S' such that

A = Adga,
where a, are constant s1(2,C) elements which are colinear,

a,=Ca.

Harnad, Shnider, and Vinet 939



Applying the gauge transformation g, A, becomes a, and the
field equation becomes

Bxa =0,
where f3is the transformed value of B. Therefore, B is propor-
tional to ¢ and we have

o =e¢*(a(yw,; )+ bao? ),

where yesi(2,C)* has components C; and b is some complex
function on S''. Applying the gauge transformation defined
by exp( — afb di) gives the expression (5.8).

Proof of Proposition 5.2: Since the 4 /s span a two-di-
mensional space,

detd = A,-(4,xA4;) = 0.

In the gauge where B = 0, taking the inner product of
(5.6) with 4, again shows that the i dependence is deter-
mined by a rotation acting upon fixed vectors ;. We apply,
as above, the appropriate gauge transformation to make the
As take these constant values, which gives rise in general to

a nonvanishing 8. Within a permutation of indices, we may
define:

A~1=a, x‘iz:ﬁ, z‘f_;:ad—f—bﬂ,

for some constant vectors «, 3 and numbers a, b. Substitu-
tion into Eq. (5.6) then shows that

a4+ b= —1
and
B=(~ba+aB).

Therefore, defining
a=1icosd and b=1{sind
we obtain the result (5.9).

Proof of Proposition 5.3: Preliminary to the proof, we
remark that any complex, symmetric 3 X 3 matrix C may,
after conjugation by a suitable complex rotation, be cast in
one of three canonical forms:

x
C'"= y ) (5.16a)
z
x4y iy 0
cCV=| X —y O), y+0, (5.16b)
0 0 z
x4y 1y z
cov=\| iy X —y [Z), z70, (5.16c¢)
z iz X

corresponding, respectively, to three, one, or no eigenvectors
of nonzero length.

Now choosing a gauge in which B vanishes, taking the
inner product of (5.6) with 4, and symmetrizing in /, / gives

Y' = 2detd-1. (5.17)
Integrating this, we have
Y=0C+gl, (5.18)

where C is a symmetric, constant matrix and g is a complex
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function on S'' satisfying
g =2detd. (5.19)

Since the second term in (5.18) is unchanged by a rotation,
we may always standardize Y by a constant rotation:

A~—~AR, Y—R-YR, (5.20)
to one of the three forms:
(02 + & )
Y = b4 g, , (5.21a)
&1

g, + 2b 2ib 0
Yy« —( 2ib 8. —2b 0 ), b=£0, (5.21b)
0 0 g +a
g+ b ib 2a
Yy :( ib g —b 250), a0, (5.21¢)
2a 2ia g

where a, beC are arbitrary. (The squares are introduced to
simplify the final result and do not imply any restrictions on
the parameters involved since a, b are complex.) Substituting
each of these into (5.17) and using

detY = (detd )? (5.22)
gives rise to the three differential equations:

(g1) =4gi(g, +a)(g + b?), (5.23a)

(g} = 4838, + a), (5.23b)

(85 = 43 (5.23¢)

Integrating, we obtain:

g =blcs(b(w—wy)|m) with m=1—a%/b?,

(5.24a)
aZ
=— 5.24b
& sinh?[a(w — wy)] ( )
1
3= 1 5.24
£ (w — wey ( 2
where wocC is arbitrary. Since
Y=A"4 (5.25)
this just determines 4 up to a transformation,
A—RA, ReO(3,C) (5.26)

which is a gauge transformation only if R is constant on S’
and detR = 1. (A nonconstant gauge transformation must
also change the value of B.) Moreover, since a symmetriza-
tion was involved in passing from Eq. (5.6) to (5.17), not all
A ’s satisfying Eq. (5.25) solve (5.6). However, if 4 is itself
chosen to be symmetric, then (5.18) and (5.25) determine a
solution of (5.6) (up to a sign), since 4 is invertible. Its eigen-
vectors in that case are the same as those of Y. Therefore, 4
will correspondingly take one of the three forms:

3 (2
A[l": q R
r

(5.27a)
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p+q g O

A@ _( iq pP—q O)’ (5.27b)
0 0 r
p+q g r

A= ( iq pP—q tr) (5.27¢)
r ir p

Solving (5.25) to determine p, g, r yields the expressions of
Eqgs. (5.11), (5.13), and (5.15) up to a sign, which is then
determined by returning to Eq. (5.6). Applying a transfor-
mation of type (5.26) to these solutions and substituting in
Eq. (5.6) shows that the rotation R must be constant and
have determinant 1. This is therefore only a gauge transfor-
mation. However, the diagonalization of ¥ was achieved by
applying the transformation (5.20) which leaves Eqgs. (5.6)
invariant. Therefore, the general solution is obtained by ap-
plying an arbitrary transformation of this type to the solu-
tions (5.27), thereby giving the results stated in Eqgs. (5.10)~
(5.15) and completing our proof.

Among the various solutions given above, the only one
which is gauge equivalent to one in the previous section is
(5.8) for the case when a? vanishes. In this case, there exists
an element Besl(2,C) satisfying Eq. (4.23a) and hence apply-
ing a gauge transformation defined by the transition func-
tion exp( + /B ) transforms solution (5.8) into the form
(4.27). An interesting feature of all the solutions of this sec-
tion is that they are periodic in ¢ with period 7. This implies
that the gauge fields are well defined as forms on (S ' X S°)/Z,
and that the Chern class number (and hence also the action
integral) vanishes (provided the integration constants are
shown so that the solutions are regular), in consistency with
the results of Sec. 3.

As a further remark regarding rank 1 solutions of the
type (5.8), we note that in this case the field equations (4.9)
become linear. Therefore, any linear combination of the self-
dual and anti-self-dual solutions

w = a[cos2Uly,,w, ) + sin2d(yrw, )],
where aesl(2,0), y.,y.<s1(2,0)*

is also a solution to (4.9), though not self-dual. In fact, it is
easily verified that (5.28) is, up to a gauge transformation,
the most general form for rank 1 solutions.

(5.28)

6. DISCUSSION OF SO(4) INVARIANT
SOLUTIONS

Solutions to the field equations (4.2) (in R XS *) have
been obtained by Luscher'* and Schechter” under the re-
quirement of invariance under the group SO(4) formed from
left and right SU(2) translations. In this case the isotropy
group at the origin is not the identity but the group SO(3)
identified locally with [SU(2), X SU(2)4 ] »- The conditions
of Proposition (3.1) are therefore not necessarily satisfied
and there need not exist a G-invariant section in the principal
bundle under which the gauge field represents a pullback of
the connection form. It follows that the gauge function
P.&:p) of Eq. (3.3) may not necessarily be reduced to the
identity element by a gauge transformation. The choice

941 J. Math. Phys., Vol. 20, No. 5, May 1979

made in Refs. 14 and 15 corresponds to a gauge function
which is constant on the manifold, taking as value the SU(2),
component of any SO(4) element. The resulting form is
therefore necessarily an SU(2)-invariant scalar multiple of
the left-invariant Maurer—Cartan form on .S *. It should be
mentioned that such a choice for p,, is not the only one per-
missible. Left invariance could, for instance, be replaced by
(inverse) right invariance. However, this merely amounts to
making a gauge transformation with the map v : §°*—SU(2)
defined by Eq. (2.1) as transition function. An inequivalent
invariance criterion results from choosing the value of p,, as
the identity element; that is, considering gauge fields which
are strictly invariant as forms on the manifold, not only up to
a gauge transformation. However, the resulting forms are in
T*(S'") and hence closed, giving a vanishing field.

Up to gauge equivalence, these are actually the only
possibilities. This follows from the results of Sec. 3 applied to
the inclusion SU(2); —SO(4), which allow us to assume that
pg,p) = e for geSU(2), . Furthermore, since SU(2), and
SU(2)g commute, it follows from the composition rule (3.5)
that p(g,p) is independent of p for geSU(2), and therefore
defines a homomorphism,

p:SU2),—SUQ2) 6.1y

into the gauge group. Since SU(2) is simple, this may only be
an inner automorphism or the constant map onto the identi-
ty element. The former case is gauge equivalent to p(g) = g
for geSU(2),, the choice of Refs. 14 and 15.

If one wishes to interpret the SO(4) invariant solutions
in(S ' X8 *)/Z,, rather than R X .S’ (whichis necessary to give
meaning to the Chern class number), then suitable boundary
conditions must be satisfied. In the notation of Sec. 3, we
must have, in a neighborhood of the point ¢ = 277,

(U(l + Lp) = Adfl 7 lw(r,p) +fl Idf;’

—€<t<E, t=¢/2r (6.2)

for sufficiently small €, where £, is a homotopy of maps
/8 *—SU(2) (which may be chosen as constant in ¢ ) belong-
ing to the same class as the map f.5 *—»SU(2) defining the
bundle. Since, as shown in Proposition 3.5, the existence of
an SU(2)-invariant connection implies that degf vanishes, f,
may be chosen as the constant map onto the identity ele-
ment, in which case (6.2) simply becomes the condition that
w be periodic,

O 4 oy = Oy (6.29)

Over the space (S' XS *)/Z,, moreover, the period for SU(2)
invariant forms must be 7 rather than 27, This severely re-
stricts the permissible SO(4)-invariant solutions. In fact, the
only such case for which the components in the Maurer—

Cartan basis are ¢ dependent is the one studied by Rebbi,'

1 expl £ i(Y-t)]
2 cos(¥ — i)
which arises as a degenerate case of the solutions of Refs. 14

and 15 analytically continued and is also a limiting case for
each of the solutions (5.11)—(5.15).

Naturally, the constant SO(4) X SO(2) invariant solu-
tions of de Alfaro er al.'' also satisfy the periodicity require-

w =

Wy, (6.3)
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ment and therefore are well defined on the compact
manifold.

7. FURTHER DEVELOPMENTS

In this paper we have been concerned with the charac-
terization of gauge fields invariant under transformation
groups and in particular the solutions to the Yang—Mills
equations which are invariant under SU(2) [and
U(1) X SU(2)] translations. In order to obtain solutions with
nonzero class number (and hence, in the self-dual case, non-
vanishing action integral), it is necessary, in view of Proposi-
tion 3.5 to abandon this invariance requirement. An alterna-
tive may be to consider solutions which are SO(3) invariant,
a case which has been shown by Witten® to lead in the Euclid-
ean case to multi-instanton solutions of any class number.

Further developments relating to the present work also
suggest themselves; for example: (i) extension of the methods
of this paper to other gauge groups; (ii) a study, under the
same invariance conditions, of the combined system of gauge
fields coupled to scalars or spinors; (iii) an analysis of the
present solutions pulled back to Minkowski space or contin-
ued into the Euclidean domain; (iv) determination of semi-
classical expansions about these solutions for quantum am-
plitudes. We plan to address ourselves to these and related
questions in future articles.
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The spectral properties of many-electron atomic
Hamiltonians and the method of configuration interaction.
Il. Compactness proof associated with an infinite system of
linear equations for two-electron atoms
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The Schrodinger equation for a two-electron atomic system is reduced to an infinite system of linear
equations. The linear operator defined by this system of equations is then shown to be compact in a region
of the complex energy plane which excludes the various bound state and multiparticle scattering cuts (i.e.,
the eseential spectrum of the Hamiltonian of the two-electron atomic system). This permits one to

truncate the infinite system of equations with the assurance that the N energy eigenvalues obtained from
the NX N truncated system will uniformly approximate the lowest N energy eigenvalues of the original

infinite system.

1. INTRODUCTION

In the previous paper it was shown that the N energy
eigenvalues and eigenvectors obtained from the truncated
system of equations

i <¢”|H|¢m><¢ml 'W> :E<¢nlW)

m o=

will not converge uniformly (as the size of the truncated
matrix is increased), to the lowest N energy eigenvalues and
eigenvectors of the original infinite system

i <¢n!H'¢m><¢mHlp> =E(¢NIII/>

m=1

In this paper, an infinite system of linear equations will
be derived from the schrédinger equation of a two-electron
atomic system which will precisely accomplish this. The ba-
sic idea behind this formulation is to derive an infinite system
of linear equations which defines a compact linear operator
in a suitable region of the complex energy plane. This en-
sures that the V energy eigenvalues obtained from the N X N
truncated system of equations will uniformly approximate
the lowest N energy eigenvalues of the original infinite sys-
tem' of this formulation.

In Sec. 2 we derive from the schrodinger equation of a
two-electron atomic system an infinite system of linear equa-
tions. In Sec. 3 we show that the linear operator defined by
this infinite system of equations is compact in a region of the
complex energy plane which excludes the various multipar-
ticle or continuum cuts. These are

(i) the bound state scattering cuts starting at the Hydro-
genic bound state energy £,, n = 1,2,..., and extending to
+ 0.

(ii) the multiparticle cut starting at £ = 0 and extend-
ingto + oo.

The region of compactness, in our case, also excludes
the “spurious” point {E, +E, | n,n,=12,.. Wecall
these points spurious, as they do not belong to the essential
spectrum of H.

Finally, Sec. 4 states our conclusions.
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2. REDUCTION OF THE SCHRODINGER
EQUATION TO AN INFINITE SYSTEM OF
LINEAR EQUATIONS

The <chrédinger equation for a two-electron atomic
system can be written

H‘W>=(30]+H02+l/rlz)]‘p>+E‘*[/), (21)

where 7, = |r, — r,], r, and r, being the position operators of
electrons 1 and 2, respectively, and H,, and H,, are the hy-
drogenic Hamiltonian operators associated with electrons 1
and 2, which in the coordinate representation are given by

Hy= —3vi— 2, r=|rl, i=12, @2
t;
with
Hyn)y =E, |n), i=12, (2.3)
and
Ho | ky) = Ek,lklli>’ i=12 (2.4)

Here |n) = |n/m) are the bound states of the hydro-
genic atom with corresponding energy eigenvalues
E,= —Z°/(2n’), and |K;;) = |kyIm) the continuum
states, with corresponding energies E,. In the coordinate re-
presentation the bound and continuum states can be written
as’

(rin) = (rjnlm) =R, (nY,, (6.6), (2.5)

and
(r|ky) = (r|kylm) = R, (k)Y (6,8), (2.6)

where Y, (6,4 ) are the usual spherical Harmonics, and
R, (), R,(kl) are the radial bound and continuum state ei-
genfunctions, respectively.

Let 7", and %", be the space of states associated with
electrons | and 2, respectively. The resolutions of the identi-
ty in these two spaces are given by

n, 1 + 1

Z’ ' nl'l[mi> <nilim1 |

=11 -0m = i,
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£+ 35

I .. Om, = —|

=12,

f ’ k? dki| kgdm;) <kHilimil =1y,

o

2.7
which can be written

2 ) (n;j + (j z )Ikm> <kfli] =1 =12 (273
n, K,

or in a still more abridged form as

(I;)l‘%)(‘nl =1I,, i=12

Here the sign (fX) is used to mean a summation over
the discrete quantum numbers and an integration over the
continuous set as appropriate. In the product space
K =7 ® 7%, the identity operator is given by

(2.7b)

Iy=1,,81, (2.8)

so that the resolution of the identity I, using (2.7a) is

nZn fn,n;)(n,n,| + ; ( J lg":)In,,k,”) (MK, |
v <f§‘ ) 2 [ Key om2) (K 1,12

1

+(sz)( E)'k”"k’““""vkml =1, (2.9)

i k.

which can also be written in the abridged form

IR

It is not difficult to write down a resolution of the identi-
ty involving only symmetrized or antisymmetrized (spatial)
states. The use of such states in our investigation would only
introduce tedious complications without adding anything
qualitatively new or different to the results regarding the
spectrum of the Hamiltonian operator for two-electron
atomic systems.

(2.92)

Equation (2.1) can be inverted and written in the form

1
|l[/> :(E_Hm —‘floz)_l r_ |l1/>
12
Let { |a,,a,)>} denote a (complete) discrete basis belong-
ing to the domain of #°. The resolution of the identity with
respect to this basis is

(2.10)

2 ‘aha» <aha2\ = IH-

o.Q

(2.11)

Taking the inner product on both sides of (2.10) with respect
to {a,,a;| and using (2.11) we obtain the infinite system of
equations

(0.1,(12| ll/) = Z <a|,az|(E— Hy, — Hy,)!

oo

1
X — Jajaj)(aj,a;
12

29 (2.12)

In the next section we shall show that the operator
(E — H,, — Hy,)'(1/r,) is compact in a suitable region of
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the complex energy plane excluding the essential spectrum
of . This permits one to truncate (2.12) with the assurance
that the N energy eigenvalues obtained from the N X N trun-
cated matrix uniformly approximates the lowest N energy
eigenvalues of the original infinite matrix.

3. PROOF OF COMPACTNESS
In this section it will be shown that the operator

K(E)=(E — Hy, — Hy)" -

12

(3.1)

defined by the system of equations (2.12) is compact in a
region D (to be specified later) of the complex energy plane.
Let us first note that the domain of 1/r,; is a subset D, of
R* X R* = R defined by

Dy ={(r,r): (r,r,)eR, |r, —r,| >€}.

We have

(3.2)

V(e —n)) =+ = 3 FrumPcost),  (3.3)

r12 K=0

where 6, is the angle between r, and r, and

k k
'1——(2) a(ri—r) + —I—(Q) O(r, — ry),
v ry r» \ N
3.4)

Fi(r,r) =

where 6 (#) is the step function defined by

I, r>0,
0, r<0.
Next we define the sequence of potentials

g = {

V” = i Fk (rl,rz)Pk (COS@IZ), (35)
k=0

If now we can show that

(i) the sequence of operators

K(E)=(E—H, — H,'V,
are compact whenever FeD, and

(i) |[K — K,||—»0 asn—o

(3.6)

in the uniform topology of the operator norm, then the opera-
tor K (E ) is compact for E€D . Conditions (i) and (i) stated
above for the compactness or K (£') are just the statement of
the results® that if an operator K can be approximated uni-
formly in the norm by a sequence of compact operators, then
the operator itself is compact.

To demonstrate (i), it is sufficient to show that for some
positive integer m, [ K,(E )]™ belongs to the class of Hilbert—
Schmidt operators* for E€Dy. In fact, we shall show that
[K, (E)} belongs to the Hilbert—Schmidt class for EeD.

To show that [K,(E )] is of the Hilbert-Schmidt type
whenever EeD,., we must show that

f > (J;)l(vl,wl[K,,(E)]2IV{,v§)2< ©,

EeD,. (3.7
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Using (2.9) we have
<V1’V2] [Kn(E)] : | V{,Vé)

= 5 S (Vv (E = Ho — Hu)'V,, | mma)

X(E ~E, —E, )y (n,m |V, |viv3)

+ Z (J Z ><V11V2|(E — Hy, — Hoz)_an|n1yk112>
n, k>

X(E —E, — E ) (n,ky,|V,| vi,v5)

4 ( f s )z (Viva| (E — Hos — Ho) 'V, | Kyg )

"

X(E - E — E, ) (kym| V, | viiva)

(J2XIE)

"

>< <vlavl

(E - Hm - 1102)—l Vn ' kH ]rkH 2)

X(E — E — E ) (ky k| V[ viva). (3.8)
Weconsider each of the four terms on the right-hand side
of (3.8) and make the following observations:

() |(E—E, — E,)"|<const (3.9

for all values of E in the complex energy plane for which
E+#E, + E, (n,n, = 12,3,...) We denote this domain by
Dy, .

(i) |(E—E, — E,)"'|<const (3.10)

in a domain D, which consists of all points in the complex
energy plane excluding those which make up the branch cuts
starting at the points E, (n, = 1,2,---) and extending to

+ oo. Note that because of the integration over k, ,, the pole
at E, is converted into a cut along the line [ — | £, |, ]
These are the so-called bound state scattering cuts.’

(iii) same as in (ii) with

\(E — E, — E,)"| <const. (3.11)

(iv) |(E — E, — E;)"| <const (3.12)

in a domain D, , which consists of all the points in the com-
plex energy plane excluding those which make up the branch
cut starting £ = 0 and extending to + <.

Denoting by D, the intersections of the domain D,
(i = 1,2,3,4), that is,

Dy =Dy "D ,nDpnDyy (3.13)
it is clear that the inequalities (3.9)—(3.12) are simultaneous-

ly valid in the domain D. We find it convenient to express
this fact in the abridged form

[(E—E, —E.)"|<const, EeD,. 3.149)

Using the result (A1) (proved in Appendix A) with

<(pl , = <V1’V2|(E — H, — Hoz)_lV,.
and
|@.) =V, |vi,va),
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we find that
| <V1,V2| [Kn(E)]2|V;,Vé> l
<const|{v,v,|(E—E, —E,)" Viiviovi)|.

Hence the compactness condition (3.7) remains satisfied if

([)[ ) wmiE=g,~Eyviiiv

:(fg)uE_Evi—Ev)“lz

X <V|,V2| [V,1]4i"1s\’2> < o0,

2

(3.15)

Noting (2.9), we can write (3.15) as the sum of four
terms. Further, using the addition theorem of spherical
harmonics

S Y 00)Y,.06)=
= !

m —

@I+
47

to sum over the m,, [ = 1,2, one obtains

z (E—E, —E,)"|"(4m)*Q2L + DL+

n.d

xj o, f dR[R, (PR LV,

n -1 > 2[1 + 1)(212 + 1)
+ kzdkz (
Z Z JO 2 (4m)?

n L=0104L=0

fdngs d3r2[R"_‘,](r,)R,‘(k:rz)]z[ Vn]4
‘E_Err,_%kglz
+ (Similar Term)

s (7, ” QL+ DL+
+ ks dk, f dk
,ZOL I o : 4y

Sdryg d3r2[R,‘(klrl)R,:(kzrz)]z[ Vu]d
FEIETHE

X,

EeD,. (3.16)

Denote the four terms on the left-hand side of this in-
equalityby 7,1 = 1, 2, 3, 4, respectively. For compactness, it
is therefore sufficient to show that
1=1.2,34 for EeD,.

I, < =, (3.17)

Using the inequality

( i CA)2<const i Ci, CeR

k=0 k=0

twice, one obtains

[ V., *<const ﬁ: [F, (rl,rz)]“] [P (cosB )]

A =0

Further, the angular integrations on the first term /, of (3.16)
yields a constant independent of n,, /,, so that

Ii<const S [(E — E, —E,)'|*QL + D@L + 1)

n,d,

M.H. Choudhury 945



X f r; dr, J- rsdr(R, (r)R, (1))
o

X [F, (rl,rz)]‘], EeD,. (3.18)

Substitution for F, from (3.4) in the radial integral in
(3.18) yields

g 5 ] r, ;
ﬁ r;drl[Rnl,)(rl)]sz r%drz[R,,,,J(rz)]zr‘z‘k
¢ ¥ 0

+J r%dr2[ ”1("2)]
0

4kt4

X J » r.12 drl [Rn,l‘(rl)]zr?k
()

24 1
1
= j dr, J- 4 (R, (rOn]? - [Rn,,_,(rlt)rlt Ik
0 0 I8

!
” . 1

+ J dr, J t*™ (R, (r)r,)? — (R ()t P, (3.19)
o 0 r

where, to obtain the last step, the substitution (r,/r,) = ¢t was
made in the first of the integrals on the left-hand side of
(3.19) and the substitution (r,/#;) = ¢ in the second of the
integrals. Noting that the two integrals on the right-hand
side of (3.19) are precisely of the same type, the inequality
(3.18) can now be written

Li<const S |(E — E, — E,)"|°QL + D@L+ 1)

.l

X S R®mlnil), EeDy, (3.20)
k=0
where
P 1
R * Ynd,n,l,) = f drf ¥ dr [R,, ()]
0 1)
X Lj [R,.(rt)rt ) (3.2
.
Similarly, one obtains
Leconst S S Q2L+ D@L+ 1)
nodo o -0
* >0 R Rl ko
xf k2 diey LA R T e 302
0 !E.‘En._%ké‘z
I, <const Z z QL+ DL+ 1)
nod. =0
1 R Okl oh)
f k2 dk, [ ‘*R ( ””Z_Z)J , EeD,, (3.23)
0 - %k % - En: |2
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I,<const E QL+ D@L+ 1)

(37 _ oR Okl kyl

szko k2 dk, ——*= ¢ “)],
_,LkZ_Lkle
2™ 1 22

EeD,  (3.24)
where
-« 1
R ®n kol = f drf t¥dt R, (Dr)?
0 0
X i} |R1:(kzrt)rt |2, (3.25)
Ia
a similar term for R*? (k,1,,n,1,), and
o 1
R Wk ki) = j drf dir ¥
0 (4]
X R, Gkt )t |2 (3.26)
r

Considering I, first, the inequality (3.20) can be written

i ”2 |(E—E” —En_v)~1|2(2ll + 1)(212 ‘+‘ 1)
201

"o 2

X i R(;\)(nl[l’nliz)

k=0

1,<const

+ 5

-

w N 1

z Z ’(E‘_En‘ _Enx)il;z(212+ 1)
2 1 1

X 2 R " (n,0,n,1,)
k-0

+ X

"y 1 x
2 2 E-
LI R A |

X S kS nd,n0)
A

QO

Erz - En‘)il'z(2[l + 1)

+ S (E-E -E)] S R‘“<nlo,n20)]< .
I | & O

7

EeD,.  (3.27)

Use of the inequality (B1) (see Appendix B) on (3.21)
yields

R )(nxll,nzl:)

. _const f 4"dtf d) »./(’)" R, ()]
(n,n)"? i [

Use of the Cauchy—Schwarz inequality in the form

f £ (gD dr<( f £ dr)‘”( f REPTANE d)

(3.28)
then gives
R “Nnlyn0lh)
1 o R” r r]z 172
o const J ¢ dt(f dr[il—)
(nn)'"? Jo 0 r
M.H. Choudhury 946



0 R t )t 172
X ( f dr M ) . (3.29)
0 r
Noting that®
ac R 2
f dr PRna OV z : (3.30)
r w4+ DI+ !
the substitution p = 7¢ yields
[“a [RuOr [ [R./(o)p]’
0 r 0 p’
2 3
= _EZ__, (3.31)
n({ + DI+ L)
so that (3.29) reduces to
R ®)(n,l,,n,l,)<const(n,n,)(1,L) 2. 3.32)

Again, use of the inequalities (B1) and (B2) in (3.21)
with /, = 0 gives

R* )(”109”212)

const (' 4 J' * ’ R, or R, (rt)rt
—— 7 dt dr =

n;/zn;/z f o rl/z r3/2

Use of the Cauchy-Schwarz inequality (3.28) yields
R« )(”10,”212)
const (! o [Rn,O(r)r] 12
3/2,1/2 f dt(f d

=
nytn,

= [R, (rt)rt]* \12
X(f dr—#——) . (3.33)
0 ¥
Use of (3.31) and the formula’
= (R, Z
f dr—00 0 = (3.34)
o r n
reduces (3.33) to
R "Xn,0,n,)<constn;” >2n, 2 ;- 32, (3.35)
Similarly one finds that
R " Yn,n0)y<constn; 2 "3 2n; %2, (3.36)
and
R %)(n,0,n,0)<constn,” ¥*n, 32, 3.37D

Substituting the estimates (3.32), and (3.35)-(3.37) into
(3.27) and using the fact that

n 1
2 [ 2L constn'?,

(3.38)
=1
yields
1,<const[ > )+ Y a2 N py
n, =2 m=1 n =2
947 J. Math. Phys., Vol. 20, No. 5, May 1979

+ 30 S e § <,

n =2 n, =1

(3.39)
for EeD,.

It is clear that had we not split up (3.20) into four parts
as in (3.27), the summation over /,, i = 1, 2, which starts
from zero would have caused difficulties due to the use
which we have made of the formulae (3.30) and (3.31). We
next consider I, and 1;. These are exactly similar and can be
obtained, one from the other, by an interchange of the sub-
scripts 1 and 2. It will therefore be sufficient to consider 7,.

The consideration which prompted us to split (3.2) into
four parts now leads us to split (3.22) into two parts and
write it in the form

$Y S @+ nn+n

n=21=14L=0

xf k3 dk,
(0]

+ 3 S en+n
n=114=0 0

I,<const

[ZZ :oR (k)(’lllukzlz)]
|E—E, — k3|’

k2 dk,

n (k)
% [Ek:OR (n.0,k.0)] } (3.40)

lE—En._—%k?z_‘z

The inequality (B1) applied to (3.25) followed by a use
of the Cauchy-Schwarz inequality yields

Rl k1)

1/2
< colritf | 4k dt(f dr (R, ()] )
n! r
X(fy " |R,;(kzll‘t)rt |4 )1/2‘
0 1%

Using (3.30), this can be written in the form

172
R ®nd L)< %nstz[ f ]le(kzr)]ﬁ' er
ny ’1 0

(3.41)

Note that, since the radial function R, (k.r) is finite at'
r = 0 and?

R (ki) ~ (2/m)(k,r)!

><sin(k3r Y — kglongzr), (3.42)

2
with
N, = argl"([2 +1— l'ké),

2
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we have Finally we consider /,. An application of the Cauchy—

o . Schwarz inequality (3.28) to the expression (3.26) followed
L r|R (k)| dr < 0. (3.43) by a change of variable p = 77 in one of the integrals yields

Use of the result (C1) (see Appendix C) in (3.41) yields R& ’(k.ll,kzlz)gconst[ fx r| R (ki) | dr} 2
¢}

R* )(”111,k212)
RI‘( kauy )
N1 —u

const
Similarly, one finds that

2[ U ]1/2 oo . 12
= n%l ?/2 (A — oy ’ X [ L | R, (k)| dp] .
u€[0,1]. (3.44)

Using the result (C1), this reduces to

(k)
REm0kL) R “ (k1 kL) <const R,( kisy )2
cons R( kou, >2[ u, ]1/2 N1 —u,
a2 1T, (—uy |’
uel01].  (3.45) X‘R,\( katto )2 U
The estimates (3.44) and (3.45) when substituted into (3.40) N (1 = uoy

yield Substitution of this estimate into the inequality (3.24) for I,
oo o — 1 o 1
Iz<const[( D S n; 2 32y S o 5/2) yields
morhe m IL<const (21, + 12 + 1)f kfdklj k2 dk,
1 0 0

)

x( ) (212+1)f‘k§dk2
=0 0

X ’R{l( kluo ) ’ R/,( kzuo ) ’ o N
1 —u, 1 — u, (l_uo)J
<) ey |
I;
1—u (I —uoy X |E—3k?—-1k3|*  for EeDy. (3.47)
-2 Transforming into polar coordinates k, = p cosé.
E-E, — k2 )} . rming into p | TP COSY
X ‘ moo2ne (3-46) k, = p sing and noting that p*/|E — 1p*|” is bounded for

EeD,, the double integral in (3.47) satisfies the inequality
Note that [R, (k.u./(1 — u,)}|* is bounded as a function

of k,in theinterval [0, o0 ). Let &5,,€[0, o) be the value of k, at J ki dk, f k3 dk,
which |R; (k.uo/(1 — ug))|* attains its maximum value. We 0 ¢

have % ‘Rl( ]klu() )}“'Rl< lkzuo )'-
= - 72 ! — Uy T Mo
R -

o N1 —u,

(1 —u) X]E~%k%—"§k§\3
. 1212 P T2
|E—E, — 3k35| = j P d’OJ. sin*f cos*@ d6
0 [¢]
kytts )12 172 [ k3dk . 5
< RI< 2m ) [ Uy 3 ] J 2 2 - ~ tR,(&lo (.,OSH)
1 — u, (1 — u,y) o |E—E, —5k3|? N1 —u,
u, sind \ |2 Y
o o[ | xR ((BBEN e g
Lconst{R; [ ] , for EeD,. 1 —uq
N —u, (1 — u,)?

2

. . . B b Pty cost,
Using the above inequality and (3.38), we find that (3.46) <const N P l R\ —F———

1 —
reduces to o
o kst \|2 pu, sinf, \ |2 T
eeonst $ @t n|R,( 725 ) <[ ) o oclo S| e
L0 N1 —u, 0
(3.48)
172
X[ ?l-—u—OT ] < o0, where, the last step has been obtained by using the mean value
— U,

theoremoftheintegral calculusapplied totheintegrationover
@ in the interval [0,77/2]. Using the result (C2) on the last
where in the last step we have used the result (C3) integralin (3.48) and substituting the resulting estimate of the
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double integral into (3.47), one obtains

RI.( uyv, cosf, )

L<const| 3 (2h+1) (1 — u)(1 — o)
]

L=0

]

S o Sind,
X 2(212+1)‘R11(( UoV, Sin )

L=0 1 —uy(1 —vy)

(3.49)

X( et )< BeD

the last step being made possible by the result (C3).

This completes the proof of compactness, as desired, of
the sequence of operators (3.6). To show that the operator

K(E)=(E — Hy — Hy,)''V, EeD, (3.1)

where Vis given by (3.3) is compact, all we need to do is to
show that ||K — K,||—0 as n— 0. Noting that Vand V,
have domain D, defined by (3.2), we observe that
(V—V,)eL =(D,), where the norm on the Banach space
L ~(D,) is defined by

Ifll = sap [f(r,r)].
(r,r)eD,
Since ||V — V,||—0 as n— o0
and (E — H,, — H,,)"" is a bounded operator for EeDp, we
have

1K — K|l = I(E — Hor — Ho)'(V — V)|

(3.50)

<|(E — Ho — Ho)||[|(V = V)]0

EeD,.

as n— oo,

Hence, the operator K (E') is compact for EeD,..

4. CONCLUSIONS

We have shown that the linear operator defined by the
infinite system of linear equations (2.12) is compact in a re-
gion of the complex energy plane which excludes

(i) the bound state scattering cuts starting at the hydro-
genic bound state energies E,, n = 1, 2,--., and extending to
+ co. :

(ii) the multiparticle cut starting at £ = 0 and extend-
ingto + oo.

Our region of compactness also excludes the spurious
points {E, + E, }, n,,n, = 1,2,.... These points do not be-
long to the essential spectrum of H.

The above results permit us to truncate the infinite sys-
tem of equations (2.12) with the assurance that the N energy
eigenvalues obtained from the N X N truncated equations
will uniformly converge to the lowest N eigenvalues of the
original infinite system. Questions regarding the choice of
the complete basis sets { [a,,,>} have been discussed in 1.
Here we merely remark that they must belong to the domain
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of H and be discrete. One could, for instance, choose a Har-
tree—Fock (RHF) basis set for {|a,,a,>}.

APPENDIX A

We prove the result that if | @,), | ®,)e# and (P, | P,)
+#0, then

’(f;)Uvzl)@""“"z)(E—Ev‘—EVZ)"<v,,v2|<1>z)

<C(®\|®)|, EeDg, A1)
where C is a positive constant.

Proof: Let

Re{(E—E, —E )'] =L(Ewv,v), (A2a)
and

Im[(E—-E, —E.)'] = M(Ev,w). (A2b)

We have, using (3.14)

|L (Esvi,v) |<|(E—E, —E,)'|<4 for EeDy,
. (A3)
where A is a positive constant. Similarly

|M(E§V|,Vz)| <A for EeD;.
If |@,) = |®,) = | D) say, then using (A3) we have

( f g )(‘D [vi,v) L (E;vi,v){v,v;| P )

(A4)

g( f ;)«p Vi) (viwa | 8) | L (B |
A

N

([ 2 )@ vmimmie

= (& |®), EeD,.

We can therefore choose a real constant 4, which may be
either positive or negative and for which

(f g, )<‘D [Viv)) L (Evi,v){vi,v, | D)

=A(P |P), EeD,. (AS)
Similarly, one obtains
( f s )(«p [viva) M (Esvvs) (viva | ® )

;Az(é |®), EeD,. (A6)

Using |®, + ®,) in (AS5) instead of | @ ) we get
(f Z )[ (‘pl IVI,'V2><V1{V2 | ¢1> + (¢2|V1,V2><V1,Vz | /4 >

+ <¢I ’Vl,Vz>(V1,Vz|¢z> + (‘pzl\’n"z)
X Avi,v: | @) L (Esv,v)
:A1[<(p1l¢1> -+ <(pz|(pz> + <¢1l¢z> + <¢z|¢1>],

EeDg,
which by (A5) implies that

(J ; )[ (¢1|V|,Vz) (Vl,vzl(pz) + <¢Zlvl,v2><vlyv2|¢l>]
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=A,[{D,| D) + (D,|D)].

This can be written in the form

Re[( J ; )(45l [viva) {(viv, | D) L (E;v,,vz)]

= A, Re[(D,|®,)], EeD,. (A7)
Similarly, using (A6) one obtains
Re( [ S )@ lvowd vovil @0 p @)

= A4, Re[{D\|P,)], EeDy. (A8)

In a similar manner, using | @, — i®,) instead of |® ) in
(A5) and (A6) one obtains

Im[( j ;)(cpl|v1,v2><vl,v2|¢2>L<E;vl,v2>}

— A, Im[(@,|®)], BeD, (A9)
and
Im[( J ; >(¢1 |V1,V2> (vi,v, | ¢Z>M(E;V1’V2)]

=4, Im[(®,|P.)], EeD,. (A10)

respectively. Also, (A7) and (A9) together imply that

( f ; )(‘P. [vi,v2) (Vi,vo | D) L (Ejvi,vs)

- A1(¢| l ¢2>, EEDE-
Similarly, (A8) and (A 10) imply that

( J ; ><<P1 | Vi, v ) {viva | @) M (E;v,,v,)

EeD,.

(Al1)

:Az<(p1|‘pz>y (A12)

We have, using (A11) and (A12)

|| ( f ; ><¢‘ [viva) (viva | P)(E —E, — E,)"

< ‘ ( f ; )(<1>, [viv) (viva | @)L (Ev,,vy)

+ ‘(f 2 )(Q)‘ [viva) (Vv | PO M (Evi,va)

= [(14] + [4.D] (@) | = C [{D:[ P2} ].
This completes the proof.

APPENDIX B
It will be shown that

IR, (r| < S22 (B1)
nl/Z

and
const
IRnO(r) | < n3/2 ’ (B2)

where

ro=|(22) Gt ] ()
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XL+ 1( 22Zr )e —zr/n, (B3)
n

The following recurrence relations will be used®:
xLyT'x)=(n+a+DLix) —(n+ DL, (x), (B4)

L =Lix)—L% (), (B5)
XL %) = aL 2(x) — (n + DL 2 (x), (B6)
S Li@=Lit', Li@=1 (B7)

The third of these relations is obtained from the first two.
Also, the following inequality will be required!®:

|L,(x)e  *?|<1. (B8)
The inequality (B1) will be proved by induction. From (B3),
we have for /=0

Ry =@/my (s (o )ezm mo)
n n
Using (B4), we find that (B9) yields the inequality

Ln _ l( 2Zr )efzr/n
h

|R,o(Nr|<(Z /n)”z[

+

L ( er )eflr/n
" n

] const
<
nl/Z

where, the last step is obtained by using the inequality (B8).
Assume now that the statement is true for /:

const
| Rnl(r)r | <

(B10)

nl/Z

The statement will be proved for / + 1. Now
Z (n—1-2) ]1/2( 2Zr )’+2

n(n+1+ 1)

Rn,l -+ l(r)r - [
n

XLiljl:‘, Z(E)efzr/n. (Bll)

n

Using (B6) and (B7), we have

(&)L 20 ,zfz(EZL)
n n

— —i—DL2 ) (272’)

n—{—1
ICTREINS L?,’J,Ll,\-(—zf’ )
s=1

Hence (B11) satisfies the inequality

1Rn,1+ l(r)rl
<Hg(n—1—2)! 172
nt(n+ 1+ 1)

(n_l_1)< 2Zr )/+|
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xpy (2 )e-on
n

1—1

Z (n—1-2) ]1/2( 2Zr )1+1
20 +2 z
e sgl [nz(n+l+1)! n
XLt 1( zf’ )e’z'/" (B12)
=¥, (r) + D,(r), say. (B13)

Consider the first term on the right-hand side of the
inequality (B12). Using the hypothesis (B10) we have

_[a=1-D P2 [ ZE—-1-1)]
W,,/(r)_[(n+1+1)] [nz 1) ]

X( 27Zr )l+1L
n

<[ n—1-1 ]1/2 const
L4+ n'?2
which implies

2041 2Zr \ _zin
n—1—1 €
n

const
¥, ,(N< .

/.
an

(B14)

We now deal with the second term in (B12). We can write

d)nl(r)
B ndo 1 (n— 8 — [ — s)e(n — 1 — 2) |12
=2+ 1) A‘Zz nn —s+1+ 1)...(n + /4 1) ]

X | Rn — s,l(kn..\'r)k

d

n,s

(n — 1¢ 1 172
+(2l+2)[ n? (n+1)(n+1+1)]

X IRn — l,[(kn.lr)kn,lrl’ (BIS)

where &k, . = (n — s)/n. Note that 0 < k,, , < | so that 0<k,, »
< o. Since

const
(n _ s.)l/Z
We find from (B15) that @,,,(r) satisfies the inequality

n—1—1

Z (n _ s)—l/z

s=1

|Rn - x.l(kn,sr)kn,srl <

3

D, ,(r)<constn™

n—1
<constn™ Z s2<constn?,

s=1

(B16)

where we haveused (3.38) toobtain thelaststep. Noting (B14)
and (B16), the result follows.

To obtain (B2), we have, using (B7),

L (22" )efzr/n
” n

n—1
|R.o(N | <(Z/n)QZ/n) Y
m=20

(Z /n*)*QZ /n)(n — 1),

cons
< t

by use of (B8)

]
n]/Z
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which is the required result.

APPENDIX C

Finally, we prove the following results involving the
radial functions for the continuum states of the hydrogen

atom:
i ku, )4 U,
4 == R ) Cl
.[) ‘R,(kr)[ dr ,( — T —uy (C1)
u.€[0,1],
[ o1RGora R oo o
Vol 2 ( 28} )’2 Vo
= IR R , (C2
/I( 1— Uy ) b 1— Vo (1 - Uo)3 ( )
ve[0,1],
S QU+ DIRGD] < o (C3)
=0

To prove (C1), we transform the infinite integral into
one over the finite interval [0,1] by the change of variable

u=r/(1+7r), sothatr=u/(1—u). (C4)
This gives
- PP ku 4wy
J() [Ritkr)|"dr = Jo ’R'( I — u) (1 —u)y du
1
= J-f,(u) du, say. (Cs5)

Note that f; (0) = 0. Also using (3.42) we have

0= tim 2 25

. ( 2 )2 u
= lim{ =
w7/ (1 —uy

v sin'(ku/(1 — u) — 3lm + 9, + (Z /k ) log[ 2ku/(1 — u)
[ku/(1 —w)]*

4 u

(I —uy

>

— lim /(1 — ) 3D g
u 1 k4u3

so that f;(u) is defined at u = O and = 1.

We can therefore apply the mean value theorem of the
integral calculus to the finite integral on the right hand side
of (C5) to obtain

r |R,(kr|‘dr=’R,( kit )
0 1 —u,

The result (C2) is obtained in exactly the same manner
as (C1). Note that'' R, (kr)—0 as k—0 and that the asymp-
totic form of R, (kr) for large k is of the same form as that for
large r [see (3.42)].

4 u,
(A —u)y’

u,c[0,1].
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To prove (C3), we have!'? Using the orthogonality relations for the Legendre polynomi-
Znrok iz als we obtain immediately
Wr,0)=e“""I"'(1 —iZ /k)e . -
3 @+ DR = J

1=0

[¥(r,0)|*sinfdO < .
XF(—~iZ /k,1;ikr(l — cos@)) °

'N. Dunford and J. Schwartz, Linear Operators (Interscience, New York,
2 , 1963), Part II, p. 1091.
= 2 @+ exp[z(?], + %177)] Rl(kr)PI (cosf) ’H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One and Two-elec-
r=0 tron Atoms (Springer-Verlag, Berlin, 1957), Chap. 1.
*J. Dieudonne, Foundations of Modern Analysis (Academic, New York,
so that 1960), p. 314.
*R. Schatten, Norm Ideais of Completely Continuous Operators (Springer-
Verlag, Berlin, 1960), p. 18.
K . *C. Lovelace, Three particle systems and unstable particles in Strong Inter-
f '¢(’38) ' *sind d@ actions and High Energy Physics (Oliver and Boyd, Edinburgh and Lon-
0 don, 1964), R.G. Moorhourse, Ed.
&= “See Ref. 2, p. 17.
= Y @+ner+y See Ref. 2, ‘;. 17,
Lr=0 *N.F. Mott and H.S. W. Massey, The theory of Atomic Collisions (Oxford U.
P.. 1949), 2nd ed., p. 46.
Xexp[i(n; —n, + 3im — 3'm)] *Higher Transcendental Functions, Bateman Manuscript Project (Erdelyi,
Ed. (McGraw-Hill, New York, 1953), Vol. II, pp. 190, 192.
""See Ref. 9, p. 205.
S o YL.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, Lon-
X R (kr)R, (kr) f P,(cosB)P,{cosd) sind d6. don, 1965), 2nd ed., p. 122.
a ""See Ref. 8, p. 46.
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Geometry of spacetime founded on spacelike metric
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The first part of this paper contains new mathematical techniques for describing a spacetime anisotropy as
suggested by the violation of parity conservation. Geometric measures of spacetime involve both the
laboratory doing them and the events upon which these measures are done. The time form ¢ and the
spacelike length 7y are the basic issues of those measures. Both depend on events and also on the timelike
direction of the laboratory. Relativity tells that the field vy — ¢ X)c depends, on the contrary, on events
only; in this sense, relativistic spacetime is isotropic. 1f v and ¢ do not have that property, the manifold
where the observable geometry takes place must be the set of timelike directions. The geometric structure
of this manifold given by ¢ and ¥ is studied in detail. The second part of the paper contains the study of a
line of thought opposite to chronogeometry: Building the geometry from lengths instead of times. The
datum is ¥; through the conditions of stationary spacelike volume and of stationary proper time, a class
of time forms and a gauge are obtained under some weak restrictions. Newtonian and relativistic spacelike
metrics fulfill these restrictions. Standard connections are induced; they define the absolute derivative of
physical fields and the geometric structure of the manifold of timelike directions. The paper ends with

some comments about the remaining problem: to suggest and justify field equations.

. MATHEMATICAL TECHNIQUES FOR
SPACETIME PHYSICS
1. INTRODUCTION

We will consider spacetime as an n-dimensional differ-
entiable manifold M, whose underlying set is the set of
events. We call timelike the nonvanishing vectors tangent to
the possible world line of particles. Let % M be the set of
timelike vectors. Then, if x.Z M and a > 0, we have
axeZ M. Also we admit that % M is an open subset of
T M, 75:T \M—M being the tangent bundle over M. In
ordinary language, this assumption corresponds to the fol-
lowing experimental fact: Given a particle, it is possible to
have particles whose relative movement (with respect to the:
former) has arbitrary direction. We put 7 M—M, where

F =1 Z M, and suppose 2 . = 7 '(m)to be nonempty for
each meM.

We emphasize that % M is not related here to a Lorentz
metric, because we are looking for a wider mathematical
ground than the relativistic one.

Any physical quantity must be measured from some
laboratory, and every physical experiment must be devised
referring it to several instruments. These instruments consti-
tute the laboratory, and they are built by particles following
their respective world lines. Let U be the spacetime neigh-
borhood where the experiment takes place. Then, we can
provide a rough description of the laboratory as a cross sec-
tion 7 of 7 on U, where 7, stands for the tangent to the world
line of the particle (belonging to the involved instruments) at
meU. Thus, one could expect the result to be a function of 7
and other parameters. Obviously, this happens in practice:
for example, the Doppler effect of a signal received in earth
from a satellite.

However, this experiment and others like it are too far
from our geometric goal. So, we shall fix our attention upon
the measurement of geometric features of spacetime: (a) time
elapsed between two events, as measured by clocks (labora-
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tories) following different world lines connecting both
events; (b) spacelike distance between two events as mea-
sured by different meter sticks (laboratories), such that both
events occur on each meter stick. In both cases, the resulting
quantity depends on the laboratory, i.e., on the local cross
section of 7 attached to each clock or meter stick.

The wondrous thing would be that one could find, from
that type of measures, a magnitude depending on events of
spacetime only, and not also or 7. If this did occur, we could
say that spacetime geometry was isotropic, since it did not
depend on the timelike directions of the laboratories measur-
ing it. Einstein’s standard relativity is, of course, the best
example.

But spacetime is not isotropic in its mass or charge dis-
tribution, at least on local scale. Moreover, the violation of
parity conservation suggests an anisotropic spacetime at the
microscopic level, as it has been explained by Horvath.! So,
one could regard general relativity as a first approximation
that neglects anisotropy, and consider the manifold of time-
like directions as the proper ground for the measurable space-
time geometry. We say directions instead of vectors because
and a7 do represent the same laboratory if a:M—R is a posi-
tive function. Thus, the true manifold must be % M, the quo-
tient of £ M under the equivalence relation given by
homotheties.

Now, what could one expect to find out as measurable
quantities? Of course, the same we are obtaining until now,
that is, ordinary numbers, vectors, or tensors. Thus, our
physical fields will be maps from . M to R (scalar fields), or
to T/M (tensor fields).

The goal of Part I is to develop a suitable mathematical
formalism for the treatment of these *‘mixed” fields also de-
pending on directions. It provides a common geometric
framework for the study and comparison of different space-
time theories (Newtonian and relativistic for instance). As
far as I am aware, it constitutes a new mathematical tech-
nique; however, for the sake of brevity, we shall restrict our-
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selves to the concepts we will directly use in spacetime the-
ory; the risk of such restriction is to conceal somewhat the
mathematical reasons for giving certain definitions. Any-
way, our paper (Montesinos?) could serve as an introduction
to those techniques.

Through Part II, my own physical theory is developed
under the formalism of Part 1. The fundamental field will be
the spacelike metric. From it, we build simultaneity and,
partially, time length; in this sense, my theory is somewhat
new, since it no longer takes time or light signals as funda-
mental. It could be looked at as the opposite veiwpoint of
chronogeometry.

Besides this Introduction, Part I has nine sections. In
Sec. 2. we briefly describe the notation and some mathemat-
ical notations which we will use.

As for Sec. 3, let £ M be the quotient manifold of Z M
under the equivalence relation given by positive homothe-
ties. If 7.4 M—M is the induced projection, then the mani-
fold of timelike directions, ¥ M, becomes an open submani-
fold of the sphere bundle over M. Physical fields are maps as
h: % M—T M, satisfying w7oh = 7, where 7:T 'M—>M is
the tangent tensor bundle of type (r,s). This condition tells us
that a physical field assigns to each timelike directiown r,, a
tensor lying in the tensor space tangent to M at m, the event
where that timelike direction lies. We can consider physical
fields as included in the algebra of Finsler tensor fields over
Z M because there is a one-to-one correspondence with ho-
mogeneous degree zero Finsler fields.

This material serves for describing the basic geometric
features of spacetime, namely the time function f, the time
form c, and the spacelike metric ¥ (Sec. 4). We discuss the
physical meaning of these fields and give two examples,
Newtonian and relativistic spacetimes, clearing up the wide
range of spacetime models where this scheme applies.

The mixed nature of physical fields makes a direct treat-
ment difficult. So, we shall submit it to the techniques for
usual fields over & M. Besides the physical motivations for my
viewpoints, that is the main objective of this part. Thus, in Sec.
5 we define horizontal and vertical homomorphisms from
the module of physical vector fields to that of ordinary vec-
tor fields over # M.

In Sec. 6, these homomorphisms are extended to be
graded tensor algebra homomorphisms (lifts) from /7M, the
algebra of physical fields, to V. M, the algebra of ordinary
tensor fields over & M. Each lift has a unique lowering that
is its transpose map. We define crossed pairs of lift lowerings.
They induce the horizontal and vertical projectors. The
main result of this section tells that a pair of horizontal and
vertical homomorphisms, in the sense of Sec. 5, do define a
unique pair of crossed lifts.

In Sec. 7 we define and interpret several types of con-
nections we will use later, namely horizontal and vertical
connections on /TM, physical connections, and the j-connec-
tion D, an important mathematical tool. We interpret
1 = Dc as the rate of time retardation when the relative
speed increases. This field plays an important role in the
existence problem for connections.
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Section 8 is devoted to the definition, explanation, exis-
tence, and uniqueness of horizontal and vertical torsionless
metric connections. They have a suggestive meaning: The
vertical connection measures the absolute directional depen-
dence of physical fields; the horizontal one, the absolute
along spacetime dependence.

In Sec. 9, we lift the pair of these horizontal and vertical
connections for having a unique physical connection. It de-
fines the absolute dependence of physical fields along the
time manifold. This connection is also lifted for having the
linear connection D, that yields the final geometric structure
of the time manifold itself. These results are briefly resumed
in the conclusion (Sec. 10).

2. NOTATION

M, n-dimensional Hausdorff second countable real C
manifold, briefly manifold. It stands for spacetime.

7 T 'M—M, tangent tensor bundle over M of type (r,s);
M., tangent space at meM.

V' 3M, the ring of C = real functions on M; V /M, the
¥ 9M -module of C © cross sections of 75; VM = & VM,
tensor R algebra, graded by the indexes (#,s).

F M, the set of timelike vectors, is an open submanifold
of T M, 7. F M—M is defined by 7 = 7p|.Z M . We suppose
that 0¢.% = 7 (m)=~0 for every meM. In addition, we re-
quire that if ¥¢.Z M, then axe.% M for every 0 < acR.

Since Z M is itself a manifold, we use V.4 M and
V% M to denote the module of ordinary tensor fields of type
(r,s) over .¥ M, and the respective graded tensor R algebra.

ITOM = V9 M, thering of real C = functions on Z M;
17d "M is the IT3M module of Finsler tensor fields of type
(r,5), that is C * maps / hFM—T'M satisfying
woh =7, IIM = & IT"M, graded tensor R algebra of
Finsler fields. We say that a Finsler tensor field k is homo-
geneous of degree acR if h h for every O < geR and
XeZ M. That property w111 be denoted h(a).

#.Z M—T ‘M, the canonic Finsler vector field, is de-
fined as the inclusion. Hence, @ is A (1).

T \M—V % M, the vertical injection. That s, if
veM,, and xegZ , then z~(17) is the tangent at t =0 to the
curve o:f—X + t. Smce Z M is open in T M, then %, is
open in M,,; therefore, for some € > 0 that curve lies i m
4 CZM if —e<t<e Thus,o(t)isacurveon ZM,
whence its tangent i (7) at r = 0 is a vector belonging to
(Z M);. Hence, if 5:% M—T M is a Finsler vector field, we
define eV % M by means of (iD)z = iy).

{s,v), the contraction of the 1-form s (belonging to
VoM, VSZ M, ITM, etc.) with the vector field v (belong-
ingto VM, V.Z M, IT\M, etc., respectively).

3. THE TIME MANIFOLD. PHYSICAL FIELDS

On % M we define an equivalence relation ~by means
of x ~yif 7(¥) = #(¥)and X = ayforsomea > 0. Let ¥ Mbe
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the set of equivalence classes, and p:.# ?“M——> % M the natural
pro;ectlon which applies an element Xe. Z Mintoits class px.
Then, .¥ M can be given a unique differentiable manifold
structure making p a submersion. We will call 4 M, with
that structure, the time manifold. 1t represents the manifold
of timelike directions. The map 7. % M—M, where mop = 7,
defines the time bundle. Note that a cross section r of 7 on
UC M can be looked at as a laboratory whose instruments

have at mel a particle with speed 7,,,.

Let I7M be the ring of C = real functions on ¥ M. We
use I1 "M to denote the set of physical fields of type (r,5), i.e.,
C = maps h:% M—T M satisfying 7,0h = 7. Then, if for
example vell (M, its valuev, atr, €%, = m"'(m)isa vector
of M, the tangent space to M at m. Thus, /1 ;M becomes a

11 3M-module, and we can build the graded tensor algebra
ITM of physical fields.

If hell "M, we put e h = hop.Z M—T M. Then

moe h = wohop = wop = 77, therefore, e, 4 is a Finsler ten-
sor field of type (r,5). Since p(ax) = px for every a >0 and
x4 M, we conclude that e, his h (0). Hence, e, JIM—>ITM
is a graded R algebra homomorphlsm mapping /1M onto the
graded subalgebra of / (0) Finsler tensor fields. Conversely,
if helTM is h (0), it defines e, AclIM by means of e iop = h.
Thus, ¢,ce, = id on IIM, and e ©e, = id on the subalgebra of
A (0) Finsler tensor fields. So we have bridge between Finsler
techniques and those we present here.

4. SPACE AND TIME FORMS

Spacetime geometry involves two main concepts, spa-
celike and timelike length, and a link between them: syn-
chronization. This last is the troubling point because since
Einstein’s relativity, light signals came in. The trouble is:
timelike length defines by itself a synchronization, as we
shall see at once; spacelike length also does that (see Part IT).
So, what do light signals do in all this matter? This question
is purposely bold, but I think it is not merely rhetorical. It
aims to raise doubts about the role light signals must play on
spacetime geometry, and to make more plausible the view-
point of this paper. In fact, my methodological way is the
following: to look at space and timelike length as the basic
(related between them or not) geometric data of spacetime,
and to consider gravitational or electromagnetic phenomena
(light signals among them) as desirable dynamical issues
from the szatic (geometric) description. So, in this paper light
signals do not play any direct role among the basic geometric
Seatures of spacetime. Of course, electromagnetic signals are
the best practical tool for the study of spacetime in several
areas. I simply say they are unnecessary for our theoretical
purposes.

Let us consider time length first. As it has been pointed
out by chronogeometry, time length must be defined by a
# (1) function f&/T M, such that if o:[a,b ]—-M is the world
line of an atomic clock, then f2f.d¢ is the time measured by
that clock between o(a) and o(b ). The function fmust be 4 (1)
for time elapsed could be invariant under parametrization
changes of o. We will call £ the time function.

A synchronization is given by a time form, that is a field
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cell M such that (¢, is everywhere nonzero (we always
will put é = e, c). Briefly, if X% M, then the hyperplane of
M, spanned by the vectors feM,, satisfying {C¢,0) == 0 de-
fines the simultaneity relative to the timelike direction pXx.
Note that {¢,#); = {¢,5¥>70because X stands foratangent
to the world line of the particle defining the simultaneity ¢, ;
since that line is timelike, different events on it cannot be
simultaneous. Note also that if ¢ is multiplied by any non-
vanishing function gell )M , then gc defines the same simul-
taneity than c.

Let us relate fand c. If fand ¢ are given, then c can be
multiplied by some function ge/T $M such that
<e, (gc),ii> = f, since it is enough to take ¢ = e, (f /G, 0)).
Thus, an arbitrary given time function can be defined on this
way from an arbitrary simultaneity. The choice of a “length”
for a simultaneity ¢ (the multiplication by ¢) fixes a time
scale on each synchronized laboratory. That is, if 7,,, is a
timelike direction at m, then ¢, stratifies on equitime hyper-
planes the affine tangent space M, . Thus, if veM,,, , then
{c, 0y stands for the time shift between the tail and the head
events determining . This time shift depends on the inclina-
tion (synchronization) of ¢, , and also depends on the sepa-
ration of equitime hyperplanes (the lenght of ¢, ). Now, if

o:[a,b]->M is a world line and »rM—.¥ M isa laboratory,
then % c,.,.0>dt is the time inverted by the particle o from
o(a) to o(b ), as measured by the laboratory r. If 7 is the
particle itself, that is 7oo = pd, and <{¢,i> = f, then
£8e 0 00dt = [8E,0> dt = [ dt. In other words, the con-
dition (é,i> = f means that we have picked for the synchro-
nized laboratories the same time scale which measures proper
times by means of f.

Let us consider the inverse problem: Given f, find out a
time form ¢ such that {¢,i> = f. A solution is the element of
ITM defined through<{c,i> = io(f) forevery vell ) oM. Infact
we have {G,i) = ii(f) = fbecause fis / (1); also ¢ is 4 (0)
because 4 is / (1). Therefore, ¢, ¢ = c is a solution. Now, if
bell M satisfies (e, b,i> = 0, then ¢ + b is another solu-
tion. But only the first one has a decisive property: The si-
multaneity if furnishes corresponds to that of infinitely slow
clock transport. In fact, we will see in Part 11 Sec. 4 that this
correspondence is characterized by the property ii({¢-

L) = (&) for every Sell M . So, we can say that a time
function f gives raise to a unique compatible time form c, the
one satisfying (é,i> = f, i5(¢,i>) = <¢,5>. Due to this, in
the following we will use time forms instead of time
functions.

As for spacelike length, it is given by a field yelTIM,
symmetric, of signature (0, + ,..., + )}, and such that 7;(12, )
= 0, where ¥ = e, ¥ Along Part II we will justify this asser-
tion and see in what manner y defines a time form. So, we
shall then reach another puzzling point: the compatibility of
the time forms obtained from time functions or from space-
like metrics (II.1). Until then, we will leave this question and
go on to describe two typical examples under this formalism.

Let ge¥V 9M be a Lorentz metric. Then it defines the
time form ¢ = — g(iZ, )/( — g(&,%))"* where g = g7, and
the spacelike metric ¥ == gom + ¢ ® ¢. This is the relativistic
model.
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As for a generalized Newtonian spacetime (locally abso-
lute time and length), let M admit a symmetric field geV SM
of signature (0, + ,..., + ), and a field be V%M, everywhere
nonzero, such that if 045eM,, and (b,,0> = 0, then
7., (5,0)>0. Thus, b defines the local absolute time and § the
local absolute length. We put
IM = |%,eTMb,,%,>70}. Then, the time form is giv-
en by ¢ = bor and the spacelike metric by

L aGd).. d@)eé  ieq()
T e T Ty @

where § = go7.
See also Ref. 3.

5. VERTICAL AND HORIZONTAL
HOMOMORPHISMS

A vector field veV (% M is said to be vertical if
v(@or) = 0O for every @aeV 9M . That is, vertical vector fields
are tangent to the fibres 7 '(/m). The set of vertical vector
fields is a ¥ 3% M -module, locally (n — 1)-dimensional, for
it is the annihilator of the ¥ 3. M -module spanned by the
elements d (@em)eV (% M, and this last module is clearly n-
dimensional [take for example @ = X', where { X'} is a coordi-
nate system on UC M, and note that ¥ M is (2n — 1)-
dimensional}.

Suppose that a time form ¢ is given. Then, it defines in a
natural way a homomorphism j:/1 \M—V % M such that
its image, j(/T }M ), equals the module of vertical vector
fields (in this sense we say thatj is a vertical homomorphism).
In face, let velT M; then § = e vell \M, and (¢,i)it is a ver-
tical field of ¥ . % M. By its own definition, ((¢,i)i%), is the
tangent, at ¢ = 0, to the curve r—ax + {¢,gax >tV ;. Now,
because the factor (¢, z,ax) = a{éX>,p projects all these
curves (varying the number «) upon the same curve
P(X + {c Xt ,5), whose tangent at 1 = O defines j,(v,5).
Thus, we put (jv),z = j,{(v,:). Hence we have
(jvyop = p.o(Ké, i ie v), where p. stands for the derived map
of p. If aell M = V 5% M, then ju(a) defines a derivation
along the fibres; that is, ju measures the dependence of func-
tions on directions, not on events of spacetime. We have that
ker j is spanned by k = e,(i/{¢,i>), because p.oiu = 0.

Now, let A:J1 )M—V )% M be a homomorphism. Then
we say it is horizontal if (Av) (@om) = v,(@) for every re¥ M
and ae¥ M. The definition tells that A is injective. Note that
our condition is equivalent to {d (@om),Av) = {(da)omv).
Let us give an interpretation of A. We have that the elements
vell \M can be locally written as v'(d /dx'or), where
v'ell SM and {x'} is a coordinate system on UC M. Since A
is 11 5M -linear, we shall only give the interpretation of A
upon associated fields, that is such as 7o, with eV M. A
horizontal homomorphism A is an assignment of a field
AveV L% M tothe field v = Do such that Av projects uponv
under the map 7. . In other words, integral curves of Av are
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projectecd by 7 on integral curves of v. Or roughly speaking,
a horizontal homomorphism is an interpretation of derivatives
along M as derivatives along S M.

6. LIFTS AND LOWERINGS

Our purpose is now to extend a pair of vertical and
horizontal homomorphisms to vertical and horizontal lifts
for arbitrary fields of /IM.

The map A:lIM—V.% M is called a horizontal (vertical )
lift if: (a) A |11 )M is horizontal (vertical) homomorphism;
(b) A is a type preserving graded R algebra homomorphism;
(c) if v is in annihilator of ker 4 /1M and sell M, then
{As,Avy = {s,v); and if s is in annihilator of ker 4 [/ M and
vell (M, then {As,Avy = {s,0).

Note that if 4 is horizontal, then 4 |{/ W is injective;
thus every sef7 {M belongs to the annihilator ofker 4 |17 (M
; hence, if 4 is horizontal, condition (c) tells us that
{As,Av) = {s,v) for every s,v. Note also that for every lift we
have that Aa = a if aclT M.

The lowering B of a lift A4 is its transpose map
BV M—IIM. In other words, B is the graded R algebra
homomorphism such that Ba = a, {Bs,v) = {s, Av),
{5,Bv) = (As,v>.

If 4 is horizontal, then {s,BAv> = {As,Av)>-
= {s5,0> = {BAs,v», whence BA = id. If 4 is vertical we have
BAB = B,ABA = A. Infact, ifvell \M andseV % M , then
(s,ABAvY» = (Bs,BAv). But if zekerd |11 )M, then
{Bs,z> = {s,Az> = 0. Hence Bs belongs to the annihilator of
ker A |IT M. Therefore, {Bs,BAv> = {ABs,Av)-
= (Bs,v)> = {5,4Av). Since s is arbitrary we have 4B4 = A on
I1M; in the same way ABA = A4 on I1 {M; therefore, this
relation holds on the whole /IM. The proof for BAB = B is
similar.

The maps 4,8 have a local character, as is easily proved
as customary. This means that if v, = w,, then (4v), = (4w),
and so on.

The following definition will be useful for our purposes.
Let A, be horizontal, 4, vertical, and B,, B, their respective
lowerings. Then we say they form a crossed lift pair if
BA,=B,A, = 0on II'M for (7,5)(0,0) (on IT )M, these
homomorphisms are always the identity), and 4,B, + 4,8,-
=idon V ¥ M andon V{¥ M.

Then we shall put H = 4,B,, V = 4,B,. Thus we have
H=H V2=V, HV=VH=00n V.¥M with
(r,5)%(0,0). Thus, H and V project fields of V. M into their
horizontal and vertical components. These components sum
the given field if it is a vector field or a 1-form because then
H+V=id.

Now we reach the fundamental result of this section:

Theorem: Given the vertical and horizontal homomor-
phisms j and A, they define a unique crossed lift pair 4,, B,
A,, B, satisfying 4, |[TT\M = A, 4,|I1 (M =j, {c,B,v> =0
for every veV . M. Moreover, then B,|V (¥ M = 7.
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Proof: First we prove j(IlT \M)e A (I M) =V %M.
In fact, if v = ju = Aw, then for every aeV {M we have
v(aom) = (jv) (@om) = 0 = (Aw) (@°m) = w(a@). Hence
w, = 0 and v, = 0. Thus, the intersection of those submo-
dules is zero. Now, A is injective and the image of j equals the
submodule of vertical vector fields. Therefore, the maps
A,, j, defined at each re ¥ M by A, = (Av),, ju, = (v),
have rank » and » — 1, respectively. Hence
J M oA M,)=(FM), because (¥ M), is 2n — 1)-di-
mensional. Now, it is a simple matter to extend this direct
sum globally for having our first claim. As a consequence, if
veV L. ¥ M , it can be written in a unique manner as
v = Av, + jv,, where v,,0,elT ;M and {c,v;> = 0 (note that
ker j is spanned by k, and {c,k > = 1). We put
A8,V = (5,00, {A:5,v> = {s,v,>. These maps, together
with A andj, in fact define the whole lifts 4,4, satisfying our
requirements. The proof is rather mechanical and is left to
the reader. As for the assertion B,|V (¥ M = 7., we have
{8,Bivy = A,5,v> =<5 if v=Av, + ju,. Then
.V = mOAV, + T.Ov, = m.OAv, = v, as we have seen in our
interpretation of horizontal homomorphisms. Therefore,
B,v = m.0v,

Note that if ve/I}M, it can be written as
v = (v — {c,v> k) + {c,wDk. Thus, 4w = j(v — {c,vDk) and
(5,BA 0> = (A 5,40 = (A5,j(v — e, vdk )
= {s,v — e, k > because {c,v — {c,vDk > = 0. Hence, B4,
is the identity on annihilator of ¢. On a similar way, B4, is
the identity on the annihilator of &.

7. CONNECTIONS

The map 7:(v,h )ell M X [TM—<7 , helIM is called a
horizontal (vertical ) connection on IIM if: (a) <7, [IM—IIM
is a derivation of degree zero on the graded R algebra /7M;
(b)V,a = Av(a), A:11 \M—V | ¥ M being a horizontal (ver-
tical) homomorphism and aelT IM; (c) it is 1T SM -linear in v,
that is Vg, , pw = aV, + b V,; (d) if selT M and well M,
then 7 <5, = <V,5.0) + <5,/ 0.

The map A: (w,h eV \EM X [IM—A helIM is called
a physical connection if: (a) 4, is a derivation of degree zero
on ITM; (b) A .a = w(a) for acll JM; (c) it is V' 5.5 M -linear
inw; (d) 4, <s,0> = (A s5,0> + (5,4 0.

From a geometric and physical viewpoint, physical
connections are more natural than connections on /7M, but
these are easier to handle. We will use them as a tool for
finding physical metric connections. However, both types
have a physical significance. The meaning of physical con-
nections is that they give the covariant derivatives of phys-
ical fields along the directions w, that is, along curves on
& M, in other words, when we move from a point m at which
the laboratory has direction 7,,, to a point m’ where the labo-
ratory has direction r,,,’, in such a manner than the points r,,
and r,,. of & M are detached between them by the vector w
(roughly speaking).

Now, as another useful tool, we build the j connection
D, which is a vertical connection on ITM. It is defined by
Da = ju(a) if aell IM, and D (hom) = 0 if heVM. It is not
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difficult to prove the consistency of this definition. We have:

Theorem: If ¢ is a time form such that i5({¢,0)) = {é,0)
(see Sec. 4), then (D, c,w> =<D c,k> =0, and
{Dc,wy = (D, c,v)> for vwell M.

Proof: Since these expressions are /7 JM -linear in v,w,
we can suppose that they are associated fields, that is
Dv = Dw = 0. Thus, {D,c,w) = D, {cw) — {c,Dw>

= D, {c,w)y = jk ({c,w)) = 0 because jk = 0. Now

(D, <e,v)op = <&iyim(it(<¢,iy)) = <&,upip(ib(<é,i))) be-
cause v, w are associated fields and iv, fw are ordinary deriva-
tives (in the same sense used in R ") on the fibres of 7. Hence
0= D (cw) — DLew) = (D, vy — (Dc,w). Therefore,
D, ck>=<{Dc,wy=0.

This theorem tells us that 7 = D¢ defines a symmetric
element of 1 9M such that n(k, ) = 0. This field gives the
rate of time retardation when the relative speed increases. In
fact, let o(¢ ) be the world line of a particle, and » a cross
section of 7, that is a laboratory. If 6(¢ ) is the tangent to o, we
can roughly think of (¢ ) as a vector joining two eventsin the
world line, namely o(¢ ) and ot ) + (¢ ). Then
T, = {Cop1: p0(t ) is the time interval, measured by the syn-
chronized laboratory r, for the track of that particle between
o(t)ando(z) + o(t). Thus, if o remains fixed, this time inter-
val depends on r only. Thus, D 7, is the rate of variation of 7,
with respect to s, at s = 0, when we take laboratories
P(7 + <00,y >sU) measuring it (see Sec. 5), where we sup-
pose p7 = ro0(t) and U = v,., - That is, D7, is the rate of
variation of 7, when the speed of the laboratory changes
towards the & direction. But D7, = {(D£),0(,»0(t )>

= ooy (T,0(2 ). If U is a positive multiple of o(¢ ), this
means we are approaching the laboratory speed to that of the
particle because {c,.., 7> (proper time) is supposed to be
positive. Then, if 7,.,,(6(1 ),0(¢)) <0, we have that clocks
relatively retard with respect to each other when their rela-
tive speed increases (as a thinking guide, bear in mind special
relativity).

In relativity we have ¥ + = 0. In Newtonian space-
time 7 = 0.

8. METRIC CONNECTIONS

If '\7,>V/ are horizontal and vertical connections on
ITM, respectively, then we have that
'Tw)="Yw— "V — Bl4dv,4w] and
T (vw) = Bod, (N w — 0 — By[Aw,4,w]) are ITOM -
bilinear operators, where 4,,B,,4,,B, is the crossed lift pair
defined through the Theorem in Sec. 6 from the homomor-
phisms associated to these connections. These operators de-
fine elements ' 7, *Tell QM , calied the Aorizontal and vertical
torsion, respectively.

Thus, we say that 'S/ (3\/) is a horizontal (vertical y met-
ric connection if '\Je =0, 'y =0,'"T=0(y, =0,
7y =0.2T=0).

Then, since y(k, } = 0, we have that 'y, y(k ,)
= (VMK + 'V .k ) = ¥('V .k ) = 0. Hence, '/ k
must be a multiple of k; but {¢,k > = 1 and *\yc = 0. There-
fore, '\7k = 0, and in the same way we can prove >k = 0.
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The problem of existence for horizontal metric connec-
tions is rather difficult; in Appendix A is proved that if the
signature of v is (0, + ,..., + ), the signature of 1 is
0, —,..., =) and c satisfies iD({E,0>) = {¢,0), then there is a
unique horizontal metric connection on IIM. The root of the
difficulty is that we do not know a priori the horizontal ho-
momorphism associated with that connection. It must be
determined from our requirements together with the action
of 's7 upon vector fields.

Now, the increasing half-lifes of particles has been veri-
fied for many speeds and directions. Thus, we have an ex-
perimental reason for taking (0, — ,..., — ) as the signature of
7. Assuming this for granted, there is a unique horizontal
metric connection. In Newtonian spacetime, 77 = 0 and that
connection, if it exists, is not unique; the existence condition
is that b be an exact 1-form. This means a universal absolute
time. The proof of that assertion is too long for bringing it
here.

The physical meaning of 'v/ is the following: It defines
the absolute derivative of physical fields along spacetime (cf.
the interpretation of homomorphisms given in Sec. 5) from a
laboratory whose particles are each other at relative rest (at
the limit when these particles are close to the event where the
derivative is taken). The reason for this last remark is that
7k = 0, and k could be looked at, in some respects, as the
laboratory field. An account for this interpretation is given
in Ref. 4.

As for the vertical metric connection, it defines the ab-
solute derivative of fields along the fibres of 7, having ¥ and ¢
as an absolute measure for the directional dependence of
fields. That vertical metric connection also is uniquely deter-
mined, and given by

Vo =Dw+ g ((DLw,) + (D8, ) — (Dg)v,w), )
- g(Uyw)k - <c,w>v,
where we have put g = ¥ — ¢ ® ¢ (see Appendix B).

9. LIFTING CONNECTIONS

If 4 is a physical connection and 4,8 is a lift lowering,
then 7w = A4 , w defines a connection on //M. The follow-
ing assertion justifies our use of connections on /7M:

Given the horizontal and vertical metric connections '\J,
X7 there is a unique physical connection A giving '\7 and *7
through the above process. It is metric in the sense that Ac = 0
and Ay = 0.

For if 4 satisfies that condition, then
A=A + Ay h ='Wl + Wit forevery hellM,
welV % M. Now it is a trivial matter to prove this formula
effectively gets a physical connection. Moreover Ay = 0 and
Ac = 0because ’v7, = '\7, = 0 and 'c = *7c = 0. Also
we have Ak =0.

The formula giving A is rather striking: It manifests
itself our way to get it. It splits in two terms, corresponding
to the horizontal and vertical components of w, that is, of the
tangent to the curve on ¥ M along which we compute the
derivative. Thus, it does not require a more detailed
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explanation.

Unfortunately, physical connections are awkward to
handle because of their mixed nature. Due to this, we shall
lift A for having an ordinary linear connection on V.¥ M.
The process is the following.

Let 4,, B, be the horizontal lift lowering given by the
metric connections 'Y/, *3/. Then, if D is a linear connection
on V. M, we have that A s = BD_A4,h defines a physical
connection. We shall demand that 4 should be the physical
metric connection we have just defined.

As for A,, B,, the formula B,D A4,k does not define a
physical connection because B.A4, is not the identity. But
B,A4,B, = B,, whence the preceding formula defines a phys-
ical connection on B,(V.% M) that is a subalgebra of /7M.
But our physical metric connection also is a connection on
this subalgebra, because B,(V (.4 M) is the annihilator of ¢,
and B,(V\.% M) is the annihilator of k. For if (s,k > = 0,
then {d 5,k > = — {5,4,k > =0; also, if {¢,v> = 0, then
{c,4,0> = 0. So we shall demand that 4 ,8,h = B,D, 4,B:h
for every he V.% M. In addition, we demand that the parallel
displacement given by D should apply horizontal vectors
into horizontal vectors; in other words, that DH = 0.

Theorem: There is a unique linear connection D on
V.% M such that
Ah=BDAh A Bh=BDA,BhDH =0.

Proof’ Note first that H linearly applies V' .¥ M into
V% M; hence, each restriction H| V' .Z M can be looked at
as a tensor field of type (r + 5,7 + 5); in this sense, DH has a
definite meaning. If D is the required connection, then
Dyv= +DHv+ D, Vv=DyH? + D, V3
=HD,Hv + VD _Vvbecause H+ V =id on V¥ M and
as a consequence DV = 0. Thus D,v
=A,BD A ,Byv + A,B,D A,B,v =AA,Byv+ A,4,Bv.
Hence, if such a linear connection exists, it is unique and
given by the above formula (valid for elements of V% M
and V(% M; for other tensor types, the expression is more
complicated). Now it is a trivial exercise to prove that formu-
la fulfill our demands.

10. GEOMETRY ON THE TIME BUNDLE

We look at y and ¢ as the primordial geometric features
of spacetime. From them, we build unique vertical and hori-
zontal metric connections, and they define the physical met-
ric connection, which describes the absolute derivative of
physical fields along the time manifold. Also we have the
linear connection D that could be regarded as getting the
geometry of the time bundle itself; in fact, the torsion of D, its
curvature and Ricci fields, Bianchi identities, etc., can now
be computed as customary. Thus, our goal has been reached:
we have translated the problem of spacetime geometry to the
geometry of the time manifold, the manifold where the ob-
servable physics takes place. This lifting process has the ad-
vantage of recovering the usual techniques of differential
geometry.

However, to tell the truth, I have some doubts about
this process, in the following sense. One could also say that 7
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measures the increasing relative energy when the relative
speed increases, because time retardation and relative energy
are directly related in relativity and quantum mechanics.
Therefore, 7 would stand for the vertical potential in the
manner as in relativity g stands for the gravitational (hori-
zontal) potential. Then, this symmetry lends some strength
to the definition of vertical metric connections through
7c =0, %7y = 0, 2T = 0. On this assumption the lifting
process for connections becomes the same because we also
have that 7(k, ) = 0; but then Ay and A7 are in general
different from zero. Thus, what is the appropriate field, ¥ or
7, to be used for defining a metric on the fibres of 7? Relativ-
ity is not an aid because then ¥ + 7 = 0, whence the choice
does not matter. But in Newtonian spacetime, 77 = O; thus,
no vertical distance among velocities?, no relative energy?,
no inertia? These strange outcomes and the nonmetric char-
acter of 4 compel me to prefer ¥ instead 7.

Disregarding these doubts, I believe this process is not
merely a desperate issue from an unnecessarily puzzled star-
point; on the contrary, it seems to me more natural than the
relativistic one, because it allows a step by step construction
of different models of spacetime, clearing up the different
options one must take for having different theories.

Il. SPACELIKE LENGTH AND SPACETIME
1. INTRODUCTION

Until now, we have considered as independent data the
time form and the spacelike metric. But are they indepen-
dent magnitudes? In relativity the answer is no, because then
¥ + Dc = ¥ + 57 = 0, and there is experimental evidence fa-
voring some link between ¥ and n—the Michelson—Morley
experiment for instance.

Let us accept that link, but suppose that fis a general
time function, perhaps not a relativistic one. From fwe build
¢ and Dc = 7. Suppose the signature of 77 is everywhere
(0, — ,..., — ). Increasing half-lifes is the experimental sup-
port for this assumption. Then, it seems a suggestive attitude
to postulate that the relation between y and 7 is the same as
the relativistic one, i.e., ¥ + 7 = 0. In other words, we are
defining the spacelike metric as ¥ = — Dc. From this point,
we could apply the techniques of Part I for reaching a geome-
try of the time manifold. That would be the track of a pure
chronogeometry: to reject meters, adopt clocks and build
lengths from times. Classical chronogeometry in additon
postulates that 7 + ¢ ® ¢ = gom, with geV'IM , that is we can
mix these magnitudes for having a Lorentz metric.

So far I do not know examples of the opposite view-
point: /o reject clocks, adopt meters, and build times from
lengths. My own position is the construction of a very gener-
al spacetime geometry from the datum of a spacelike metric.
Atleast I judge this task convenient, as complementary with
respect to chronogeometry. Moreover, I find some physical
arguments favoring my position. First, 77 and ¥ have very
different physical meanings: 7 stands for the rate of time
retardation, and y for spacelike length as measured by me-
tersticks; thus, the relation ¥ + % = 0 seems rather acciden-
tal. Second, I think of time as a more dynamic feature than
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spacelike length, whence also a more secondary datum from
our methodological viewpoint (see Part I, Sec. 4); I believe
that is in the same line of thought as the way in which super-
space theories are going; that is, spacelike length carries in-
formation about time, but can we say that time carries infor-
mation about space? Third, Pythagoras’ theorem, on which
our theory leans, has always been verified at the macroscopic
level, and always supposed at the microscopic one.

Thus, our departure point is a spacelike metric, thatisa
field yelI9M , symmetric, of signature (0, + ,..., + ), and
such that (i, ) = 0. This field describes Pythagoras’ theo-
rem at each laboratory (Sec. 2).

The key point of the paper is Sec. 3. On it, we define a
simultaneity from y through the criterion of stationary spa-
celike volume. It is a generalization of the oldest definition of
simultaneity, that given by a person saying: “I cannot be in
two places at the same time!” He signifies that he cannot
reduce the distance (relative to him) between two events
happening at different places if they are simultaneous. We
will take volume instead of distance, but the basic point is the
same: to take spacelike measures instead of interchanging
signals for defining the simultaneity. The criterion of space-
like volume gives a time form ¢ under a multiplicative
function.

Each choice of that function defines a time function; we
demand that time function to be consistent with the time
form by means of infinitely slow clock transport (Sec. 4).
However, this requirement does not entirely determine the
time form; the equivalence among these consistent time
forms gives raise to a gauge (Sec. 5).

In Sec. 6 we characterize our geometric model of space
time in terms of a nonsingular symmetric field ge/7 M.
Some examples are shown.

Gauge invariance makes the definitions of metric con-
nections on /ZM more difficult. Along the study of this prob-
lem, a field ¢elISM arises (Sec. 7). It determines the hori-
zontal metric connection, and perhaps could be interpreted
as the electromagnetic potential.

In Sec. 8 we apply the techniques of Part I for lifting
connections, and so reach a physical metric connection
which is gauge invariant, and a linear connection on ¥ M
giving the geometry of the time bundle.

Section 9 contains some comments about our results.

2. PYTHAGOREAN SPACELIKE METRIC

For a better understanding, we will translate back and
forth our constructive process from the special to the general
case, in a similar manner to that of special and general
relativity.

In the special case, spacetime is considered as the four-
dimensional affine space. Geometric features of spacetime,
that is y or ¢, are supposed to be independent of events; they
could perhaps depend on laboratory directions. As in special
relativity or classical mechanics, if no forces act upon a parti-
cle, its world line is straight. An inertial laboratory is now a
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set of solidary particles, i.e., whose world lines are parallel
straight lines. Any nonzero vector tangent to them must be
timelike by definition. So, each laboratory is characterized
by a timelike vector X or by any nonvanishing multiple of it.
Let us consider ourselves traveling with the laboratory Xx.
Given an arbitrary event, it appears located at a well defined
point of our laboratory. In spacetime language, location is
the world line of the particle of our laboratory whose history
contains the given event. Events which happened at the same
point of our laboratory must have the same location, no mat-
ter the time elapsed among them. If two events are given, we
can measure the distance between their locations by means
of a meter stick at rest in our laboratory. Obviously, this is the
ordinary method of spacelike length measurements among
events: The bottle carrying the help message was found four
thousand miles away from the wreckage:---.

The resulting quantity depends on the vector y joining
both events (4-vector of spacetime). But it is clear that it also
depends on the selected laboratory, that is on X. Now, we
assume that Pythagoras’ theorem holds at each laboratory.
In other words, the spacelike length of y at X is given by
v{7,p), where 77; is a quadratic form that depends on X, but
not (in the special case) on the events of spacetime. Obvious
properties of this field i )?—>7~/j are: (a) 7{ax, ) = Ofor every
acR, because aX stands for the vector joining two events
having the same location at the laboratory x; (b) 7 = 77(1; for
a > 0since X and ax stand for the same laboratory (hence we
say that 7 is homogeneous of degree zero); (c) ve@.9) > 0if y
is not a multiple of x.

By a standard generalization, in the general case a labo-
ratory will be a local cross section of 7.4 M—M, the time
bundle, and y will become a symmetric element of /7 M, of
signature (0, + ,..., + ), and satisfying y(&, ) = O, that is
7(i,)s: = 5 (X, ) = 0 (see Part I, Sec. 4).

3. SIMULTANEITY FROM SPACELIKE METRIC

Our problem is now the discovery of a simultaneity
linked to the spacelike metric y. The process is performed in
two steps: imposing both the condition of stationary space-
like volume and that of infinitely slow clock transport syn-
chronization. In terms of Part I, we look for time forms
privileged with respect to y; let us discuss what kind of privi-
lege it is.

At this point it is interesting to remark that the preced-
ing description of ¥ is by no means restricted to a particular
class; thus, since we are looking for a generalization, it would
be desirable that our definition of privileged time forms
could be consistently applicable to Newtonian or relativistic
spacelike metrics, considered as simple and extreme
examples.

In classical Newtonian spacetime or in special relativity
we can verify without difficulty the following argument (we
are in the special case), whose rigorous proof is the theorem
in Sec. 6. Let 4, B, C, D be four events determining a hyper-
plane. If X is a laboratory, we can measure by means of yx
the volume of the tetrahedron determined by the locations of
these events in the laboratory X (or ¥ locations). Let V' (X) be
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that volume. We call V (x) the spacelike volume of the
(4,B,C,D )-x locations. If the field Xy is smooth and
A,B,C,D remain fixed, then V:x—V (%) is a differentiable
function; let d ¥V be its differential. Suppose that dV vanishes
at some laboratory X, i.e., (dV);, = 0. This means that the
spacelike volume of the (4,8,C,D )-x locations is stationary
at X,. If this occurs, then in Newtonian mechanics the four
events are pairwise absolutely simultaneous. In special rela-
tivity, we conclude that the hyperplane A,B,C,D is spacelike
and that %, is orthogonal to that hyperplane; or, equivalently,
the four events are pairwise simultaneous as viewed from the
laboratory x,. Moreover, in both spacetime theories, given
the timelike vector Xx,, there is a unique hyperplane whose
spacelike volume is stationary at x,,in the above sense (strict-
ly speaking, a distribution of parallel hyperplanes). Thus we
can say that such a hyperplane is privileged at X, with respect
to ¥, since the laboratory and its corresponding stationary
spacelike volume hyperplane are related by simultaneity.

The same idea serves us for defining priviledged time
forms from the spacekike metric, though it should not be
Newtonian or relativistic. Suppose that ¢ is a 1-form deter-
mining a distribution of parallel hyperplanes (we keep in the
special case). Choose one of them, say, H. As before, let
A,B,C,D be four fixed events determining H. Let V' (X) be the
spacelike volume of the (4,B8,C,D )-x locations, as measured
by means of y. Suppose (dV); = 0; obviously this condi-
tion does not depend on the chosen four events belonging to
the fixed H. Thus, we say the spacelike volume of H is sta-
tionary at X,, and that the events belonging to H are by defini-
tion pairwise simultaneous with respect to the laboratory X,.

Our basic requirement upon y is: Consider the subset of
timelike vectors for each of them, X, there is one unique (up
to a multiplicative nonzero constant) 1-form b, whose asso-
ciated hyperplanes are of stationary spacelike volume at X,
and such that <b.,X>+0. Then, this subset is supposed to be
nonempty and open, and it constitutes our final set of timelike
vectors. Our additional demand is: there is a representant ¢
of each {ab.] 0 such that the field ¢:¥—¢5 is smooth and
homogeneous of degree zero. This last field is called privi-
leged time form, and it defines the synchronization associat-
ed to 7.

In the general case this question becomes rather techni-
cal; a detailed account is given in Ref. 4. A brief sketch is the
following. Let ¥ C M be a hypersurface of M, and B a com-
pact regular domain of %, contained in the domain of some
chart of 3. Let {£, ] be the coordinate vector fields of this
chart, and {§*} the dual base. Let 7 be a cross section of 7
such that 7,, is not tangent to & for meZ. Then, y = yopoFis
a positive definite quadratic form when it acts upon T\,
Thus, fdeﬁnes a volume form on 3. Hence, the volume of B
given by that volume form can be interpreted as the spacelike
volume of B, as measured from the laboratory 7. Itis given by

V(P = SplvFufs)| V5 A A5" 7, where | | stands for de-
terminant. If B remains fixed, this integral defines a func-
tional on the field 7. Let us put ¥ = y°p and £ =f.07 By
applying usual variational techniques, we find that V' (7) is
stationary at 7 if we have (i5); (| y(fafﬁ)|) = Ofor every meB
and dell M.
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This is a point-by-point condition, and it does not de-
pend on the choice of {£, }. In other terms, it only depends
on the inclination of 2 at each point. Thus, we can build, at
each meM the set T,,C.7 , of vectors as X, , for each of
them there is unique n-1-dimensional subspace {f, } of M,,,,
not containing X,,, such that (iﬁ);m(lf(f;f,,)l) = 0O for every
oelT \M (note that i5 is a derivation along the fibres of 7).
Our abstract model of spacetime, the time-elements space
(TES), consists of a manifold M, a time bundle 7.4 MM, a
spacelike metric field ¥ such that p(T’,)) = 7'(m) for every
meM, and an element ce/T YM such that ¢, determines the
unique subspace of M, of stationary spacelike volume at
ru€m(m). We call ¢ a privileged time form, and ¢, the si-

multaneity associated to r,,,.
4. CLOCK TRANSPORT SYNCHRONIZATION

If ¢ is a privileged time form, then gc also is a privileged
time form, whenever ge/T YM is everywhere nonvanishing.
Thus, the choice of ¢ defines the time function {e (gc),u>,
that is the time length scale at each laboratory. Now, can this
function ¢ be arbitrarily picked without contradiction?

Let us return to the special case. If x is a laboratory, we
will call the X clock an apparatus, at rest in X, which com-
putes time intervals among events of its history by means of
¢ Equivalently, (¢, X is the time interval measured by the x
clock between two events of its history, detached each other
by the vector x.

Consider two laboratories, X and x'. Suppose the X'
clock lying at the spacelike origin of X', passes, at some event,
next to the X-clock of the origin of X. At that event, both
clocks are set to zero. Suppose that all x clocks are synchro-
nized among them by the condition of stationary spacelike
volume, that is, through é;. Now, does that X’ clock point to
the same hour as the X clocks it is passing by? There are few
chances for getting this agreement by a suitable choice of g.
With a Newtonian spacelike metric, the agreement is possi-
ble; thus, absolute universal time is, from our viewpoint, a
consequence of Newtonian spacelike metric! In special rela-
tivity, the answer is no.

However, in relativity an intermediate thing can be
achieved, the agreement when the clock transport is “infi-
nitely slow,” the limit case when relative speed approaches
zero (I believe this is Eddington’s idea). So, could we require
this weaker agreement with all generality? The answer is
affirmative. In fact, suppose that the X’ clock starts from the
event 4. Both this clock and the x clock at 4, point to zero at
A. After a while, the X’ clock reaches another ¥ clock at the
event B. Let Z be the vector joining 4 with B. Then z can be
decomposed as Z = y + ax where (¢.,j> = 0 and acR. If all
X clocks are synchronized, at B the X clock points to {¢,a%>,
and the X' clock, to {¢; , .y + aX). Then, we demand that
lim, . (&, ,F + aX) — (Cgzaxy) = 0. Now, é is A (0);
thus that expression becomes
lim, ., ¢z p—Cey+aXy= limy o (Cx 1 g5 — E2)/B,%,
where we have put 8 = 1/a. Then, since
limg o(C5 | gy — E/B = {CxX> (D)), we conclude that
infinitely slow clock transport agrees with stationary volume
synchronization iff (D ¢,k > = 0. Now, it is not difficult to
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see that this condition is equivalent to that of

In the general case, infinitely slow clock transport is
nonsense. The best we could do is the following (this new
process is equivalent to infinitely slow clock transport in the
special case). Let o:[a,b ] =M be a world line, i.e., (¢ ) be-
longs to % M. Let Fbe a cross section of 7, and c a privileged
time form. Then, the time elapsed from o(a) to o(b ), as mea-
sured by the synchronized laboratory 7 is §%(¢x,,0>dt
= 7(F). If o remains fixed, this integral is a functional on .
Infinitely slow clock transport here means that 7 approaches
¢ on o; the forementioned agreement translates into the con-
dition that 7 would be stationary when Foo = J. By requiring
this for every world lines we easily find that (D, ¢,k > =01is
the necessary and sufficient condition. If it is fulfilled, we can
say that the “proper time” is an extremum for every world
lines (in comparison with the time lapse measures performed
from other laboratories); or, in the special case, that ¢ gives
the same synchronization as infinitely slow clock transport.
In both cases, we say that ¢ is a fundamental time form.

5. THE GAUGE
As for existence of fundamental time forms, see Sec. 6.

Suppose that ¢ is fundamental. Then, if ZeV' §M is ev-
erywhere nonzero and we put a = @°7, then we have
{D (ac),k > = 0 because D (aom) = 0. Therefore, ac also is
fundamental. All these fundamental time forms will be re-
garded as equaly valid for describing geometric features of
spacetime. Then, the gauge for deciding if a geometric object
is physically consistent must be its invariance under the
transformation c—ac, where @ = @o is everywhere
nonvanishing.

Since @ does not depend on directions, that transforma-
tion simply means certain change of time unities on each
event. But 4 could depend on events of spacetime. Therefore,
we cannot get an absolute comparison among time scales at
different events of spacetime; however, at the same event, time
scales for clocks with different speed can be absolutely com-
pared with respect to each other. Now assume that two rea/
clocks depart from an event 4 and travel along different
paths, so that they meet at B. Someone might ask if the rela-
tive tick rythm of both clocks in B is different from that on 4.
Whereas this question makes sense in itself, it is not relevant
here, because my time is a spacewise time, and I do not know
whether the time of the real clocks agree with it. As it has
been suggested to me, perhaps this means that this theory
embodies in some nonquantic manner the following quantic
assertion: The uncertainty principle prevents one from
knowing both the metric of a spacelike slice and its respec-
tive extrinsic curvature.

6. THE TIME ELEMENTS SPACE

Now, suppose the y defines a TES and ¢ is a fundamen-
tal time form. Then, g = y — ¢ ® ¢ defines a symmetric ele-
ment of /[3M of signature ( —, + ,..., + ). After rather long
computations‘ we can characterize TES’s through the
following:

Theorem: Consider a given time manifold .Z . M, and let
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gell $M be symmetric, of signature (—, + ,..., + ), and
such that g(iZ,i) < 0. Define k = e, (d/[ — g(i,u)])"?),

c= —gk, ), y=g+c®c Thus, if D,k >=0and

D, |g(fif)| = O for every vell }M and f; = for with feV \M
(i:0,1,...,n — 1), then y definesa TES on . ¥ M, and cis a
fundamental time form. Conversely, if ¢ defines a TES on
5 M and ¢ is a fundamental time form, the field

g = v — c ®c satisfies the above requirements.

The theorem enables us to build fundamental time
forms. If ¢ is a privileged time form, it is enough to multiply ¢
by a function g/ )M in order to make |g| constant along
each fibre. Also, it facilitates the construction of TES mod-
els. Besides the relativistic one, which trivially satisfies the
theorem, the generalized Newtonian spacetime (see Part I,
Sec. 4) defines another TES.

We also can alloy relativistic and Newtonian theories in
the following way. Suppose M admits a Lorentz metric
geVIM , whence also a timelike one-dimensional distribu-
tion. We put b = g(x, )/( — g(x,x))"?and g =g + b & b,
where ¥ lies in that distribution. Let N,Re¥ M be scalar
fields such that N + R = 1 (the alloy ratios). By means of g
we build the relativistic spacelike metric ¥ , and by means of
g and b the Newtonian one, 7, (see Part I, Sec. 4). Define the
time bundle by p()e %, if jeM,,, <b,,,7>50,
£, ))N,8.,(3.9) — R,<b,,y)")>0. Then _
¥ = Ny, + Ryg, where N = Nogrand R = Rorr, defines the
mixed Newtonian relativistic TES on .4 M. The proof of this
assertion is rather long, and for the sake of brevity I prefer to
not write it down. This TES has some bizarre properties: For
example, its time bundle admits speeds greater than light.

The preceding theorem excludes from our scheme the
old theories with an interval given by ds
= (— g,Ax'dx)"* + (e/m)Adx', and a metric field defined
through the Cartan technique. In fact, that metric field
would have its determinant constant along each fibre iff
=0

7. GAUGE INVARIANCE AND CONNECTIONS

We are interested on connections that should be com-
patible with the geometric structure given by ¥ and funda-
mental time forms. The gauge invariant properties of this
structure are: spacelike metric, simultaneity that is the con-
dition {c,v> = 0, and fibre constancy of |y —c®c|.

Suppose that is the vertical homomorphism associated
to ¢ and that >3/ is a vertical connection such that *\7y =0,
7c=0,2T=0,27,b=ju(b)if bell M. If c—~c' = acisa
gauge transformation, we have *\y¢’' = *Jac =a *\Jc =0
because a = @o. Thus, our definition of vertical metric con-
nections goes without changes. That is, to each fundamental
time form ¢ we attach a vertical metric connection *57 on
I1M, the one satisfying *\/c = 0, 7y =0, *'T =0,

/b = ju(b). This connection is unique and defined by the
formula which appears in Part I, Sec. 8; but it is not gauge
invariant because the connection attached to ¢’ is

7’ = a /. This is not a bad feature, as we shall see in the
following section.

The definition of horizontal metric connections re-

962 J. Math. Phys., Vol. 20, No. 5, May 1979

quires more care. We will say that '/ is a horizontal metric
connection if it is torsionless and:
(a) '\V¥ = 0, that is, 'S/ preserves spacelike length;

(b) ('.c,w) = 0if {c,w) = O; hence, '/ preserves
simultaneity;

(¢) D(g"'1'\V8) = 0 whenever vell )M and z = Zor
(4 stands for double contraction). Equivalently, 's7 pre-
serves the fibre constancy of |g|.

Condition (a) tells that '<7 & must be a multiple of X
because ¥(k, ) = 0 and 's7y = 0. Thus, there must be some
dell M such that '\7 k = — {($,vDk. Condition (b) implies
that 's7,, ¢ must be a multiple of ¢; but {c,k > = 1. Therefore,
'V.c=<v)c. Then '\7 g ="7y —c&¢)
= — X¢,z>c®c. Sinceg'(c,)Y = — k, then
g' 17,8 =2%¢,z>and D,(g" 1 '\7,8) = 2D ¢,z) =0, be-
cause z = zo7. Therefore, ¢ must be associated to some ele-
ment ge¥ M, that is, ¢ = gor.

In Appendix A we prove that such a connection exists
and is unique.

Now, let c—c¢" = ac be a gauge transformation. Then, if
'7,c = {$,v>c,wehave'7,¢’ = (¢ + d In@)om,v>c’ because
'y is horizontal. Thus, if we require that 'y be gauge invar-
iant, then ¢ must change into ¢ + (d In@)or under a gauge
transformation. Therefore, if ¢ is associated to ¢ in such a
manner that ¢ + d Ind is associated to (@or)c, then there is a
unique gauge invariant horizontal metric connection.

We will think of ¢, thogther with ¥, as the fundamental
data of spacetime geometry. We tentatively call ¢ the elec-
tromagnetic potential, though its true meaning must be dis-
closed only after disclosing field equations. Its operational
definition is the following. Let meM be fixed. Take r, €% ,,.
and extend r,,, to across section 7 of 77 in a neighborhood U of
m in such a manner that r be experimentally stationary at m;
in other words, we suppose there is an operational definition
Jor the relative rest of close particles with respect to a given
one. Now, restrict ¥ and ac to r, that is, take the values of
these fields at the laboratory r for having the ordinary fields
yor, (ac)or; build the Lorentz metric § = (y — a’c ® c)°r,
where @ = ao7 is to be determined. Compute the Riemann
standard connection of g. Check if the normalized laborato-
ry field kor is stationary at m, i.e., if the covariant derivative
of koris zero at m. If this is not so, pick @ in a suitable manner
in order to have an affirmative answer. Then
#, = — (dna),, is the value at m of the electromagnetic
potential associated to ¢. Therefore, the electromagnetic po-
tential associated to ac is zero. In other words, the value at m
of the electromagnetic potential associated with c is minus the
differential at m of the deviation of ¢ from the time form,
which correctly gives the observable stationary (at m) charac-
ter of a laboratory with normalized speed.

If a; is the differential of a function, it can be globally
removed by a suitable election of @. That is, in such a case we
would have an absolute comparison among time unities at
different places of spacetime. If ¢ is not so, that comparison
does not globally exist; we only can compare clocks at the
limit when they join together. The proof of this interpreta-
tion requires additional techniques; it can be found in Ref. 4.
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8. THE PHYSICAL METRIC CONNECTION AND
THE CONNECTION ON V.M

Asin Part I, we now lift the pair '57,’5/. So, we obtain a
gauge invariant physical metric connection
A h ="'+ g Since '\7 is gauge invariant and
B,w = 7. ow, then the first term is gauge invariant. As for
the last term, we have seen that in a gauge transformation,
the relation *y/’ = a >3/ holds. But j changes into ' = gj.
Hence B,|V % M changes into B,/a. Therefore, the last
term and, as a consequence, 4 are gauge invariant.

Now, we can lift 4 as in Part I, Sec. 9, getting the linear
connection D on V.5 M, which is defined by
D,v=4.4 B v+ 4,4 B,v. Note that D is not gauge invar-
iant. In fact we have

D,v=A4,4,Bv+A4,A,B,v=D,v— w(lna)Vv.

Nevertheless, the curvature field of D, and therefore its
Ricci field, are gauge invariant, as it is easily proved.

9. CONCLUSION

The departure point of this paper is the Pythagorean
spacelike metric, a principle which permeates every signifi-
cant theory, experiment, and technology. The electromag-
netic potential appears later, in the study of connections. I
believe this point is very coherent in a tentative unified the-
ory. In others, the electromagnetic field appears in the con-
struction of the static geometric description—the metric—
under the form of light signals; but it also appears, as a geo-
metric object, in the dynamic description—connections or
field equations. Thus, field equations must imply that the
electromagnetic field propagates along null directions; oth-
erwise, the theory would be meaningless. In our theory, this
objection does not go.

We have reached a number of geometric objects en-
abling one to study the time manifold geometry. The main
remaining problem is to suggest and justify field equations.
In my opinion, it is a very difficult one:

(a) because of the horrific computations, even in simple
models that perhaps could serve as a guideline for general-
ization;

(b) because the energy—momentum field depends on the

geometry; thus, it must be reinterpreted under our basic
assumptions;

(c) our manifold is now .% M; hence, usual patterns of
field equation techniques cannot directly be translated here.

A naive field equation would be § ,|K|"2d7 = 0, where
£21s a domain of ¥ M, dr is the coordinate standard volume
form on %" M, and (K] is the Ricci field determinant of D. I
have computed this integral for the relativistic model and my
results are:

(a) if ¢ =0, then |[K| = 0, and this field equation is
meaningless;

(b) if ¢ = 0 but the Lorentz metric is constant (special
relativity), then |K| also vanishes;

(¢) I have studied a static spherical model (one-charged
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body problem), and there is no solution for the field equa-
tion. I believe this result is general for a relativistic model,
but I do not have a proof.

I find three answers to these troubles. First, we must
add to the integrand a term (or factor), depending on direc-
tions, standing for a mass-energy density. Second, the depen-
dence of fields on directions is an essential property of space-
time, whence it precludes the assumption of a Lorentz
metric; or, equivalently, that relativity is not compatible
with local mass or charge anisotropy. Third, that the field
equation is not appropriate.

I feel this last is the correct answer. So, it seems that this
way will be around for a while.

APPENDIX A: EXISTENCE AND UNIQUENESS
OF HORIZONTAL METRIC CONNECTIONS

We look for horizontal metric connections, in the sense
that \7 is horizontal, Ve = ¢ ®c, Vk = —dok, Yy =0,
T =0, where ¢ = ¢or. In Part I, ¢ is supposed to be zero.

It seems to me that this problem must be treated
through local expressions, at least in a first attempt. But this
way gives raise to another difficuity: The charts of the mani-
fold % M are awkward to handle. So, we shall develop a
technique enabling us to translate the problem to ordinary
Finsler fields and Laugwitz connection (cf. Ref. 2), whose
local expressions are simpler. Analogous techniques can be
applied in other computations, for example the curvature or
Ricci fields of D.

_ If v isasolution, and i, w are 4 (0), we can put

Vil = e,¥/.,€:0 for defining a Laugwitz connection; we
also need to know the action of 6 upon fields of i 8M, that
is, the associated homomorphism A:17 \M—V M. If i is

h (0) and §eV 9.4 M, we define 4w through

G,AWY = (5 — (B,iiidd In(G,ii>,p.~ 'Ae,iby, where A is the
homomorphism associated with <7 and p.~ 'de b is any ele-
ment of 5% M such that p,o(p.” 'Ae,v) = (de,i)op. This
definition is consistent because § — (§,if>d In{é,u),ii> =0
and i spans ker p. .

Proposition: With the above notation, i is a torsionless
horizontal Langwitz connection such that 7y = 0,
Vu = —dei, VC—¢®C, where we have put
y=eyy, C=eL, ¢=eg.

Proof: that 37 is a Laugwitz connection is a trivial mat-
ter. It is horizontal because if § is / (0), then (45), (Fo7)
= (d:@°7), po~ 'Ae,i; = (p*d @),
< ey 0y = (d(@om), Ae,by,: = (e,0),4a@) = i(@). Now,
the torsion of 7 is given 1 by T (v w)
= VU — /b — 7.0 [AD,4w). Then, if i are A (0), we
have T (3,i0) = 7.0 [Ae,b,de,ib]op — 7.0{40,41}, because
T = 0. Taking account of the definition of 4, it is not difficult
to prove that PoAD = (Ae,w)op. Thus
p.O[Av,Aw] [Ae,0.4e,w]op. Hence T = 0 because
= mop. Now, /4l = V(G ek = Aw((c uyle k
+ Ciiye 7o uk = — by Guyek = —(Bbpi. The
proof of 7y = 0 and V¢ = § ® ¢ is trivial.
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Proposition: Let V_be a torsionless horizontal Laugwitz
connection such that \7¢ = doé,Vi= —¢oid,yy=0.
Then A w = "/)V¢ £, defines a horizontal metric connec-
tion on IIM

Proof: The formula defining <7 makes sense if 7,10 is

# {0) whenever 5,10 are, and this is supposed tobe true in our
case, as we can verify by means of the formula (1) below. The
proofthat Vk = — d®k, etc, is straightforward. Now,
Vil = €,/ o, €00 = €,\] .. :€,l0; therefore, v and ¥/ do
induce each other in the sense of our previous proposition if
A4 and A are related as before. We have €7<c”,ﬁ> =0, hence
ATy = (8 — <Biityd In<G,u),Av. But (8§ — §,iifyd In<é,it)
belongs to the ¥ {.% M -module > spanned by p*(V" M)
thus, if ac/l )M, then <d (a°p),Av> = <p*da,AJ> (da)op,
p. 0ADY; but if & is 4 (0), then (d (aop),Avy = - Vi (aop)

= eV, a = {(da)op,(Ae,0)op>,whence p.oAT = (4 e,0)°p.
Then, as before, we can prove the torsion of 5/ is zero.

Thus, our problem of existence and uniqueness can be
equivalently stated on //M. Let [ x| be a coordinate system
on UCM. We take for .% U the coordinate functions [q P
defined by ¢'(%,,) = x'(m),p (x,) = <(a’x VoK e+ Since Ais
horizontal, we can wr1te Ae = a/ﬁq + Af(a/ap’) where
é, = (a/é?x Yorr. We put V( eA I/;é, Then Vel

= V‘ (u €, ) =1 e + Aé (u’)e = — ¢, u’e Therefore
Al = — " —gar. Ifweputg y—E¢&¢ _g(deﬁ)
® (dx'o7), then the matrix (g;) is everywhere regular. Thus,
after some standard computation, we find there is a solution
on % U if the following linear system has it:

g dg. g,
Zgir[‘;k r;ln " + gjri /n " — jlr\ im ”
: ap op” ap
Jde. dg., )
) + _g:i _ ik — 2000+ 200, + 20,00,
og"  d¢ o4 )
where ¢ = c{dx'o7). If we contract (1) with u*, it becomes
08
7grB +CrBj jBI\u“ rBz"' jl’\u’ (2)
ap’

where we have put B/ = I'J,u", ¢, = (dg;./dp")u*, and
M, is the right-hand side of (1). Since (g;) isregular, there s
a solution for (1)if it occurs for (2). We can verify without
dlﬁieulty thaty, + 7, = —c, Hencec, = ¢, and

¢, u" = 0. Suppose we write (2) takmg atx,, €% U the values
of the different quantities. Then, since y has signature

(0, + ,..., + ), we can choose the coordinates in such a maner
that, at x,,,, we would have

Yap = OapCap = SaOapVko = Cro = 0(Greek indexes from 1
to n — 1). Now (2) has a unique solution at x,,, if

2+, + sz#0for every apefl,..n—1}. Thus taking into
account that ¥, + 7, = — ¢;, We have after some obvious
steps:

Theorem: Let re. ¥ M, and suppose that (0,1,...,1) and
(0,7,,...,n, _ ) are the diagonal elements of y, and 77, when
they are simultaneously diagonalized. Then, if 57, + 7570
for every a,Be{ 1,...,n — 1}, re¥ M, there is one unique hori-
zontal metric connection on /IM.
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Corollary: If 9 is supposed to have signature
{0, —,..., — ) everywhere, there is one unique horizontal
metric connection on /IM.

APPENDIX B: Existence and uniqueness of vertical
metric connections

Our conditions are: \/, @ = ju(a), \Jc =0, VY =0,
T=0.

We put 7,0 — D v = G (w,); since 7 4«
= D a = jw(a), G is a bilinear operator and it defines an
element of /7M. If e = O, then 0 = (7,.c,0>

= Vzt‘<c’u> - <C,V“,U>

=D, {ewy — (e, D) — {e,G (wp)y = q(w,p) —

Thus, {¢,G (w,v)> = (w,v) for every v,well (M.
Now, if {c,v> = {c,w) = 0, then B,[4,w,4,v]

= D v — D w, asitis easily proved. Then, we have in gener-

al that B,[ 4w, Aw] = D, v — Dw — {cvdpw + {c,wdHv

— e, D ok + e, D k.

If T (w,0) = BA(Y 0 — VW — B[4w,A0]) =0,
then B,4,(G (w,v) — G (v,w) + {c,vdw — {c,wHv

G (w,v).

+ <{¢e,D ok — {e.DwHk)
= B,A(G (w,p) — G (v,w) + {c;vdw — {c,wHv). But if
{e,G (w,v)> = n(w,v), then
{e,G (w,0) — G (,w) + {c,vdw — {c,wHvy = 0. Thus, our
second condition upon G is
G (w,v) — G (vw) = {cwHv — e vdpw.

If 77 = 0, by a standard computation we have:

2¢(G (v,w),2) = (D Y)w:2) + (D, ¥)z.w) — (DY)v,w)

+ 27(v,w)e,z> — 27(v,2)e,w).
But
28(G (v,w),2) = 2¢(G (v,w),z) — 2{c,G (v,w)<c,z>
= 2%(G (v,w),z) — 2n(v,w){c,2)-

Hence
28(G (v,w),2) = (D V)w,2) + (D,¥)z.v) — (D.y)w,w)
+ 2(7/(U’w) - 77(U,lU))<C,Z>
— 29(,2Xc,w.

This formula tells us that if the vertical metric connec-
tion exists, it is unique. It can be equivalently written

28(G (v,w),2) = (D.&w,2) + (P,8)z.w) — (D) v,w)

+ 2g(w,wXe,z> — 28(v.2)c,wH.
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Hence ‘J.1. Horvath, Suppl. Nuovo Cimento 9, 444-96 (1958), see the Appendix.
*A. Montesinos, *‘On Finsler connections,” to be published in Rev. Mat.

VW Hisp. Amer.

=Dw+ g (Dgw, )+ (D&, ) — (D(vw), ) ‘R. Grassini, Boll. U.M.I. 11, 507-17 (1975).
‘A. Montesinos, “Geometria del espacio-tiempo a partir de la métrica espa-
— glv,w)k — {c,wdv.

cial,” thesis, Universidad Complutense, Madrid, 1976.
This formula gives the vertical metric connection, as it

is easily proved.
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The tensor product of two massive, spinless, positive-energy ray representations of the conformal group of
spacetime SOy(4,2)/Z, is reduced in a momentum basis. The basis vectors for the irreducible subspaces
(the “Clebsch—~Gordan coefficients™) are found to be intimately connected with Koornwinder's

polynomials in two dimensions.

1. SUMMARY AND INTRODUCTION

Within the last two years SO,(4,2)/Z,, the conformal
group of space-time, has found new interest by a paper of
Liischer and Mack' who proposed a globally conformal in-
variant quantum field theory. Furthermore, all irreducible
unitary positive-energy ray representations of the conformal
group have been constructed (Mack?) as induced representa-
tions on (the compactified) Minkowski space. They are ei-
ther massless with a definite helicity (that is, they become an
irreducible mass zero representation with positive energy
and a definite helicity when restricted to the Poincaré sub-
group) or they are massive and contain spin multiplets with
spin values / = [, [, + 1,---,L (that is, they contain all the
irreducible representations with positive mass, positive ener-
gy, and spin value either /,or /, + 1 or ---,L when restricted to
the Poincaré subgroup, each of them once). Besides, a di-
mension parameter d appears which is determined by the
helicity for massless representations, but which is less re-
stricted for massive representations.

There has been widespread opinion that only massless
representations are of importance for physics. However, in
Ref. 3 an argument originally due to Castell* has been given
which shows that in the framework of partial-wave expan-
sions massless representations occur only in exceptional
cases. As a rule, massive representations enter the partial-
wave expansions, and therefore a further study of massive
representations is worthwhile from a physical point of view.
On the other hand, a study of massive representations is also
interesting from a mathematical point of view, since it will be
shown that they are intimately connected with a class of
orthogonal polynomials in two dimensions which have only
recently been investigated by Koornwinder,’ and since very
often the study of the connections between a polynomial sys-
tem and a group leads to a deeper understanding of the poly-
nomial system.

In this paper, a momentum basis is used to obtain mas-
sive representations with spin values 0,1,---,L by reduction of
the tensor of two massive representations with spin zero. The
reduction is done by decomposing the tensor product of the
corresponding Lie algebra representations, using Casimir
operator techniques. However, each of the resulting Lie al-
gebra representations obtained by the decomposition is iden-
tified as a Lie algebra representation of one of the group
representations obtained in Ref. 2.
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In the process of reduction it turns out that the basis
vectors for the description of the spin states within an irredu-
cible representation will not simply be given by the spherical
harmonics Y, but to allow for the possibility of spin multi-
plets the basis vectors will have the form P>%, ., where the
P = P(x,y) are Koornwinder’s polynomials of two varia-
bles and where the 2%, are harmonic polynomials (actually,
the P"(x,p) will carry some more indices to distinguish dif-
ferent irreducible representations). As a consequence, differ-
ential operators E * (/) (‘ladder operators”) will appear
which map spin states / to spin states / + 1. They are known
from a paper by Sprinkhuizen-Kuyper.®

The basis functions P')%, . are of considerable phys-
ical interest by themselves, since they play the role of
Clebsch—-Gordan coefficients which are of importance al-
ready for a purely kinematical interpretation of the confor-
mal group in physics as proposed by Castell.” For instance, a
very satisfying explanation for the t/s scaling behavior for
elastic proton—proton scattering has been obtained by this
method.*

2. COMMUTATION RELATIONS FOR THE
GENERATORS AND CASIMIR OPERATORS

Notation: Greek indices p,0,--,@ run from O to 3, and
the metric ( — 1,1,1,1) is chosen for Minkowski space. Greek
indices a,f3,---,7 take the values 0,1,2,3,5,6, and the metric
(—1,1,1,1,1, — 1) is chosen for the six-dimensional space
with SO(4,2) as group of symmetry. The sum convention is
used.

A basis for the Lie algebra of the conformal group of
Minkowski space is given by the four-momentum P (gener-
ators of translations), the angular momentum tensor M,
(generators of rotations and pure Lorentz transformation),
D (generator of dilations), and K, (generators of special con-
formal transformations). This is the basis of physical inter-
est. However, for the purpose of calculations, it is much

more convenient to use the generators
— 1
M M, = — 5P, +K),

1A

@2.1)
M 6= %(P‘u - K,u,)y

“

M= —D.

As is well known, the M_; fulfill the commutation relations
of SO4,2),
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[Ma ’Myé] = i{gay MB& +g,86 May — 8as MBy - gByMaG}’
2)

and the Casimir operators of SO(4,2) are

Cn = %MaﬁMaﬁ,

Co = % Eapysis M PM PP M, 2.3)
Crv=3CopC™, Cop=k€aproaM "M ™

(the € tensor is defined by €335 = 1).

3. MASSIVE SPINLESS REPRESENTATIONS

The generators of a massive representation D% of
the conformal group with dimension parameter & and spins
I, = L = 0 have been obtained in a momentum basis by Cas-
tell,” who reduced the quasiregular representation of
SOy(4,2) on a hyperboloid in six dimensions, by Castell and
the present author,' who reduced the tensor product of zero-
mass representations, and by Mack,? who constructed in-
duced representations. They are (square brackets mean
antisymmetrization)

PH=pH,

. . d
M;tv = - lp[yav] = - l(p“ av =Py a,u)’ a,u =

PG
D=iprd, +d), K,=p,d°3,— 2p*d,+d)d,

and from this the values of the Casimir operators are, ob-
tained as

cn=d -2y -4, (3.2)
For representations of the conformal group, d takes the val-

ues 2,4, 6,- (see Ref. 9) and for ray representations d > 1 (see
Ref. 2).

C” = CIV = 0.

The generators act on the space 7' (M ) of Schwartz test
functions on Minkowski space with scalar product

@)= [ OO =200 6" d'p,
(3.3)
m=(—p~p)"
(M) can be completed to a Hilbert space after dividing out

norm zero functions, that is, the functions vanishing on the
forward light cone (latin indices run from 1 to 3),

L* = {p|@Y — pp:>0,°>0}. 349

4. THE TENSOR PRODUCT D@29 g D(@=:0.9)

In this paragraph, the generators and Casimir operators
of the product reprsentation D‘*%® g D@09 are expressed
by momentum variables and by “spin variables.” Instead of
d,andd,,a =d, — 2 and B = d, — 2 will be used.

Let p'"’ and p**’ be the four-momenta appearing in re-
presentations D@+ 200 and p¥+ 200 Then, if
G + 209y and GF + 209(p2)) are corresponding gener-
ators in D@ + 299 and D®+ 200 the corresponding gener-
ator G of the product representation is G = G© *+ 209(p17)
+ GB+ 2,0,0)(p<2))_ Especially, P =p<1> +P(2)-
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To work again in a momentum representation, the total
four-momentum

p“ =p(l);t +p(2)u (4.1)

has to be introduced as well as four more variables which will
be referred to as “‘spin variables.” For the moment they are
chosen to be

¢ =p>" 42)
and the following form of the generators is obtained:

P =pt,

M, = — Pl + 2y

D=ipPd, +2)+ 4,

K,=p0°3,—2pd,—id +2)d, +2i%, 07 + k,.

(4.3)

The operators 3

uwd, and k, are defined as

, a
2;1\/ = - lq[;tVV]’ V\' = o
dq

A=igV,+a+B+2), (44)
k_u = quPVp - 2(qpv;) + ﬁ + Z)V,u'

They depend only upon the spin variables and therefore they
will be referred to as “operators in spin space.” From the
generators (4.3) the Casimir operators are obtained as

Chu=p'k,—A*+ %EP”ZPG — 4,
Cm =0, (4-5)
Cy = %e"e# + %s""sp(,(CII — %s‘"’s}my +2).

To explain the “covariant spin tensor” s,,, and the 4-vector
€, it is convenient to first introduce the total mass

M=(-p'p)" (4.6)
the 4-velocity

p}t
w = 4.7
v 4.7
and the projection operator
Pl=gt 4 gty (4.8)

upon the momenta perpendicular to p*. Also the
abbreviation

A = {2020} (4.9)

(the curled brackets indicate an anticommutator) will be
used. Then

—_ yeld
Suv_P#vaoz ’

e, =P, (MkF+24 3y,

(4.10)

— APy, (@.11)

The Casimir operator Cy; has already been obtained in for-
mula (36) in Ref. 10. Slightly different variables have been
used in this paper.

The scalar product is obtained as

=]

9P — q

e - -1 [ -1
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XOL =@ —q10(—g)0 " —q)0(q") dpdq.

(4.12)

Having obtained the Casimir operators from the generators,
the question arises if the operators 5, and e,,, which are

necessary to construct C;y, have anything to do with the
generators. They have! Introduce the displacement operator

dy =3, + o du + 3,0, @.13)
Then
P =p,
M/,,, = ipl/ld‘,l + 8,00
(4.14)

D=ip'd, +2),

» 1 o
Ku :pp d/d) - 'M_;(Cll +4-— %‘Sp sp(r)

f
. 1
=2(p'd, +2)d, +ils,,d"} + ;{—eﬂ,

Theimportance ofd,,, s,,,, and e, is further underlined by the

fact that each of them commutes with the Casimir operators.

5. INTRODUCTION OF WIGNER FUNCTIONS |

In this section the variables in spin space will be made
dimensionless by dividing them by M and they will be sub-
jected to the pure Lorentz transformation which maps p to
(M,0,0,0). The second step will be called *‘introduction of
Wigner functions” (compare a corresponding step in Ref. 2).
let latin indices run from 1 to 3 and let §” be Kronecker’s
delta. Then the transformations described above are

1 .
Q°= E(u°q° —uq),

(5.1)

e ()
=—| —uq"+ {6+ 1.
Q M 1 u +1 9
An extra factor (M ©* #* 2)? appears now in the scalar prod-
uct which can be multiplied into the Wigner functions. All

these transformations are easy to do since the operators d,,,
S, and e, transform simply. The result is

PH :p;t,

M,= — ip 9 + oy

My= —i(pds+ p°3) + 0i
D=ip ”8,) + 2),

i 5.2)
K, :PO[&)Bp — (/M) Cp+4—42 Uzij)]

— 223, + Do + (70, + (/M)y} — 1/m ¥E,

K; :Pi[apap — (/M) Cyy +4— 32 Uzij)]
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—2(0"3, + 2)3; + | 04id, + (1/M)oy} + {00,i,}

1
Lo

U, u; .
i E/),
M 0

u’+1

for the generators with
1

Op = ‘mzqu’, ;=23 (5.3)

E =k, +245,— A, (5.4)

Here X,,, 4, k, and 4, are again given by formula (4.4) and
(4.9) with g replaced by Q. For the Casimir operators the
result is

Chi=—k°—A°+ 43 27— 4
Cin=0, (5.5)
Civ=LE'E+1315(C, — 1373, +2).

Note that p has vanished from the Casimir operators. The
scalar product becomes

(o) = f 0 *.0WP.O)(Q — 1 — Q0"

X (@) — Q'Q,1°6 (M8 (p")6 (Q )8 (1 — Q)
XO[(Q'— 1Y —Q'Q10 [(Q°) — Q'Q,] d*pd*Q.
(5.6)

6. ANGULAR MOMENTUM BASIS IN SPIN
SPACE

The Casimir operators (5.5) are invariant under rota-
tions in spin space, and therefore the introduction of polar
coordinates @, 8, ¢ for @', Q %, O will be useful. This is not
quite trivial, since the operators £’ jump between neighbor-
ing spin states, as can be seen from the explicit expression

ol g P P28
z'=o'la -2 xoy a0 T 030
1(1+1) 3 o e o
o )+2K3QO}+2{((Q)+Q 0"
x -2 +Q(2Q°—1)—a—+(x+2)Q“—(ﬂ+2)]
Qe a0
Xa_a"lf‘, K=a-+pF+2, (6.1)

for E'. As is well known (see for instance Ref. 11, pp. 98 and
99, both Q' and the gradient vector /3@’ change the value /
of the spin by + 1. With respect to basis vectors
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B =PUQ°0)¥,,(Q'.0%Q°),
(6.2)

PIQ° - Q)=P(Q°Q)

(where the %, = Q' Y,,. are the “harmonic polynomi-
als”), the reduced matrix elements of E' are

A+ 1E|DH=VI+10"EQ), for Il + 1,

(6.3)
(—1E|)= — V10 ~2EDQ¥+", for I —1,

with

a
E(l)=0QRQ°—1 2000Y+0°—-09
(N=00Q°~ 1) 5o + 2@ + 0~ 0
> o d d
X8Q°8Q+Q(2Q 1)8Q2+2KQ8Q°
L 2@ —B— ). (6.4)
aQ
Formula (6.3) shows that
(= L
E«(l)= 8QE(I) (6.5)
and
E-()=20 " YE(Q**! (6.6)

are ladder operators for the functions p(Q °,Q), raising and
lowering the spin value / by 1.

There are at least three reasons that make the ladder
operators fundamental for the analysis of this paper:

(a) They are directly connected with the generators. To
make this obvious, apply the pure Lorentz transformation
L * used in formula (5.1) [which transforms p to (3,0,0,0)]
to the 4-vector K ;:

0, for £ =0,

K,, =L;Kv= [_I_Ei) for p =1+ -
M

(Only the terms responsible for transitions /—>/ + 1 are giv-
en, that is, the terms containing the E/s.) Therefore,

8V I+ 1

. Y E-(),
A+ KD =—( + E) = -
M Vi )
—— E(),
2M

which means essentially that the ladder operators are re-
duced matrix elements of the generators of the special con-
formal transformations.

(b) They are intimately connected with the Casimir op-
erators, namely

1
o= E(l—-DE-()—- E-(I+ DE*(
n= 5 (—DE(1) T (+DE()
+2(0+1)—4,
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Ciu=0, (6.7)

1 ) I+1
E'(l—DE()+
Y (—-1DE() T

v =

E(+ DE()

F 10+ D€y — DA+ 1) +2].

(c) Theyareladderoperators for Koornwinder’s polyno-
mials. Once this fact is established it is quite obvious that
Koornwinder’s polynomials comeinto play. Introducing var-
iables x,y by

QOZ%(x+y)+%’ QZ%(X—})), (68)

one obtains

E'()= —[(x — D + (kx + 1 )dx
— (= 1Dy — (ky + A)dy],
(6.9)
E ()= — [ — 1) + (ex + A)dx — (" — 1)
(x =y
Xy —(ky + A)d,](x —p)** 1,
with
k=a+B+2 A=a-p. (6.10)

E* (/) of formula (6.9) are identical with the ladder opera-
tors for Koornwinder’s polynomials as given by Sprinkhui-
zen—Kuyper.¢ More accurately, one should write E * “#)(]),
The following expression is obtained for the scalar product,

1.
2K+3

()= f¢ *@.x.0,0,9 YW(p.x.y,0,¢)

X1 =) =»]* [A +x)(1 +p)]1P(x —py
X0 (M?)6 (P (1 — x)6 (1 — y)*0 (x — y)

Xd*p dx dy sinf d6 dg (6.11)

[the factor 6 (x — y) enters to express that 0>0].

Calculating the scalar product of two basis vectors B )
and B ﬁ,’,z) and, for the moment, performing only the integra-
tion over @ and @, one is led to a factor [(x — y)/4)*5,,. &
so that the measure contains a factor

dm = [(1 —x)(1 = »1“[(1 +x)(1 +»))?

m.m.

X (x — M6 (1 —x)H0 (1 —y)O (x — p). (6.12)

This exactly the measure for Koornwinder’s orthogonal set
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of polynomials. It is positive within the triangle I — x?> 0,
I —y*>0, and x — y > 0 but zero outside.

7. THE IRREDUCIBLE REPRESENTATIONS
CONTAINED IN THE TENSOR PRODUCT

In Secs. 5 and 6 transformations of the spin variables
have been performed with the aim to render the Casimir
operators as simple as possible. This aim has been achieved
by now. The Casimir operators (6.7) together with the ladder
operators (6.10) depend only on the two variables x and y
and cannot be separated any further. It is known from
Koornwinder’s work® that the Casimir operators possess the
joint polynomial eigenfunctions

Pty = o)X+ ex" ly 4 4yt (70)

Here m and n are arbitrary nonnegative integers and the
polynomial inside the square brackets is homogeneous of
degree n in x and y, and also symmetric in x and y. The
standardization here is so chosen that the coefficient of

x" s 1. Explicit expressions for Koornwinder’s poly-
nomials may be found in Ref. 12. The norm of P {&%)(x,y)
with respect to the measure (6.12) has been calculated in Ref.
6. Attention should be paid to the notation; Koornwinder

writes #, k, ¥ instead of m + n, n, [ + 5.

The standardization chosen in formula (7.1} is all the
information about Koornwinder’s polynomials that is neces-
sary for the purpose of this paper. Applying the ladder oper-
ators one obtains

EXPGED = n(v — 1 — PGB,

1N ni

E-(/)P(rz,/)’.l):(21+n + 1)(V_+_[)P(a,/5./» l)’

o mo o+ |
with

v=k+4+2m+1[+n.
Note that the values of v and of

L=1+n (7.2)

are not changed by the application of £ * (/), and therefore v
and L and possibly other indices characterize an irreducible
representation. But formula (7.5) below shows that only v
and L enter the eigenvalues of the Casimir operators. v has to
do with the dimension of the representation, as will be seen
later. The meaning of L can be explained immediately: Since
n is not smaller than 0, L is the maximum spin value con-
tained in the representation. Applying £~ repeatedly to
Pf,‘,’y{,"" ’(x,p), one finally arrives at / = 0. Therefore, any of
the irreducible representations with maximum spin value L
found in this paper contains also the spin values
0,1,2,...L — 1.

Introducing L in the formula for the ladder operators,
one finds

E(DP@PD = (L — (v — 1 — DPGEIAD,

m,n

(7.3)
E-(DPSGHD = (L + 1+ D+ DPEESY,

mn

with

v=x+2m+L. 749
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The corresponding eigenvalues of the Casimir operators are
obtained from formula (6.7):

en=v'+L(L+2)—4,
e =0,
cv=0"=1DL(L +2).

What remains to be done is to identify the irreducible repre-
sentation characterized by v and L with the irreducible re-
presentation D"t (L7221 found by Mack.? To this end,
replace the Casimir operator Cy; in the generators (5.2) by its
eigenvalue+? + L (L + 2) — 4, and split off a factor M from
the Wigner function so that d,, is replaced by M ~ *d, M.
The result will only be given for p = (M,0,0,0). The gener-
ators different from zero are in this case

(7.5)

P =M,
M():‘ _ Mal"

K*=M3"3,+ (I/M)[I(I+ 1) — L(L+2)]
—2(M3, + v + 2)d",

Ki= (I/M)[I(I+ 1)~ L{L+2))

— 2(M3y + v + )3 + 2073, + (1/M)E".

Let I' and ¥’ be the angular momentum and boost operators
ofanirreducible, finite dimensional representation D /2472
ofthe Lorentzgroup. Then N'N,is/ (/ + 1) — L (L + 2)times
the unit matrix and formula (7.6) agrees with formula (6.39)
of Ref. 2, describing D%+ ifMack’s dimension param-
eter d is put equal to

d=v+2, 1.7
and if E' is expressed as
E'=2[id — DN’ — €“I.N,]. (1.8)

Using the canonical basis of Naimark" it is not very hard to
check that E' and 2[i(d — )N — €*'I,N,] have indeed the
same matrix elements. This result is most astonishing:

Koornwinder’s polynomials have shown up in the study of
the conformal group, but their ladder operators can be con-
structed already from the generators of the Lorentz group!

It has been found that the tensor product
D00 g D00 contains the representation D4 /257/2
with L a nonnegative integer describing the spin content of
the representation and with dimension parameter

d=d +d,+2m+ L,

where again m is a nonnegative integer. Each L and each m
occur exactly once.

(7.9)
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Properties of the Benjamin-Ono equation
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The question is raised as to whether the Benjamin—-Ono equation, a nonlinear partial
differential integral equation, is a completely integrable Hamiltonian system. The
answer is almost certainly “yes.” Particular solutions suggest the form that general
polynomial constants must have. The structure of these and an algorithm to compute
them is given. Explicit formulas are given for the first six.

. INTRODUCTION

The Benjamin-Ono equation’ can be written in the
form

u,= —uu,—Hlu,], — o <x<co, )
where H denotes the Hilbert transform, i.e.,

H[W]:ﬁf ¥ (x"dx
nmJ,. x —x
and P signifies the principal value.

Physically, the equation describes approximately solu-
tions of problems which have

(i) A quadratic nonlinearity, and

(ii) When the dispersion relation of the linearized prob-
lem has a long wavelength limit of the form,

w/k=1-—alk]|,
for some constant .

A typical example is the evolution of long wave length
internal waves in a stratified fluid.

Two opposite mathematical conjectures as to the nature
of solutions of Eq. (1) can be made:

(1) Since Eq. (1) is in some formal sense intermediate
between the linearizable Burger’s equation

U= —UU, — U,y (2)
and the much discussed Korteweg—de Vries equation

U= — WU — Ui (2)

it should share the integrability of these.

(2) Formally, Eq. (1) is much different than Eq. (2) and
(3). Itis a nonlinear partial differential integral equation. It is
nonlocal as compared to Egs. (2) and (3) and so the solutions
may be much different.

We will find that the first conjecture is more nearly
correct.

The main question we wish to address here is as to
whether the Benjamin—Ono equation describes a completely
integrable Hamiltonian system. Our answer will be: Almost
certainly yes.

The approach will be to look at solutions of Eq. (1) of a
particular form. The results obtained have three uses.
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(a) The explicit solutions of Eq. (1) ootained are them-
selves of interest.

(b) Finding these solutions is equivalent to solving a
(finite dimensional) completely integrable Hamiltonian sys-
tem. This suggests that the same is true for Eq. (1).

(c) Inserting the solutions into their constants of motion
strongly suggests the form that general constants of motion
of Eq. (1) must have.

Following this suggestion, we construct an algorithm
for obtaining polynomial constants for Eq. (1) of arbitrary
(fixed) order. Since the process is rather tedious, we limit our
explicit results to the first six constants.

. HAMILTONIAN FORM

Following Lax,? it is trivial to show that Eq. (1) 1s of
Hamiltonian form. Thus, if we define functional derivatives
S8F /bu(x) by

d

d SF (x)
deF [u + ev]

€0 - f w Ou(x)
and Poisson brackets between functionals F,, F; of u by

[F.F)] = f R 9 SR .
- Ou(x") Ix' Su(x")

v(x)dx,

then Eq. (1) is

du .

— = [u,%],

E [u,7]
where

3
% = —j{’-‘—+lf1 ", ]dx. 4)
c 3 (4] (

More generally we have seen’ that the equation

du p du Jd [~ , du ,

—_—=u —+— G(x' — x)—dx 5

at u&x+8x Cw ( )8x' ®)
with G(x) = — G ( — x) is of Hamiltonian form with

- P2 R
= J _wThdx + _I_J‘ UG (x' — x)ﬂdx’
-« P+DP+2) 2 dx ax’
(6)

and

JG

— =G (x).

dx )
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iIl. EXPANSIONS IN MEROMORPHIC
FUNCTIONS

The success in finding solutions of the Burgers’ equa-
tion® and the KdV equation*’® by means of pole type expan-
sions suggest we look for solutions of Eq. (1) in the form

u= i ¢ [x — x,(t)] + complex conjugate, N
=1

where ¢ [x — x,(¢)] is a meromorphic function of x with no
poles in the lower complex x plane. This has the effect that H
acting on ¢ is very simple. Indeed H¢ [x — x,(t)] = — i
X [x — x,(t)]. Now insert Eq. (7) in Eq. (1). Since the poles
of highest order on the right do not appear on the left, they
must cancel. This yields '

¢ —ip" =0. ®
From this we conclude
¢ (x) = — ik cot(kx/2), 9

where k is some complex constant. The analyticity assump-
tion then requires us to take k real and

Imx,(z)>0. (10)
Note some simple properties of ¢.
(1) Antisymmetry, ¢ (x) = — ¢ (— x); (11)

(2) “Reality”, ¢ [x — x,(t1)]" = — & [x — x;(1)]; (12)
(3) Addition theorem,*
6+’ WP =¢(x ='W -8’ X (13)

(4) Substitution theorem,’

¢' )¢ @)+ Wl =¢'DIsx)+ ¢ W] (14)
Using Eq. (12), the ansatz of Eq. (7) becomes
u=3¢[x—x,()] — 3¢ [x —x/)]. (15)
i

/
wherex +y +z=0.

IV. POLE EQUATIONS

If Eq. (15) is inserted in Eq. (1), we obtain on using the
antisymmetry property and the addition theorem

— S —x ) e = 3 $(x, —x)b(x —x))
! m
mvﬁl
+ 3¢ — x4 '(x — x)) +cc (16)
Im

The coefficients of ¢ '(x — x;) and ¢ '(x — x;) must each be
zero giving the equations

X = - 2¢(xm_x{)+z¢(x3_x:n (17)
m £l m

and the complex conjugate. While this reduction to a system
of ordinary differential equations is a significant simplifica-
tion the resulting Eqgs. (17) are still rather complicated. Fur-
ther, it 1s a little peculiar that the Hamiltonian character of
our original Eq. (1) does not seem mirrored here. However,
as pointed out elsewhere® this is readily remedied.

Differentiate Eq. (17) with respect to ¢ and use Eq. (17)
and its complex conjugate to eliminate the first derivatives.
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Repeated use of the antisymmetry property and the substitu-
tion theorem yields the remarkably simple result
2 1
%= — k9 : ‘ (18)
2 Ox, ., sintk /2(x,, — x,,)
Thus, we have a (complex) many body Hamiltonian system
with potential ¥~ 1/sin’x.

We remark that since Eq. (18) is the time derivative of
Eq. (17) that if we take a solution of Eq. (18) which satisfied
Eq. (17) at some instant in time it will satisfy it at all times.
Thus, we can take Eq. (18) as our fundamental dynamical
equations and Eq. (17) as initial conditions. More precisely
our Cauchy problem is the following: Given X different
complex numbers x, (£,) with Im x, (¢;) > 0. Then we compute
x,(t,) from Egs. (17). Then the x, (¢ ) are to be found by solv-
ing Eq. (18) given x, (%), x,(%,).

Of basic importance is that Moser’ has shown that the
Eqgs. (18) are completely integrable. We adapt his results into
our notation. He showed that if we define

k k
Z[m = 7 COt?(xl - xm) (19)

and form the matrix L with elements
L, =6,%+1~-8,)-2)Z,, (20)

and B with elements

B[m = 6[»12[2[212”1 + (k 2/4)]

+ (0 =8, =2)[Z;, + (k*/4)], ey
then Egs. (18) are

JaL

= [B,L]. (22)

Thus, they are of the Lax® form.

Accordingly, we have very many constants of motion.
Indeed TrF [L Jforany Fis such. Nlinearly independent con-
stants are

TrL", n=1.2,..N. (23)

Before examining the possible implications of these for
general constants of motion for Eq. (1), let us look in more
detail at the special solutions we have arrived at.

V. THE PERIODIC CASE

If k540, we have solutions periodic in x with period
A = 211 /k. For illustration consider first the trivial case,
N = 1. Then

u= —ik cot%(x —x, (1)) + ik cot%(x —x;(1)),

where from Eq. (18) we see that X,(¢) =0, i.e.,

x(1) = x:(t6) + Xu(t)(t — 1) (24)
Here x,(t,) is to be found from Eq. (17). Thus,
Xty = — & [xi(t)) — x,(t0)] = ik cotbk [x(t)) — x;(to)]
or

X(t;) = k coth[k Imx (2,)]. 25)
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Note: (1) This “single soliton” solution is determined by
two real numbers. The real part of x,(¢,) shich gives the ini-
tial center and the imaginary part which gives a velocity.

(2) If Imx,(t,) > O, then from Eq. (25) we see that x,(¢,) is
real. Equation (24) then shows that in accordance with our
assumption we always have Imx,(t) > 0.

General N

Olshanetzky and Perelomov® have indicated a method
which reduces the initial value problem for Eq. (18) to find-
ing the eigenvalues of an N X N matrix. Unfortunately, the
procedure is sufficiently complicated that it is difficult to get
a clear picture of the behavior of the solution. Hence, we
restrict ourselves to the first nontrivial case.

N=2

Here we have a simple two-body problem with transla-
tionally invariant potential. With x,(,), x,(¢,) given we cal-
culated x,(#,) and x,(t,) from Eqgs. (17). Integrating Eqgs. (18),
we then obtain

x1,(1)=X(@) £ x(t),
where

X (1) = L{xi(te) + xolte) + (t — t)[Xi(ts) + Xa85)]}
and

x(t)= %[xl(t) —x(t)]

= — k" cos'[(1 —k2/e)'? cosk (et + ¥)].

Here
€ = [X(t))* + k ¥/sin*kx(t,)
and

Y= —€ly— -1—- cosh™ __coskx(t)
ik (1 — k¥/e)!?

VI. THE NONPERIODIC CASE

Particularly, simple (and suggestive) results are ob-
tained when the period becomes infinite—k—0. The ansatz
of Eq. (17) becomes

u= _—u + c.c. (26)
7 x—x,(t)
The initial constraint on the velocities becomes
dx 2 _ 2
T @mn
dt m1 X, — X; m xm—x,

while the equation of motion of the poles becomes
dx
g ___1__ (28)
dr’ MRl (X — %)

First let us look at the trivial case.

N=1
From Eq. (28)
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diw _
dtr
and then
x,(t) = x,(t) + (¢t — t)%.1(2o). 29)
The initial condition Eq. (27) then gives
X.(t) = [Imx,(t,)] ~ .

Thus, again the “single soliton” solution is characterized by
two real numbers. A velocity equal to 1/Imx (z,) and an ini-
tial position given by Rex,(¢,).

General N

Previously,'® we have shown that the solution for this
case is elementary. The essential result is the following.

Theorem: Letx(t,),] = 1,2,...,N be N complex numbers
which are all different and such that Imx(z,) > 0. Form the
N X N matrix M with elements

M, = 6,,x/(t) + (t — t)L,,(%),

where
L,,,,ao):a,m(z R B— )

azi X, () — x,(t) n x;(to) —x,(t)

(1 - 51m)( - 2’)
x,(t) — xm(to) .

Then

U= — 21'—52— In{Det[M — x! ]} + complex conjugate
X

is a solution of Eq. (1).

As an example, we can write down the solution for the
first nontrivial case.

N=2

For our purposes it is convenient to write these solu-
tions not in terms of four real numbers Re and Im parts of
x, ,(t,) but rather in terms of four real numbers v,, vy, x(, x™

whose significance will become clear. The solution is

u= —x +c.c., (30)
x—xi(t)  x—x(t)
where
v, +vy) i(l 1) 1
X)) ="+ ——+—]+—
12t 2 2\, U, 2
(2 4+ x) £+ x(2),
where
() = L[1 + ey + et )] 31
€
and
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{0) (0)
v — v, 1(1 1) X X
€= Imy=———~—), Rey=———.
2 4 2\v, 0, 4 2

Without loss of generality we assume v, > v,. Then we choose
the square root so that as f— + «

x,( Y=ot + (@i/v) + x0 (32)
and

X,(2 )0yt + (i/vy) + xP.

Thus, we just obtain as solution the sum of two noninteract-
ing single solitons. To see what happens as r— — oo, we need
a little care. Continuity arguments yield different results de-
pending on the ratio v,/v,. If (3 + 2\/2)2)2 > U, > Uy, then as

— — o

X(t)—>vst + i/v, + X2

, (33)
Xt y-u,t + i/v, + x\O.
Thus, the poles interchange their parameters. On the other
hand, ifv, > (3 + 2\/5)02, then as t— — « we obtain

x,(ty—uit + i/v, + x0

X,(2)vyt + i/v, + X0

Here the poles maintain their parameters. However, in ei-
ther case the solution Eq. (30) fails to show any change in
form as we go from — o to + . There is no asymptotic
change in our solitons after they pass through each other.

The transition point v, = (3 + 2\/2)v2 is rather inter-
esting. With this and only this relation of parameters do we
find what Calogero'! has termed collapse. At some time the
solution develops a singularity and we cannot integrate the
equation further.

VIl. CONSTANTS OF MOTION

We have seen that for the nonperiodic ¥V soliton case the
solution as t— oo tends to N separated single solitons. Then
the matrix L of Eq. (20) becomes simply

le = 61'mU{v (34)
where v, are the velocities of the single solitons. Accordingly,

the N constants of motion are
N

TeL"= Y (v)™ (35)

=1
Remark: The stability our solitons is well exhibited
here. Thus, as -— — o we expect again to find N separated
solitons with velocities v}, /=1,2,...,N. But, then

N .
TrL " = Z (v)" (36)
=1
Since the traces are constants and this holds for all n, it is
clear that the set (v, v,...,uy) is merely some permutation of

the set (v, v,,...,uy). Actually, we can say a little more. If we
sum Eq. (28) over / we obtain,
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3N
X =+ B
]

However, if evaluate this #— + oo ( — o) when we have soli-
tons with parameters [ (¢,X{%);(0,X);...; (0, xP) ] or

L)X Y505 (VX %)) 1, we see that

Zx}o) = Zx§°”. (38)
7 7
(Actually, from our N = 2 case we know that we only per-
mute the v’s and the x°”’s together.)

The existence of the many constants TrL" for all pure
soliton solutions suggest that there may be similar constants
for general solutions of the Benjamin-Ono equation. Let us
now try to find them.

First note that there are three ““classical” constants for
quite general equations of the form like the Benjamin—Ono
equation. For example, for all Egs. (5) we have the three
constants

2
I = fu dx, L= f “7 dx, I,= — 297, (39)

(These are essentially conservation of mass, momentum, and
energy.) However, let us evaluate these constants for the
Benjamin-Ono equation when u is a pure ¥ soliton solution.
To evaluate the constants, we wait till they are far apart and
then find

N
L=4lIN=4lY (5)°=#ITiL° (40)
I=1

N

L=4IY v=4llTrL (41)
I=1

N

L=4l1Y (v,)*=4TTiL" (42)

I=1
These constants are clearly the simplest ones of the set
we have seen are associated with N soliton solutions. Are
there general constants corresponding to TrL" for n > 2?

Remarks: (i) By analogy with the K de V equation we
might suspect that they are higher order polynomials.

(ii) Let us introduce the concept of “*weight” in the fol-
lowing manner. We assign weight one to # and weight minus
one to x. A consequence is that the operator H has weight
zZero.

(iii) We notice that for the Benjamin-One equation the
integrands of 1, , ; are polynomials of order 1,2,3 and are
homogeneous of weight 1,2,3 respectively.

(iv) Let P,(u) be any polynomial of order # and homo-
geneous of weight n. Then if in 7, = P, (u)dx weinsertan N
soliton solution and evaluate this at large times, we will
obtain

In:Cni (Ul)n l’ (43)

=1

where the C, are pure numbers.
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From these remarks it becomes clear that the general
structure of our constants must be of the form

I—ZJ(’) n>1, (44)
i=0

where the integrand of J  is of order (n — i) in u and is of

weight n. Therefore, J { has / derivatives with respect to x.

We can normalize our constants so that

s = [Llx, 45)

n
Recursion relations connecting the J ¢ are readily found.
Indeed we note that if d1,,/3¢ = 0, the terms of the same
order in u must be individually zero. Thus, let

du du
—= —uu, —=
aT at’
Then we must have
aJ(l'+|) aJ(D
— =0, i=0,1,2,..

—Hu

XX]'

2. (46)

ar at’
Note:

ar®

i )
D T

(ii) J ? must have an odd or an even number of opera-
tors H depending on whether / is odd or even. Further J
has at most i operators H. However, it can have fewer since
H= -1

(iif) The requirements almost uniquely determine
J(n 2)

e,
Example: Suppose n is even. Then n — 2 is even. There

must be 2 #’s, no operators H, and (n — 2) derivatives with
respect to x,

n/2 — |
e (Constant)f{ 9 ]

n/2 —1

[Actually with J ) normalized as in Eq. (45) we have found
the “constant” is 2" ~ 3]

(iv) We see that

—‘9-J§,"*2>=0. 47

at’

Now we can try to solve our recursion relation Eq. (46)
starting at the top, / = 0, or at the bottom, / = n — 2. (In
practiceit is convenient to work both ways and to meet in the
middle.)

We give an example of how the procedure can be car-
ried out. Let n = 2m. Then J (" must have (n — 1) #’s, one
differentiation, and one H. The only possibilities are:

J

G = Juz’" “2 Huu], j=01,.,m—2.

Now if
F.zfuz'" 2y H{uu]
J x1s
we find that

976 J. Math. Phys., Vol. 20, No. 5, May 1979

aJ®
ar'

= (2m — )F,

and

dG;

ﬁ— —Cm—=2-)F,+Q2m -2 —-)F, .
Accordingly, Eq. (46) for i = 0 is satisfied if

0 ="S"ag,

Ol
ji=o

where
=Q2m - 1)/2m —2 —)).
Clearly, the process gets complicated as # gets large.
However, we have already given enough information to cal-
culate 7, , ; ,- We have carried the calculation through to

obtain some of the lower I,,. The first three “nonclassical”
ones are:

- “(uw) +2uH () + 2(ux)2}dx
= H(WS) + [%u’H (u) +uw'H (uux)]

+ (2u(H (u))? + 6u(u,)] — 4u H (u,)}dx

_ H(uﬁ/ﬁ) + [; WH ) + 2wl (uux)]
+ 25U, ) 4wt (H () + 2uH (u)H (uu,)]

S 10[( ) H (u,) + 2uu H ()] + s<um>2}dx.

What are the constants 7, when evaluated for pure soli-
ton solutions? We have mdlcated in Eq. (43) that they are
indeed proportional to TrL” ~ !, From Egs. (40) — (42) we
see

¢ =c,=c =4Il

An obvious conjecture is ¢, = 4/7 all n. We have
checked this for n = 4. Accordingly, we feel very confident
in the following conjecture. If the constant /,, is normalized
as in Eq. (45), then for pure soliton solutions

In :411 E,V: (UI)" - 1‘ (48)

=1

VIil. CONCLUSION

It seems rather certain that the Benjamin—Ono equa-
tion describes a completely integrable Hamiltonian system.

This raises a number of interesting questions. Is there a
Lax® pair of operators B, L associated with this equation so
that it can be written in the form dL /dt = {B,L ]? If the an-
swer is positive, we should be able to use the Inverse Scatter-
ing Transform method to discuss the general initial value
problem for the Benjamin—Ono equation. Further there
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should then be an analog of Lenards'? algorithm which
would enable us to calculate the 7, much more efficiently.

If the answer is negative, i.e., there is no Lax pair, this
would be extraordinarily interesting. It would be the first
such example known.

Are the constants [, in involution? The ones we have
given are.

APPENDIX: EXPLICIT SOLUTION OF THE
CALOGERO MODEL

In Sec. VI we have given the explicit V soliton solution
for the nonperiodic problem. The proof of this uses a theo-
rem due to Olshanetsky and Perelomov'' and Calogero."
The published proofs are rather complicated. Here we give
an elementary one.

Theorem: Let x (t ) be the solution of Eqs. (28) subject to
x[t,), X (¢t,) being given. If L is the appropriate Lax matrix
and K [x(¢)] is the matrix with elements K;; = &, x(t ), then

K [x(t1)] = U {K [x(t)] + (¢ — to)L [x(t) X ()]} U ™.

(A1)

Proof: We have indicated that Egs. (28) can be written

in the form

9L _(BLI. (A2)
ot
Define U(r) by dU /3t = BU subject to U (¢,) = 1.

Consider

J(t)=U"K[x(t)]U. (A3)
On differentiating we find
aJ

—=UK[x()] + [K.B]}U.
ot

However, in Ref. § it is shown that
. oJ

—=U"LU. A4
o (A4)
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Differentiating this once more yields,

FJ _1[ ar ]

- = — — [B,L){U=0, A5

I = [B.L] (A5)
in view of Eq. (A2),

SIS =C 4+ Gt —t,), (A6)

where C, and C, are constant matrices. Putting ¢ = ¢, in Eq.
(A3), shows that

C =K [x(t)] (A7)
while putting 7 = 1, in Eq. (A4) yields
C, = L [x(t,),x(,)]. (AB)

Putting then C, and C, into Eq. (A6) and multiplying on the
left by U, the right by U "' yields Eq. (A1).
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Erratum: A particle model based on

[J. Math. Phys. 19, 1304 (1978)|

U. Enz

Philips Research Laboratories, Eindhoven, The Netherlands
(Received 19 September 1978)

In this paper, Eq. (16) is in error and should be replaced

by

a=e/fic=aRy U "

(16)
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